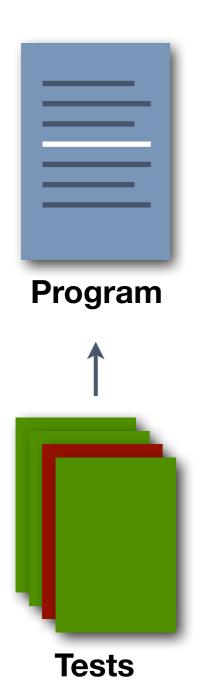
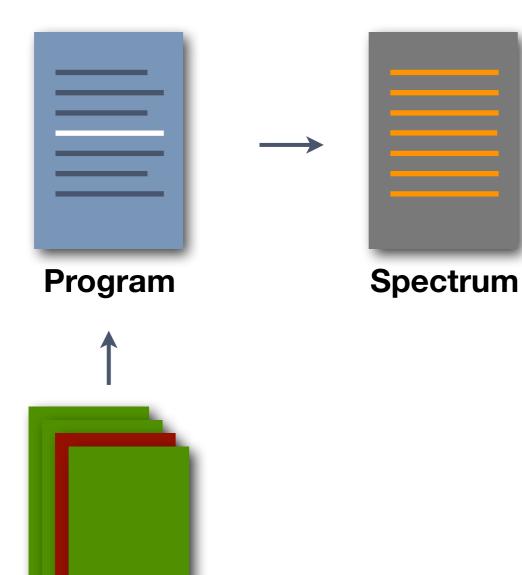
Human Competitiveness of Genetic Programming for Spectrum Based Fault Localisation

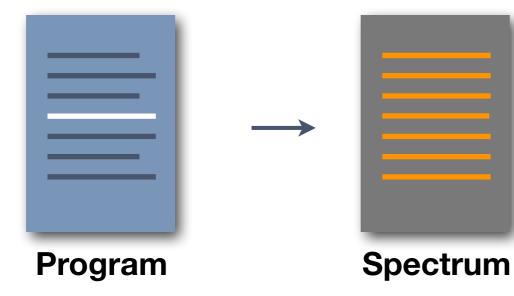
Shin Yoo¹, Xiaoyuan Xie², Fei-Ching Kuo³, Tsong Yueh Chen³, Mark Harman⁴

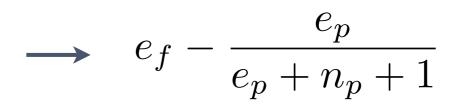
1: KAIST, Republic of Korea
 2: Wuhan University, China
 3: Swinburne University of Technology, Australia
 4: University College London/Facebook, UK

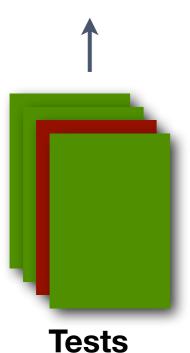
HUMIES@GECCO 2017

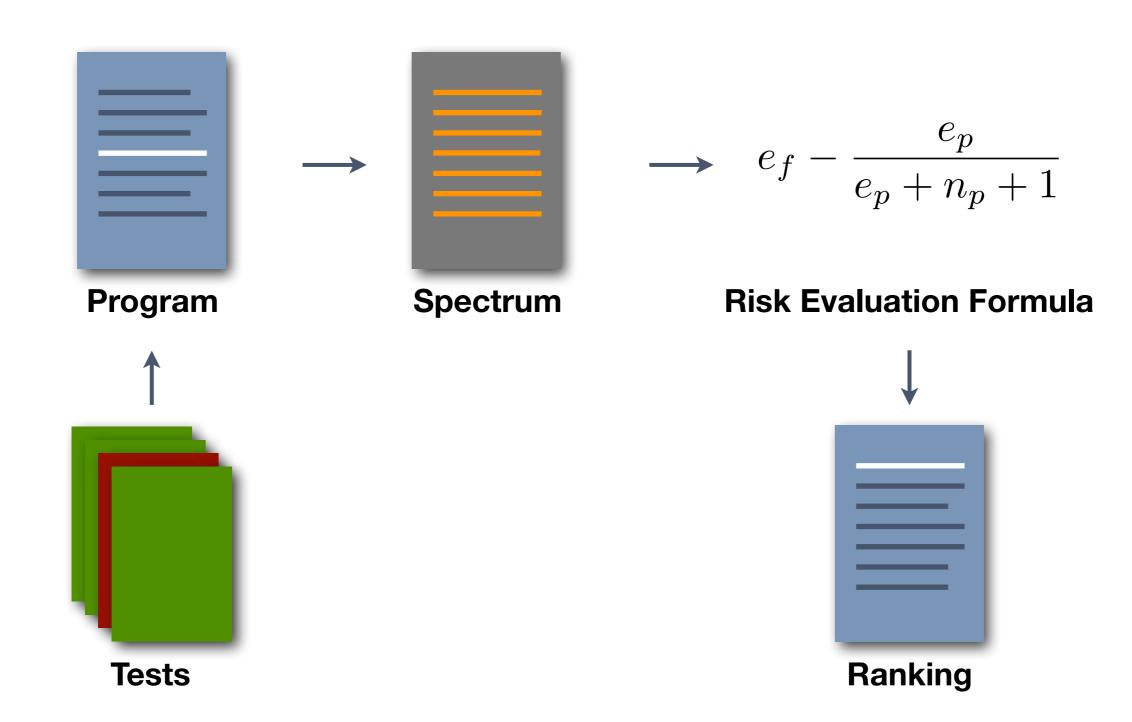

Automated Debugging

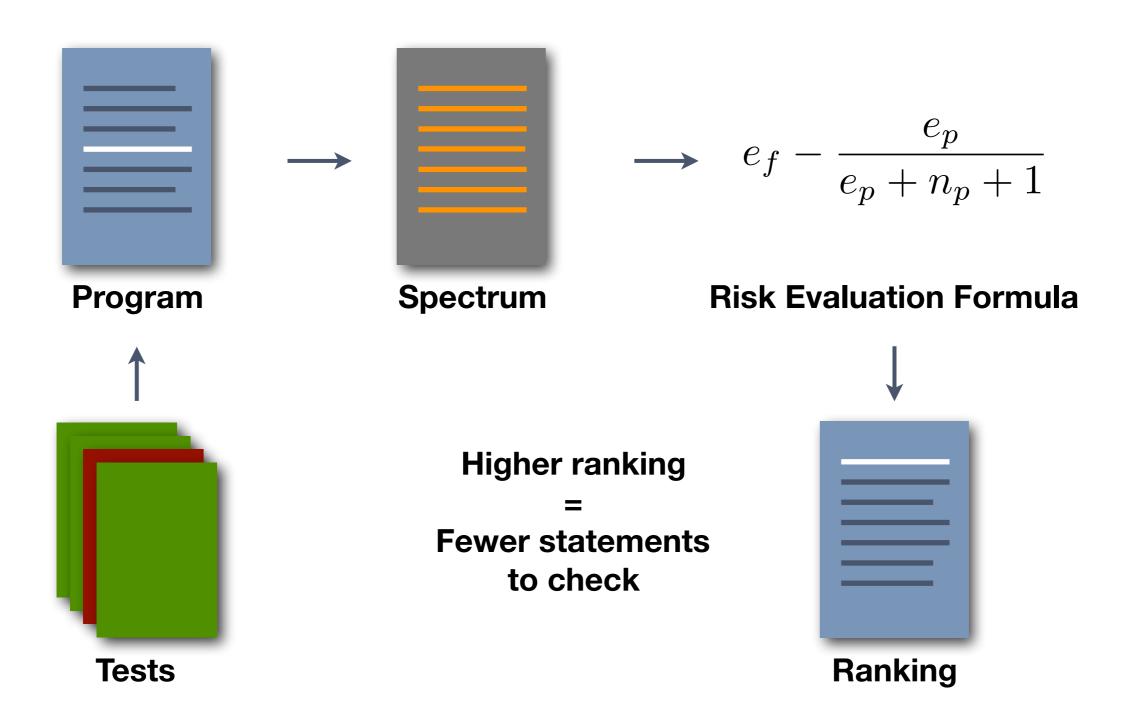

- Debugging is hard for humans: we increasingly have to work on and with large code base written by others.
- Debugging is hard for machines: automated repair techniques rely heavily on automated fault localisation.




Program




Tests



Risk Evaluation Formula

Structural	Test	Test	Test		Spec	etrum		Tarantula	Rank
Elements	$ t_1$	t_2	t_3	$ e_p$	e_f	n_p	n_f		
s_1	•			1	0	0	2	0.00	9
s_2	•			1	0	0	2	0.00	9
s_3	•			1	0	0	2	0.00	9
s_4	•			1	0	0	2	0.00	9
s_5	•			1	0	0	2	0.00	9
s_6	•		•	1	1	0	1	0.33	4
s_7 (faulty)		•	•	0	2	1	0	1.00	1
s_8	•	•		1	1	0	1	0.33	4
s_9	•	•	•	1	2	0	0	0.50	2
Result	P	F	F						

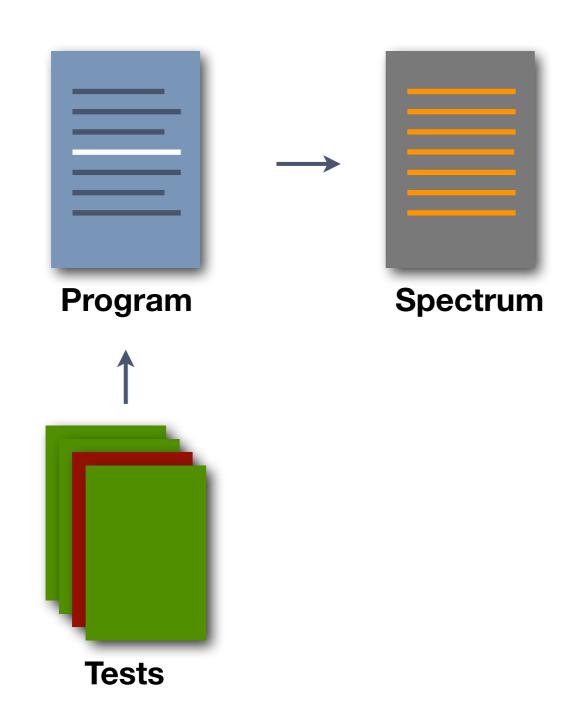
Structural	Test	Test	Test		Spec	trum		Tarantula	Rank
Elements	t_1	t_2	t_3	e_p	e_f	n_p	n_f		
s_1	•			1	0	0	2	0.00	9
s_2	•			1	0	0	2	0.00	9
s_3	•			1	0	0	2	0.00	9
s_4	•			1	0	0	2	0.00	9
s_5	•			1	0	0	2	0.00	9
s_6	•		•	1	1	0	1	0.33	4
s_7 (faulty)		•	•	0	2	1	0	1.00	1
s_8	•	•		1	1	0	1	0.33	4
s_9	•	•	٠	1	2	0	0	0.50	2
Result	Р	F	F						

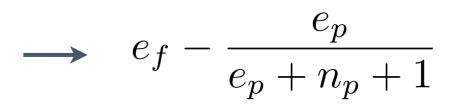
Structural	Test	Test	Test		Spec	trum		Tarantula	Rank
Elements	t_1	t_2	t_3	e_p	e_f	n_p	n_f		
s_1	•			1	0	0	$2 \mid$	0.00	9
s_2	•			1	0	0	2	0.00	9
s_3	•			1	0	0	2	0.00	9
s_4	•			1	0	0	2	0.00	9
s_5	•			1	0	0	2	0.00	9
s_6	•		•	1	1	0	1	0.33	4
s_7 (faulty)		•	•	0	2	1	0	1.00	1
s_8	•	٠		1	1	0	1	0.33	4
s_9		•	•	1	2	0	0	0.50	2
Result	P	F	F						

Structural	Test	Test	Test		Spec	trum		Tarantula	Rank
Elements	$ t_1$	t_2	t_3	e_p	e_f	n_p	n_f		
s_1	•			1	0	0	$2 \mid$	0.00	9
s_2	0							0.00	9
s_3	•				0 _	e_f	2	0.00	9
s_4		arant	tula =	_ 1	U	$e_f + r$	0	0.00	9
s_5					e_p		e_f	0.00	9
s_6	•			e_{i}	$p+n_{I}$	p ($e_f + i$	$n_f = 0.33$	4
s_7 (faulty)		•	•	0	2	1	0	1.00	1
s_8	•	٠		1	1	0	1	0.33	4
s_9	•	٠	•	1	2	0	0	0.50	2
Result	P	F	F						

Structural	Test	Test	Test		Spec	trum		Tarantula	Rank
Elements	t_1	t_2	t_3	e_p	e_f	n_p	n_f		
s_1	•			1	0	0	$2 \mid$	0.00	9
s_2	•			1	0	0	2	0.00	9
s_3	•			1	0	0	2	0.00	9
s_4	•			1	0	0	2	0.00	9
s_5	•			1	0	0	2	0.00	9
s_6	•		•	1	1	0	1	0.33	4
s_7 (faulty)		•	•	0	2	1	0	1.00	1
s_8	•	٠		1	1	0	1	0.33	4
s_9		•	•	1	2	0	0	0.50	2
Result	P	F	F						

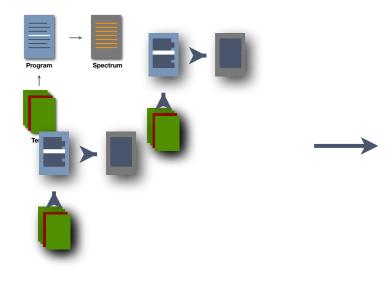
Structural	Test	Test	Test		Spec	trum		Tarantula	Rank
Elements	$ t_1$	t_2	t_3	$ e_p$	e_f	n_p	n_f		
s_1	•			1	0	0	2	0.00	9
s_2	•			1	0	0	2	0.00	9
s_3	•			1	0	0	2	0.00	9
s_4	•			1	0	0	2	0.00	9
s_5	•			1	0	0	2	0.00	9
s_6	•		•	1	1	0	1	0.33	4
s_7 (faulty)		٠	•	0	2	1	0	1.00	1
s_8	•	٠		1	1	0	1	0.33	4
s_9		•	•	1	2	0	0	0.50	2
Result	P	F	F						

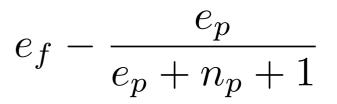

Structural	Test	Test	Test		Spec	etrum		Tarantula	Rank
Elements	t_1	t_2	t_3	$ e_p$	e_f	n_p	n_f		
s_1	•			1	0	0	2	0.00	9
s_2	●			1	0	0	2	0.00	9
s_3	•			1	0	0	2	0.00	9
s_4	●			1	0	0	2	0.00	9
s_5	•			1	0	0	2	0.00	9
s_6	●		•	1	1	0	1	0.33	4
s_7 (faulty)		•	•	0	2	1	0	1.00	1
s_8	●	•		1	1	0	1	0.33	4
s_9	●	•	•	1	2	0	0	0.50	2
Result	Р	F	F						


(Empirical) State of the Art (circa 2012)

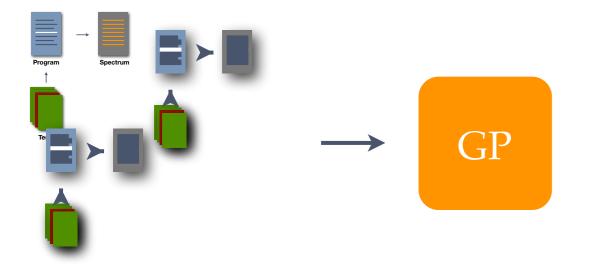
Over 30 formulæ in the literature, manually developed over a decade's time: **none guaranteed to perform best for all types of faults**

(Empirical) State of the Art (circa 2012)


$$\begin{array}{c} \displaystyle \frac{2e_{f}}{e_{f}+n_{f}+e_{p}} & \displaystyle \frac{e_{f}}{e_{f}+n_{f}+e_{p}} \\ \hline e_{f} + n_{f} + e_{p} \\ \hline e_{f} + n_{f} + e_{p} \\ \hline e_{f} \\ \hline n_{f} + e_{p} \\ \hline \hline n_{f} + e_{p} \\ \hline \hline e_{f} + n_{f} + e_{p} + n_{p} \\ \hline e_{f} \\ \hline e_{f} + n_{f} + e_{p} + n_{p} \\ \hline \frac{e_{f}}{e_{f}+n_{f}+e_{p}+n_{p}} \\ \hline \frac{e_{f}}{e_{f}+n_{f}+e_{p}+n_{p}} \\ \hline \frac{e_{f}}{e_{f}+n_{f}+e_{p}+n_{p}} \\ \hline \frac{e_{f}+n_{f}}{e_{f}+n_{f}} + \frac{e_{f}}{e_{f}+e_{p}} \\ \hline \frac{e_{f}+n_{f}}{e_{f}+e_{p}} \\ \hline \frac{e_{f}+n_{f}}{e_{f}+n_{f}} + \frac{e_{f}}{e_{f}+e_{p}} \\ \hline \frac{e_{f}+n_{f}}{e_{f}+e_{p}} \\ \hline \frac{e_{f}+n_{f}}{e_{e}+n_{p}} + \frac{e_{f}}{e_{f}+n_{f}} \\ \hline \frac{e_{f}+n_{f}}{e_{e}+n_{p}} + \frac{e_{f}}{e_{f}+n_{f}} \\ \hline \frac{e_{f}+n_{f}-e_{p}}{e_{f}+n_{f}+e_{p}+n_{p}} \\ \hline \end{array}$$

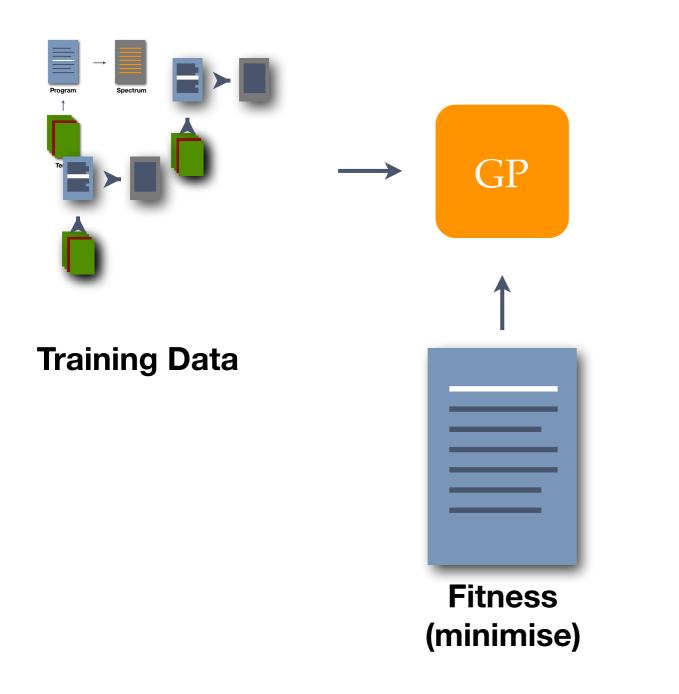


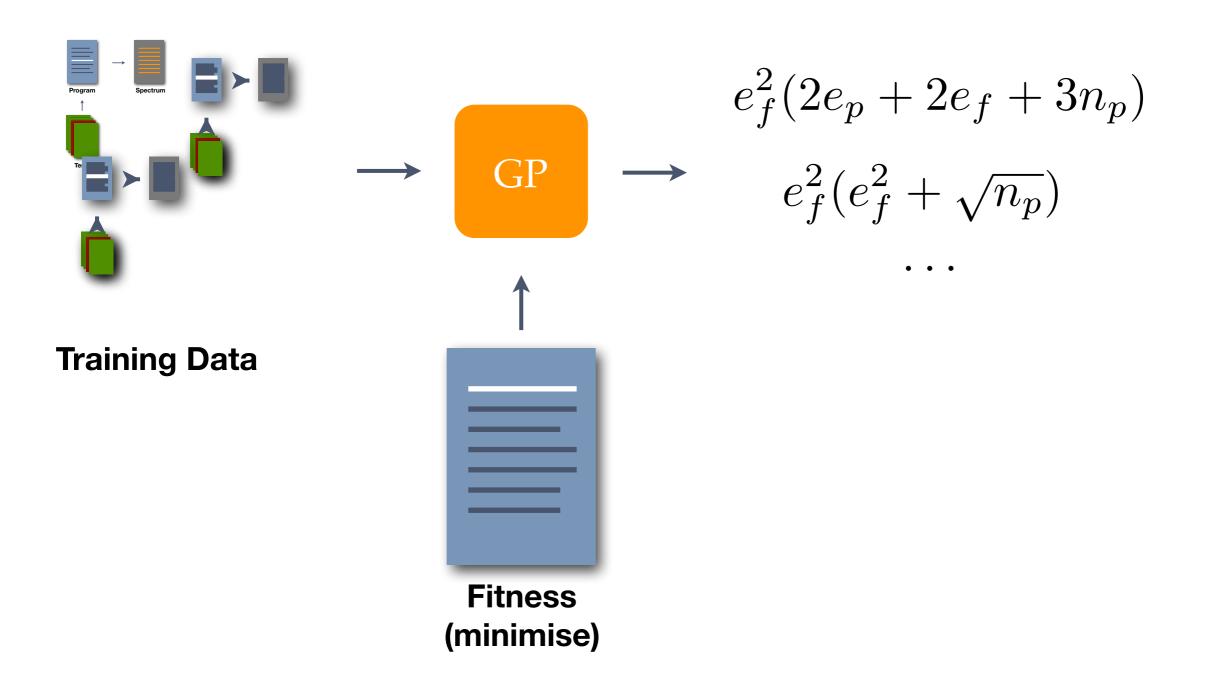
Risk Evaluation Formula



Training Data

Risk Evaluation Formula



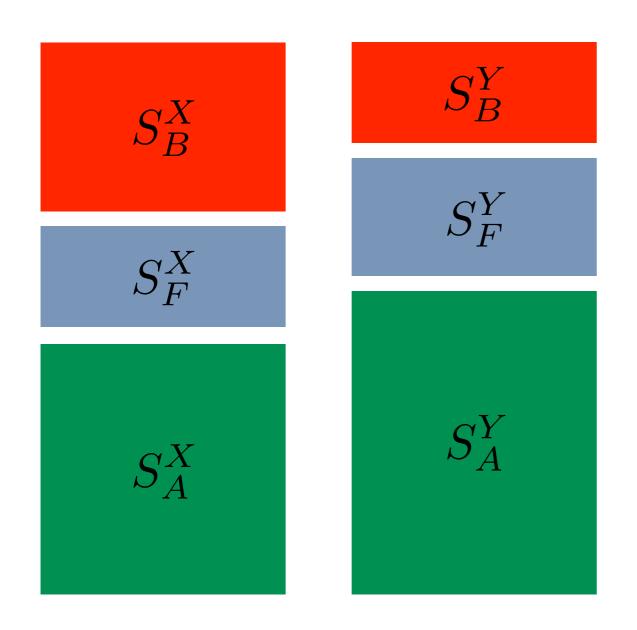


Training Data

GP evolved SBFL formulas are **provably better** than many human designs.

GP evolved SBFL formulas are **provably better** than many human designs.

We proved that **no human can surpass** what GP evolved, ever.


GP evolved SBFL formulas are **provably better** than many human designs.

We proved that **no human can surpass** what GP evolved, ever.

GP has **transformed the future research** on fault localisation.

Crash Course into Our Proof System

Statement Ranking

To show that Y dominates X, we show that:

$$S_B^Y \subseteq S_B^X \wedge S_A^X \subseteq S_A^Y$$

(assuming that we break ties in F sets consistently)

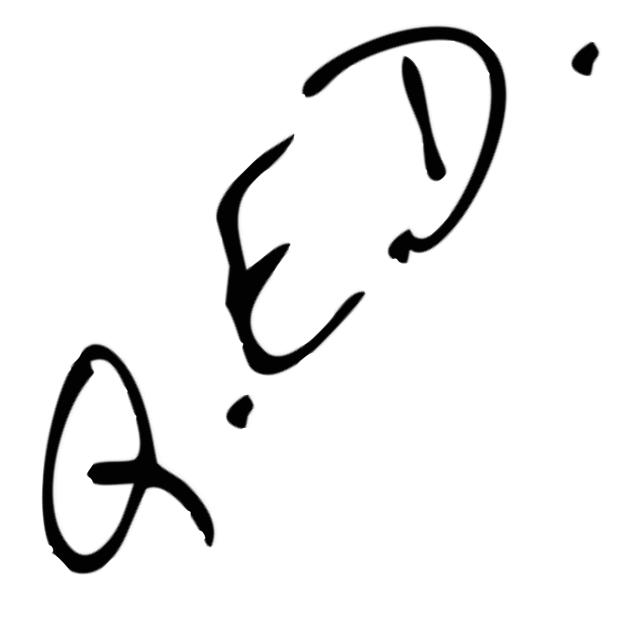
Equivalence is defined as:

 $X \leftrightarrow Y \iff X \to Y \wedge Y \to X$

Formula X Formula Y

Crash Course into Our Proof System

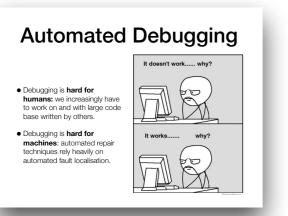
- **Maximal** Groups: a set of formulas that are equivalent to each other, but are strictly better to some others
- Previous work theoretically proved the existence of maximal groups with respect to the space of known formulas:
 - ER1 (contains 2 manually designed formulas) and ER5 (contains 3 manually designed formulas)

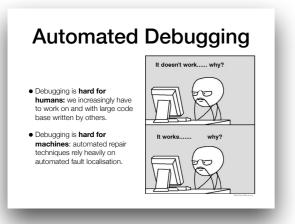

GP's Human Competitiveness

- GP expanded the known maximal groups:
 - GP added one additional formula to ER1
 - GP founded three new maximal groups, each containing one GP-evolved formula

	NT	
	Name	Formula expression
ER1'	Naish1	$\begin{cases} -1 & \text{if } e_f < F \\ P - e_p & \text{if } e_f = F \end{cases}$
	Naish2	$e_f - \frac{e_p}{e_p + n_p + 1}$
	GP13	$e_f(1 + \frac{1}{2e_p + e_f})$
	Wong1	e_f
ER5	Russel & Rao	$\frac{e_f}{e_f + n_f + e_p + n_p}$
	Binary	$\begin{cases} 0 & \text{if } e_f < F \\ 1 & \text{if } e_f = F \end{cases}$
GP02		$2(e_f + \sqrt{n_p}) + \sqrt{e_p}$
GP03		$\sqrt{ e_f^2 - \sqrt{e_p} }$
GP19		$e_f \sqrt{ e_p - e_f + n_f - n_p }$

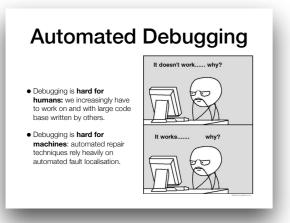
GP's Human Competitiveness

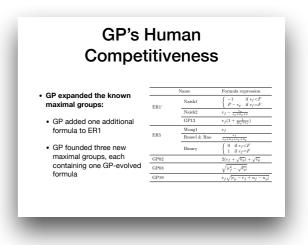

- We have **proved** that there is no greatest formula (i.e. one that outperforms all maximals):
 - GP evolved the best possible formula.
 - No future human endeavour can surpass GP's results.

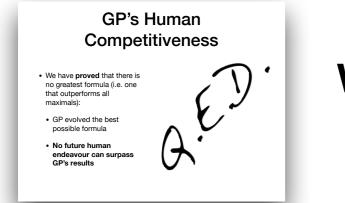


GP's Influence on Future Research

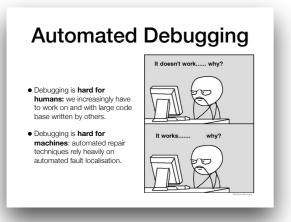
- Manually designing SBFL formulae is **no longer** productive.
- We need richer information than program spectrum: GP can deal with increased complexity better than human.
- GP continues to produce state-of-the-art localisation results, outperforming SVMs (ISSTA 2017).



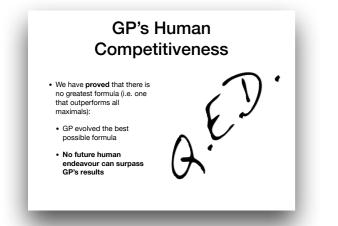



GP-evolved fault localisation techniques were provably better than over a decade's manual work.

Compet	titiv	eness	5
		Name	Formula expression
GP expanded the known maximal groups:	ER1'	Naish1	$\begin{cases} -1 & \text{if } e_f < F \\ P - e_p & \text{if } e_f = F \end{cases}$
	ERI	Naish2	$e_f - \frac{e_x}{e_p + n_p + 1}$
GP added one additional		GP13	$e_f(1 + \frac{1}{2e_p + e_f})$
formula to ER1	ER5	Wong1 Russel & Rao	$e_f = \frac{e_f}{e_f + n_f + e_n + n_n}$
GP founded three new		Binary	$\begin{cases} 0 & \text{if } e_f < F \\ 1 & \text{if } e_f = F \end{cases}$
maximal groups, each	GP02		$2(e_f + \sqrt{n_p}) + \sqrt{e_p}$
containing one GP-evolved formula	GP03		$\sqrt{ e_f^2 - \sqrt{e_p} }$
Iomua	GP19		$e_f \sqrt{ e_p - e_f + n_f - n_p }$



GP-evolved fault localisation techniques were provably better than over a decade's manual work.



We proved that no human can surpass GP results, ever.

GP-evolved fault localisation techniques were provably better than over a decade's manual work.

We proved that no human can surpass GP results, ever.

> GP continues to have strong influence on future research.

GP's Influence on Future Research

 Manually designing SBFL formulae is no longer productive.

 We need richer information than program spectrum: GP can deal with increased complexity better than huma

 GP continues to produce state-of-the-art localisation results, using 47 features: it outperformed SVMs (ISSTA 2017).

