
Macro Placement
by Wire-Mask-Guided Black-Box Optimization

Yunqi Shi, Ke Xue, Lei Song, Chao Qian∗

State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

{shiyq, xuek, songl, qianc}@lamda.nju.edu.cn

Abstract

The development of very large-scale integration (VLSI) technology has posed new
challenges for electronic design automation (EDA) techniques in chip floorplanning.
During this process, macro placement is an important subproblem, which tries to
determine the positions of all macros with the aim of minimizing half-perimeter
wirelength (HPWL) and avoiding overlapping. Previous methods include packing-
based, analytical and reinforcement learning methods. In this paper, we propose a
new black-box optimization (BBO) framework (called WireMask-BBO) for macro
placement, by using a wire-mask-guided greedy procedure for objective evaluation.
Equipped with different BBO algorithms, WireMask-BBO empirically achieves
significant improvements over previous methods, i.e., achieves significantly shorter
HPWL by using much less time. Furthermore, it can fine-tune existing placements
by treating them as initial solutions, which can bring up to 50% improvement
in HPWL. WireMask-BBO has the potential to significantly improve the quality
and efficiency of chip floorplanning, which makes it appealing to researchers and
practitioners in EDA and will also promote the application of BBO. Our code is
available at https://github.com/lamda-bbo/WireMask-BBO.

1 Introduction

EDA techniques have been widely employed to assist engineers in designing chips [30, 31], while
the rapid advancement of VLSI technology has led to an exponential growth in chip scale, posing
significant challenges. Particularly, for the important chip floorplanning stage in EDA, which strives
to optimize power, performance, and area metrics while adhering to constraints such as congestion
and density [45], the number of cells to be placed on the chip canvas increases rapidly and their
routing relationships also become more complex, requiring innovative and efficient methods.

During the floorplanning placement stage, the position of each cell on the chip canvas is established.
A modern chip typically comprises thousands of macros (i.e., individual building blocks such as
memories) and millions of standard cells (i.e., smaller basic components like logic gates). The
designer provides a netlist, which outlines the design requirements and serves as a large-scale hyper-
graph containing numerous hyper-edges (also called nets) that represent the routing relationships
among macros and standard cells. Traditionally, the placement problem is divided into two successive
stages [4]: macro placement, which is usually addressed by heuristic or learning methods [42, 44],
and standard cell placement, which is usually addressed by analytical solvers [13, 28]. After placing
all the cells (including macros and standard cells), a routing stage is performed. The general flow
of chip floorplanning and routing is illustrated in Figure 1. In this work, we concentrate on macro
placement due to its greater impact on placement quality: Macros are often larger and more crucial
for achieving optimal placement [4, 47].

∗Corresponding Author

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/lamda-bbo/WireMask-BBO

Canvas

Macros

Standard Cells

Macro
Placement

Full Placement Result

Standard Cell
Placement Cell Routing

Cell Routing Result

Cell Placement

Macro Placement Result

Figure 1: General flow of chip floorplanning and routing, where the routing stage basically relies on
the placement result. We focus on the macro placement task in this paper.

Earlier methods often formulate macro placement as a rectangular packing problem, where solutions
are represented by sequence pair (SP) [33], B∗-tree [11], corner block list (CBL) [19] or other data
structures [34, 27], and solve it by simulated annealing (SA) [1, 18, 24, 40]. This kind of method
suffers from the poor scalability due to the quadratic complexity of decoding a genotype solution
to a phenotype placement. Analytical methods [12, 13, 28, 29] place macros and standard cells
simultaneously, and relax the task to a mathematical programming problem, which can be solved
efficiently. However, they cannot guarantee the non-overlapping between cells, which is a hard
constraint of cell placement. More recently, by dividing the chip canvas into discrete grids and
formulating the task of placing macros onto grids step by step as a Markov decision process (MDP),
reinforcement learning (RL) methods have been applied, showing promising performance [14, 15,
26, 32]. But their fast convergence (after only a few hundred evaluations) observed in experiments
may imply that the huge search space of placement is still underexplored, and further improvement is
expected. A detailed review of these existing methods is provided in Section 2.

In this paper, we propose a new BBO framework for macro placement. To allow better exploration,
a solution is directly represented by the coordinates of all macros on the chip canvas. HPWL is
used as the minimization objective function. The key of our framework is that in order to improve
efficiency, we use an elaborate evaluation procedure, which greedily improves a solution (with the
goal of minimizing HPWL while avoiding overlapping) before evaluation. Concretely, using the wire
mask [26] to record the increment of HPWL by moving a macro to each candidate grid on the chip
canvas, the macros in the solution are sequentially adjusted to the nearest best grid. This framework
is briefly called WireMask-BBO, which can use any BBO algorithm to solve the resulting problem.

Experimental results on multiple popular benchmarks demonstrate that WireMask-BBO, when
equipped with different BBO algorithms such as random search (RS), Bayesian optimization (BO),
and evolutionary algorithms (EA), significantly outperforms the compared representative methods, in-
cluding traditional BBO methods based on packing formulation, analytical methods, and RL methods.
Especially, WireMask-EA (i.e., WireMask-BBO equipped with EA) generates the highest-quality
placement in 6 out of 7 different chip benchmarks, and surpasses the state-of-the-art MaskPlace [26]
in 8 minutes on average. Besides, as an optimization-based method, WireMask-BBO can fine-tune
any existing placement, regardless of how it was generated. That is, WireMask-BBO can be combined
with any existing macro placement method as post-processing. Our experiments show that such
fine-tuning can lead to an improvement of up to 50% in the objective HPWL.

Our main contribution is introducing the general framework WireMask-BBO, while not developing
new BBO algorithms. In fact, our experiments show that even employing simple BBO techniques has
led to superior performance over previous methods. We will open-source WireMask-BBO and use
it as an optimization benchmark to encourage the invention of more efficient BBO algorithms for
solving macro placement problems, as well as broaden the application scenario of BBO.

2 Background

In this section, we introduce the macro placement problem, and the existing methods which can be
generally categorized into packing-based, analytical, and grid-based RL methods.

2

2.1 Macro Placement

The input for a macro placement problem constitutes a netlist H = (V,E), where V denotes the
information (i.e., height and width) about all cells designated for placement on the chip, and E is a
hyper-graph comprised of hyper-edges ei ∈ E, which encompasses multiple cells (including both
macros and standard cells) and signifies their interconnectivity during the routing phase. A macro
placement solution consists of the positions of all macros {vi}ki=1 with the coordinates of each macro
vi ∈ V on the chip canvas expressed as (xi, yi), where k denotes the total number of marcros. To
facilitate a comprehensive understanding of the macro placement problem, we present several key
metrics for evaluating placement outcomes.

HPWL is the predominant metric for gauging placement quality, as it offers a precise estimation of
the wirelength necessary for routing [9, 22, 38]. A shorter wirelength decreases delay and power
consumption, enhancing overall performance [36]. To calculate HPWL of a macro placement
solution s, each hyper-edge ej ∈ E corresponds to a rectangle area characterized by its lower-left
endpoint, with coordinates (minvi∈ej xi,minvi∈ej yi), and its upper-right endpoint, with coordinates
(maxvi∈ej xi,maxvi∈ej yi). That is, the rectangle is the smallest one bounding all cells within ej .
Let wj = maxvi∈ej xi − minvi∈ej xi and hj = maxvi∈ej yi − minvi∈ej yi denote the width and
height of the rectangle, respectively. Then,

HPWL(s, H) =
∑

ej∈E
(wj + hj). (1)

Congestion serves as a vital metric in determining the routability of a given placement, exerting
a direct influence on the manufacturing process. A widely-adopted approach for approximating
congestion is rectangular uniform wire density (RUDY) [41]. The congestion of a grid on the canvas
can be represented as the cumulative impact of all hyper-edge rectangle areas encompassing the grid.
By selecting the top 10% congested grids (denoted as G∗) and computing the mean of their congestion,
the RUDY value of a macro placement solution is calculated as 1

|G∗|
∑

gi∈G∗
∑

ej∈E(gi)
wj+hj

wj ·hj
,

where |G∗| is the size of G∗, E(gi) denotes the set of hyper-edges whose rectangle areas cover gi,
and (wj + hj)/(wj · hj) measures the impact of the rectangle area of hyper-edge ej .

Density measures the overlap degree between cells by employing an electrostatic analogy [29]. It is
often treated as a penalty to diminish overlap, yielding a more uniform distribution of cells across the
chip area [4, 13, 28, 29]. Further discussion will not be provided here, as our formulation ensures
non-overlapping, which is a hard constraint of macro placement.

Area denotes the area of the minimum bounding rectangle that encloses all the macros. It was
prevalent when the focus was on tightly packing macros and minimizing the area they occupied [10,
42]. However, when considering fixed-area chips as in [15, 26, 28, 32] and our work, the placement
of cells optimized is to reduce wirelength and congestion rather than minimize the area.

2.2 Packing-based Methods

As the focus was once on minimizing the bounding area of given macros, which can lead to a higher
chip area utilization ratio [31], the packing formulation emerged as a natural and straightforward
approach for the macro placement problem. Each macro, represented as a rectangle, has to be packed
within a specified chip canvas, with the objective being to optimize the weighted sum of the area
metric and HPWL metric. Several solution representation methods have been proposed, such as
SP [33], B∗-tree [11], CBL [19], etc. These genotype solutions will be mapped to concrete macro
placement (phenotype) solutions for evaluation. SA is often employed [1, 18, 24, 40] to solve such
BBO problems by perturbing the genotype to generate new offspring solutions and evaluating the
corresponding phenotype to determine whether to accept the perturbation.

To handle both macros and standard cells, a divide-and-conquer idea is introduced [39, 43]. The
standard cells are first clustered into blocks using either the logical hierarchy or min-cut-based
partitioning algorithms [23, 37]. Placement is then performed on the mix of macro blocks and
clustered standard cell blocks, often by SA using packing formulation [1, 2]. Finally, the standard
cells are re-allocated by detailed placement. While reducing the problem size, clustering standard
cells into rectangular blocks may cut some connections and hinder finding an optimal solution.

Recently, RL has been introduced to decide which perturbation operator should be selected and
which macro should be perturbed by SA [46]. Moreover, [5] formulates the CBL establishment as a

3

(a) SP-SA [33]:
HPWL = 1.22× 107

Congestion = 1.07

(b) DREAMPlace [28]:
HPWL = 9.88× 106

Congestion = 0.83

(c) MaskPlace [26]:
HPWL = 7.93× 106

Congestion = 0.66

(d) WireMask-EA (ours):
HPWL = 5.66× 106

Congestion = 0.53

Figure 2: Visualization of macro placement on the circuit benchmark adaptec3 using the proposed
WireMask-EA and three representative methods. The macros are represented by yellow rectangles.
The performance is evaluated in terms of HPWL and congestion; the lower the value, the better.

MDP and constructs a CBL genotype step by step. These advancements continue to grapple with
the drawbacks of packing, such as poor scalability, which cannot be solved fundamentally because
the drawbacks come from the quadratic complexity of mapping from genotype to phenotype [33].
Besides, at least one edge of each macro under the packing setting must be attached to another macro
or the canvas’s edge, making the placement quite congested, as visualized in Figure 2(a). Note that
the congested macro placement will limit the space for subsequent standard cell placement, and lead
to the bad performance of full placement, which will be shown in Table 3.

2.3 Analytical Methods

Analytical methods [12, 13, 28, 29] place macros and standard cells simultaneously, and relax the
full placement task to a mathematical programming problem, which can be solved efficiently. For
example, DREAMPlace [28], a state-of-the-art and highly efficient analytical placement method,
recasts the full placement task as min WA(s, H) + λ · Density(s, H), where WA represents the
smooth weighted-average wirelength (originally proposed by [20]) for approximating HPWL, Density
denotes a differentiable density metric for penalizing overlapping, and λ is a trade-off factor. This
problem is then solved numerically using classical mathematical optimization techniques (e.g.,
gradient descent), to rapidly generate high-quality full placement. Figure 2(b) shows a macro
placement generated by DREAMPlace, which is better than that generated by packing in Figure 2(a).
However, analytical methods cannot guarantee the non-overlapping between cells. Even employing
macro placement legalization techniques, numerous overlaps may persist [4].

2.4 Grid-based RL Methods

As the number of macros increases, packing-based methods encounter scalability challenges, while
analytical methods may produce overlapping placements that are impractical for manufacturing [4].
To meet the demands of modern chip design and fully leverage RL, the Graph placement published in
Nature [32] divides the chip canvas into discrete grids, with each macro assigned discrete coordinates
of grids, and formulates the placement problem as a MDP, wherein the agent decides the placement
of the next macro at each step. Notably, no reward is given until the final step, when all macros
are placed. The ultimate reward is the weighted sum of HPWL and congestion. Compared with
packing-based methods, the grid-based design eliminates edge attachment and provides room for
standard cell placement while offering improved scalability. The length of the MDP grows linearly
with the number of macros, as opposed to the quadratic complexity of packing formulation [33].
DeepPR [15] integrates convolutional and graph neural networks during the embedding stage, and
introduces an intrinsic reward to promote exploration. However, DeepPR brings overlaps. Though
PRNet [14] incorporates the overlap area into the reward function as a penalty, the non-overlapping
issue still exists as observed in their experiments.

A key limitation of the above-mentioned methods is the absence of extrinsic rewards until the
final step, leading to sub-optimal performance for a long MDP with over one thousand steps. To

4

address this issue, MaskPlace [26] introduces a dense reward RL pipeline, incorporating a view
mask for gathering global information, a position mask to ensure non-overlapping, and a wire
mask to evaluate the placement of the current macro. Notably, the wire mask offers an immediate
reward, calculated as the increase in HPWL after placing the current macro. These three masks are
processed by a convolutional neural network and serve as input features for both the value and policy
networks. MaskPlace can generate high-quality non-overlapping placement results in an affordable
time. Figure 2(c) gives a placement example, which is better than that generated by packing and
analytical methods as shown in Figures 2(a) and 2(b). From the experiments in [26], we can also
observe that MaskPlace converges after only a few hundred evaluations, implying that the huge search
space of placement may be still underexplored. The experimental results in Section 4 will confirm
this conjecture, showing that our proposed framework will bring significant improvement.

3 Proposed Framework WireMask-BBO

This section is devoted to our proposed WireMask-BBO, where Section 3.1 introduces the problem
formulation and Section 3.2 is concerned with optimization methods to solve the resulting problem.

3.1 Wire-Mask-Guided Problem Formulation

Solution representation. To allow better exploration, a macro placement solution s is directly repre-
sented by the coordinates of all macros {vi}ki=1, i.e., s = (x1, y1, . . . , xk, yk), where (xi, yi) denotes
the coordinates of the macro vi on the chip canvas. For example, there are three macros A, B and C
for the placement task in Figure 3, and thus a solution s is represented by (x1, y1, x2, y2, x3, y3).

Objective evaluation. The metric HPWL in Eq. (1) is used as the objective function to be minimized.
But if optimizing in the solution space directly, it is difficult to efficiently find a solution that has a
small HPWL value and satisfies the non-overlapping constraint. To improve the efficiency, a greedy
improvement strategy is applied to a solution before evaluating it.

As in [32], the chip canvas is first divided into discrete grids. In the process of improving a solution
greedily, each macro is moved to a grid by letting the macro’s bottom-left corner situate at the
bottom-left corner of the grid. The order of adjusting the position of a macro vi is determined by
the area of all the cells connected with vi, i.e., all the cells in the hyper-edges containing vi. Note
that each hyper-edge contains a set of connected cells. The positions of all macros will be adjusted
sequentially in the decreasing order of their corresponding computed areas, because a macro with a
larger computed area implies connecting with more large cells and thus is intuitively more important.

Let v∗1 , . . . , v
∗
k denote the ordered macros. Assume that the positions of v∗1 , . . . , v

∗
i−1 have been

adjusted. When considering v∗i , a wire mask Wi introduced in [26] is first computed, which records
the increase of HPWL by placing v∗i to each candidate grid, given v∗1 , . . . , v

∗
i−1 already adjusted.

Note that those grids that will lead to overlap or exceeding the canvas boundary after placing v∗i are
excluded. Then, v∗i is moved to the grid with the least increment of HPWL. If such a grid is not
unique, v∗i is moved to the nearest one among them. This is actually a greedy step that moves v∗i to the
grid with the least increment on HPWL given the placement of v∗1 , . . . , v

∗
i−1. This process is repeated

until the positions of all the macros have been adjusted. The HPWL of the resulting solution with all
the adjusted macros is treated as the objective value of the original solution. Thus, a solution and its
improved version in objective evaluation can be viewed as the genotype and phenotype representation
of a macro placement. The detailed process of objective evalution is presented in Algorithm 1.

Figure 3 gives an example illustration of objective evaluation. For the input netlist H = (V,E), V
contains three macros A, B and C, and the hyper-graph E contains two hyper-edges: one encompasses
macros A and B, and the other encompasses A and C. Each hyper-edge signifies the interconnectivity
of the macros contained by it. The chip canvas is partitioned into 5× 5 grids. Assume that the width
and height of each grid is both 1. The solution to be evaluated (as shown in Figure 3(a)) consists
of the positions of macros A, B and C. According to the hyper-graph E, we know that during the
routing phase, macro A is connected with B and C, while macro B and C are both connected with
only A. Thus, the corresponding areas computed in line 1 of Algorithm 1 are decreasingly ordered as
A, B and C, which is just the order in line 2 to adjust the positions of macros sequentially.

When trying to adjust the position of macro A, a wire mask is first computed as in line 5 of
Algorithm 1, which is shown in Figure 3(b), where the number in each grid is the increment of HPWL

5

Algorithm 1 Objective evaluation of WireMask-BBO
Input: solution s, netlist H = (V,E), and number m of partitions
Output: improved solution s′, and the corresponding objective (i.e., HPWL) value
Process:

1: For each macro vi ∈ V , compute the area of all the cells connected with it, i.e., ∪vi∈ej∈E ej ;
2: Order all macros decreasingly, denoted as v∗1 , . . . , v

∗
k, according to their corresponding areas;

3: Initialize the canvas as m×m grids, and let f = 0;
4: for each macro v∗i do
5: Generate wire mask Wi according to the updated positions of v∗1 , . . . , v

∗
i−1 (see Algorithm 1

in [26]), which records the increment of HPWL by moving v∗i to each candidate grid;
6: Q← the set of grids that has the minimum increment of HPWL (denoted as fi) in Wi;
7: Select the grid g from Q, which has the smallest Euclidean distance to the macro v∗i ;
8: Update the position of v∗i to be that of the grid g;
9: f ← f + fi

10: end for
11: s′ ← the updated positions of all the macros
12: return s′, f

66 6 6 6

Next macro

Netlist input

Hyper-edge 1: (A, B)

Hyper-edge 2: (A, C)

A

3

3

4

0

0 3

3

4

A

C

23

2

2

23

34

0

0

2

3

3

4

A

0

0

1

1

2

A

C

B

Place A

HPWL + 6

Next macro Next macro

:Coordinate in the
original placement

c

B

A

Place C HPWL + 2

Place B

HPWL + 3

Solution to be evaluated
(Genotype representation)

Improved solution
(Phenotype representation)

HPWL = 11

B

66 6 6 6

66 6 6 6

66 6 6 6

(a)

(b) (c) (d)

(e)Solutions

WireMask Guidance

Adjustment Order
B

Figure 3: An example illustration of objective evaluation of WireMask-BBO.

led by placing macro A in that grid. For example, if placing macro A in the center grid as shown
in Figure 3(c), both the two hyper-edges correspond to the smallest rectangle bounding macro A
(i.e., the red and black dotted square in Figure 3(c)) for computing HPWL in Eq. (1), and thus the
corresponding HPWL is 6, which is the sum of half perimeters of these two rectangles. As the initial
HPWL before placing macro A is 0, the increment of HPWL is 6. Note that when adjusting the
position of a macro, its bottom-left corner must be situated at the bottom-left corner of a grid, and
grids without numbers in the wire mask indicate that the current macro should not be placed there
due to overlap or exceeding the canvas boundary. The underlined italic number in the wire mask
denotes the least HPWL increment, representing the locally optimal choice, i.e., the set Q in line 6 of
Algorithm 1. Then, as shown in lines 7–8 of Algorithm 1, macro A is placed at the local optimal grid,
which has the smallest Euclidean distance to it. The coordinate of macro A in the original placement
is denoted by the red star in Figure 3(b), and thus it is adjusted to be situated at the grid closest to it,
as shown in Figure 3(c).

6

The positions of macros B and C are adjusted similarly. Figure 3(c) shows the adjusted placement
of macro A, and also the wire mask when trying to place macro B. Figure 3(d) shows the adjusted
placement of macros A and B, and also the wire mask when trying to place macro C. Figure 3(e)
gives the final improved placement after adjusting the positions of all macros. As HPWL is the
sum of all hyper-edges’ bounding rectangles’ half perimeters, these rectangles can be updated each
time a macro is placed, as shown by the red and black dotted squares in Figure 3. That is, for any
individual macro, it is only necessary to update the bounding rectangles of its associated hyper-edges
and compute the increase in their half perimeters. Thus, the calculation of HPWL can be performed
incrementally, as in line 9 of Algorithm 1. In Figure 3, the increment of HPWL after placing macros
A, B and C is 6, 3 and 2, respectively, leading to the HPWL value 11 of the final improved placement.
Note that the red and black dotted bounding rectangles in Figure 3 are shown for illustrative purposes,
while the actual HPWL calculation in our experiments is based on pin information.

Therefore, we have formulated macro placement as a black-box optimization problem, where the
genotype-phenotype mapping is greedily guided by wire mask. Figures 3(a) and (e) give an example
of genotype and phenotype representation. An algorithm for solving this problem will search in
the genotype space, where the goodness of a genotype solution is estimated by the objective value
of its corresponding phenotype. When an algorithm terminates, the corresponding phenotype of
the generated genotype solution will be output as the final macro placement. Note that by the
wire-mask-guided mapping process, the phenotype solution is guaranteed to have no overlap, and
thus an algorithm can search in the genotype space without considering constraints.

3.2 Black-Box Optimization

The above formulated problem can be solved by any BBO algorithm. In our experiments, we employ
three simple ones, random search (RS), Bayesian optimization (BO) [17] and evolutionary algorithm
(EA) [7]. RS randomly allocates all macros in a solution and evaluates it, recording the historical
best. For BO, we adopt the efficient TuRBO approach [16] to directly optimize the continuous
coordinates (x1, y1, . . . , xk, yk) of all macros, resulting in a dimension of 2k, where k is the number
of macros. For EA, we choose the simple (1+1)-EA [6, 49], which maintains only one solution and
iteratively improves it by mutation. We design the mutation operator by randomly selecting two
macros and exchanging their coordinates in a solution. Our experiments will show that using these
three simple BBO algorithms has been sufficient for the superior performance over previous methods.
It is expected to design better BBO algorithms for the proposed formulation of macro placement.

By adopting the grid-based discretization and designing the wire-mask-guided greedy genotype-
phenotype mapping, the proposed framework WireMask-BBO can efficiently generate a non-
overlapping high-quality placement, addressing the poor scalability issue of packing-based methods
as well as the overlapping issue of analytical methods. The use of black-box optimization enhances
the exploration ability, making WireMask-BBO able to surpass the state-of-the-art RL-based method
MaskPlace [26]. Figure 2(d) visualizes a placement generated by WireMask-BBO equipped with EA,
which is better than that by SP-SA (a representative packing-based method) [33], DREAMPlace (a
representative analytical method) [28] and MaskPlace [26], as shown in Figures 2(a), 2(b) and 2(c).

4 Experiments

We mainly empirically test our method on the ISPD2005 benchmark [35], which was originally
proposed as a standard cell placement benchmark with fixed macros. Following conventional
practice [15, 14, 26], we modify all macros to be movable for the macro placement problem. The
ISPD2005 benchmark contains eight chips, i.e., adaptec1-4 and bigblue1-4. Note that for the
bigblue2 chip, which has over 20,000 macros and 30,000 macro-related hyper-edges, a single
objective evaluation by step-by-step placement costs more than an hour. Thus, we do not include this
chip in our experiments as [26]. For each chip, the canvas is partitioned into approximately 150×150
grids heuristically. The detailed statistics (e.g., the number of macros, partitions, etc.) of the chips are
provided in Appendix A.

We compare WireMask-BBO with several representative macro placement methods, including the
packing-based SP-SA [33], three analytical methods NTUPlace3 [12], RePlace [13], DREAM-
Place [28], and three RL-based methods Graph placement [32], DeepPR [15], MaskPlace [26]. As
introduced in Section 3.2, we equip the proposed WireMask-BBO framework with RS, BO and EA,

7

Table 1: HPWL values (×105) obtained by ten compared methods on seven chips. Each result
consists of the mean and standard deviation of five runs. The best (smallest) mean value on each
chip is bolded. The symbols ‘+’, ‘−’ and ‘≈’ indicate the number of chips where the result is
significantly superior to, inferior to, and almost equivalent to WireMask-EA, respectively, according
to the Wilcoxon rank-sum test with significance level 0.05.

Method Type adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 bigblue4 (×107) +/− / ≈ Avg. Rank

SP-SA [33] Packing 18.84 ± 4.62 117.36 ± 8.73 115.48 ± 7.56 120.03 ± 4.25 5.12 ± 1.43 164.70 ± 19.55 25.49 ± 2.73 0/7/0 6.86
NTUPlace3 [12] Analytical 26.62 321.17 328.44 462.93 22.85 455.53 48.38 0/7/0 9.00

RePlace [13] Analytical 16.19 ± 2.10 153.26 ± 29.01 111.21 ± 11.69 37.64 ± 1.05 2.45 ± 0.06 119.84 ± 34.43 11.80 ± 0.73 1/6/0 5.28
DREAMPlace [28] Analytical 15.81 ± 1.64 140.79 ± 26.73 121.94 ± 25.05 37.41 ± 0.87 2.44 ± 0.06 107.19 ± 29.91 12.29 ± 1.64 1/6/0 4.86

Graph [32] RL 30.10 ± 2.98 351.71 ± 38.20 358.18 ± 13.95 151.42 ± 9.72 10.58 ± 1.29 357.48 ± 47.83 53.35 ± 4.06 0/7/0 9.00
DeepPR [15] RL 19.91 ± 2.13 203.51 ± 6.27 347.16 ± 4.32 311.86 ± 56.74 23.33 ± 3.65 430.48 ± 12.18 68.30 ± 4.44 0/7/0 8.86

MaskPlace [26] RL 6.38 ± 0.35 73.75 ± 6.35 84.44 ± 3.60 79.21 ± 0.65 2.39 ± 0.05 91.11 ± 7.83 11.07 ± 0.90 0/7/0 4.28
WireMask-RS Ours 6.13 ± 0.05 59.28 ± 1.48 60.60 ± 0.45 62.06 ± 0.22 2.19 ± 0.01 62.58 ± 2.07 8.20 ± 0.17 0/5/2 2.57
WireMask-BO Ours 6.07 ± 0.14 59.17 ± 3.94 61.00 ± 2.08 63.86 ± 1.01 2.14 ± 0.03 67.48 ± 6.49 8.62 ± 0.18 0/3/4 2.86
WireMask-EA Ours 5.91 ± 0.07 52.63 ± 2.23 57.75 ± 1.16 58.79 ± 1.02 2.12 ± 0.01 59.87 ± 3.40 8.28 ± 0.25 1.43

denoted as WireMask-RS, WireMask-BO and WireMask-EA, respectively. For the employed method
TuRBO [16] for BO, we use the common hyper-parameters. For the EA, its initial solution is set as
the best among 100 random solutions. All experiments are run on two Intel Xeon Platinum 8171M
CPUs, each with 26 cores and 52 threads.

Main results. Table 1 gives the detailed results of running each method using five random seeds.
The runtime for each run of WireMask-BBO is set as 1,000 minutes. The results of analytical and
RL-based methods are directly from [26]. Note that the analytical method NTUPlace3 is deterministic,
and thus has no standard deviation. We compute the rank of each method on each chip as in [21],
which are averaged in the last column of Table 1. WireMask-RS, WireMask-BO and WireMask-EA
achieve the three highest ranks, disclosing the effectiveness of the proposed general framework
WireMask-BBO. Among these three variants, WireMask-EA performs the best, which has the highest
rank 1.43 and achieves the smallest HPWL value on 5 out of the 7 chips. RS relies solely on random
sampling without leveraging any search history. BO performs well in many low-dimensional tasks
(typically when the dimension d ≤ 20 [17]), but suffers from the curse of dimensionality due to the
time-consuming cost of updating the Gaussian process surrogate model and optimizing the acquisition
function [8]. For example, in our experiments where d (i.e., 2 times the number of macros) is always
larger than 1000, EA can sample much more solutions (about 2–7 times as shown in Table 9 of
Appendix B) than BO during the 1000-minutes running. Compared with any previous method,
WireMask-EA is significantly better on at least 6 out of the 7 chips, by the Wilcoxon rank-sum test
with significance level 0.05. It is outperformed by RePlace and DREAMPlace on the chip adaptec4,
implying the suitability of analytical methods for this particular problem.

Running time analysis. As shown in Table 1, any variant of WireMask-BBO always performs better
than the state-of-the-art MaskPlace [26], which ranks the highest among the compared previous
methods. While [26] did not offer explicit training time details, the authors state a 200-minute
convergence time in response to our inquiry. Next, we examine the efficiency of WireMask-BBO
when compared with MaskPlace. Taking MaskPlace as the baseline, we plot the curve of HPWL
over the wall clock time for WireMask-BBO in Figure 4. Each variant of WireMask-BBO surpasses
MaskPlace very quickly. Particularly, WireMask-EA requires only 39, 8, 0.37, 0.62, 0.15, and 3
minutes, respectively, with an average of 8 minutes to surpass MaskPlace across six benchmark
chips. This is notably faster than the 200-minute convergence time reported for MaskPlace. We have
excluded the bigblue4 chip in Figure 4, because the 1,000-minute search for WireMask-EA only
completes its initialization on this large-scale chip. On the chips adaptec3 and adaptec4, WireMask-
EA actually outperforms MaskPlace after only a single greedy placement guided by wire mask,
implying that MaskPlace fails to balance exploration and exploitation.

Performance on congestion metric. Aside from HPWL, congestion and density are also vital metrics
as introduced in Section 2.1. As our framework WireMask-BBO maintains the non-overlapping
property, density constraint does not need to be considered. Here, we evaluate placement congestion
and compare it to the results of MaskPlace [26] and SP-SA [33] in Table 2. We normalize the
congestion values by setting WireMask-EA’s congestion to 1.00. The MaskPlace placements are
provided by its authors2, while the SP-SA and WireMask-BBO placement results are obtained from a

2All the MaskPlace evaluations are based upon the placement file provided by its authors. Note that the
authors provided only one placement on each benchmark chip, and did not provide the results on bigblue4,
which are marked by a ‘/’ symbol in the following tables.

8

0 200 400 600 800 1000
Wall Clock Time (min)

5.8

6.0

6.2

6.4

6.6

6.8

7.0

HP
W

L

adaptec1

0 200 400 600 800 1000
Wall Clock Time (min)

45
50
55
60
65
70
75
80
85
90

HP
W

L

adaptec2

0 200 400 600 800 1000
Wall Clock Time (min)

55

60

65

70

75

80

85

90

HP
W

L

adaptec3

0 200 400 600 800 1000
Wall Clock Time (min)

60

65

70

75

80

HP
W

L

adaptec4

0 200 400 600 800 1000
Wall Clock Time (min)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

HP
W

L

bigblue1

0 200 400 600 800 1000
Wall Clock Time (min)

60

70

80

90

100

HP
W

L

bigblue3

MaskPlace WireMask-RS WireMask-BO WireMask-EA

Figure 4: HPWL (×105) vs. wall clock time of WireMask-BBO, where the shaded region represents
the standard error derived from 5 independent runs.

Table 2: Comparison on HPWL (×105) and Congestion (Cong.).

Benchmark adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 bigblue4 Avg. Rank
Metrics HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong.

SP-SA [33] 18.77 4.21 117.63 1.34 122.30 2.03 102.54 1.54 5.30 2.09 136.16 1.50 19.00 2.72 4.86 4.71
MaskPlace [26] 6.56 1.22 79.98 1.63 79.32 1.25 75.75 1.17 2.42 1.63 82.61 0.86 / / 4.00 3.67
WireMask-RS 6.09 1.01 57.31 1.04 60.91 1.04 60.02 0.98 2.18 1.09 63.86 1.01 8.21 1.10 2.29 2.43
WireMask-BO 6.14 1.02 55.31 0.99 58.67 1.06 61.67 1.06 2.10 0.94 68.88 1.19 8.39 1.07 2.29 2.43
WireMask-EA 5.81 1.00 49.32 1.00 56.56 1.00 58.79 1.00 2.12 1.00 60.88 1.00 8.45 1.00 1.43 1.57

1,000-minute search using the same random seed. The results show that though optimizing HPWL,
WireMask-BBO can also achieve smaller congestion. The reason is that the RUDY approximation of
congestion is sometimes positively related to the HPWL metric. Given a macro placement solution,
the HPWL in Eq. (1) is computed as the sum of the rectangle’s half-perimeter of hyper-edge, i.e.,∑

ej∈E(wj + hj), where ej denotes a hyper-edge, E denotes the hyper-graph comprised of all
hyper-edges, wj and hj denote the width and height of the rectangle corresponding to ej , respectively.
The RUDY measures the overall congestion on the canvas, and the congestion of each grid gi on the
canvas is calculated by the cumulative impact of all hyper-edges encompassing the grid. Note that a
hyper-edge ej will add an impact to each of its covered grids by 1

wj
+ 1

hj
. Then, the overall congestion

of all grids is
∑

gi

∑
ej∈E(gi)

1
wj

+ 1
hj

=
∑

ej∈E wj ·hj · (1
wj

+ 1
hj
) =

∑
ej∈E(wj +hj) = HPWL,

where E(gi) denotes the set of hyper-edges whose corresponding rectangle covers the grid gi. The
first equality holds because the number of times of a hyper-edge ej ∈ E enumerated in LHS is equal
to the number of grids covered by it, which is wj ·hj . Thus, we can observe a positive relation between
RUDY and HPWL. Besides our results, Table 4 in MaskPlace [26] and Table 4 in ChiPFormer [25]
have also shown that the best HPWL can lead to the best congestion. However, a lower HPWL does
not necessarily lead to a lower RUDY, because RUDY only considers the top-10% congested grids as
introduced in Section 2.1.

Full placement results. Table 3 shows the results of different methods on the full placement
task involving both macros and standard cells. We utilize PRNet [14] and DREAMPlace [28] as
baselines, because both of them are designed to handle mixed-size placement tasks. The other five
macro placement methods first optimize the macro placement, fix the macro positions, and then
employ DREAMPlace to optimize the standard cell placement exclusively. The mean±std values are
derived from DREAMPlace standard cell placement using five different random seeds. The results of
PRNet are directly from [14]. Although WireMask-EA achieves the best performance on only one
chip, i.e., adaptec4, it attains the highest average rank. Compared with the mixed-size placement
optimization methods PRNet and DREAMPlace, WireMask-EA does not explicitly optimize the full

9

Table 3: Comparison of HPWL values (×107) on the full placement task involving both macros and
standard cells. The best (smallest) mean value on each chip is bolded. The symbols ‘+’, ‘−’ and
‘≈’ indicate the number of chips where the result is significantly superior to, inferior to, and almost
equivalent to WireMask-EA+DREAMPlace, respectively, according to the Wilcoxon rank-sum test
with significance level 0.05.

benchmark adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 bigblue4 +/− / ≈ Avg. Rank

PRNet [14] 8.28 12.33 23.24 23.40 14.10 46.86 100.13 2/5/0 3.29
DREAMPlace [28] 11.10 ± 1.31 13.84 ± 1.74 17.03 ± 0.99 24.37 ± 1.13 10.06 ± 0.28 36.51 ± 0.56 175.86 ± 2.23 2/4/1 3.57

SP-SA [33]+DREAMPlace 10.18 ± 0.18 14.80 ± 0.01 30.63 ± 0.82 28.89 ± 0.02 10.70 ± 0.01 63.60 ± 0.12 203.79 ± 0.36 0/7/0 6.29
MaskPlace [26]+DREAMPlace 10.86 ± 0.01 12.98 ± 0.58 26.14 ± 0.07 23.52 ± 0.01 10.64 ± 0.01 54.98 ± 1.06 / 0/6/0 5.00
WireMask-RS+DREAMPlace 9.40 ± 0.02 9.07 ± 0.02 22.76 ± 0.01 22.09 ± 0.01 10.11 ± 0.03 42.58 ± 0.20 262.16 ± 0.08 2/4/1 3.00
WireMask-BO+DREAMPlace 9.19 ± 0.26 12.87 ± 0.01 26.61 ± 0.04 26.70 ± 0.01 10.56 ± 0.01 56.00 ± 3.32 122.28 ± 0.06 1/6/0 4.43
WireMask-EA+DREAMPlace 8.93 ± 0.01 9.20 ± 0.05 21.72 ± 0.01 20.51 ± 0.01 10.35 ± 0.02 42.52 ± 0.11 171.23 ± 0.48 2.14

placement wirelength; thus, its best overall performance confirms the contribution of high-quality
macro placement to an overall superior final placement.

Fine-tuning results. In fact, WireMask-BBO can be combined with any existing macro placement
method for post-processing. The placement generated by any existing method can be treated as the
initial solution of WireMask-BBO and then further improved. Table 4 shows the HPWL results of
SP-SA and MaskPlace before and after 1,000 minutes of fine-tuning by WireMask-EA, with the
average improvement ratio of 53.93% and 17.06%, respectively. Compared to Table 1, fine-tuning
the placement of MaskPlace leads to the best HPWL value on the two chips adaptec1 and bigblue1.

Table 4: HPWL (×105) values obtained after fine-tuning existing placements by running WireMask-
EA for 1,000 minutes. The last column, Avg. Imp., denotes the average improvement ratio across six
chips, obtained by comparing the HPWL values before and after fine-tuning.

Method adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 Avg. Imp.

SP-SA [33] 18.84 117.36 115.48 120.03 5.12 164.70
53.93%+WireMask-EA (1000min) 6.02 ± 0.11 60.35 ± 4.41 57.88 ± 0.62 59.50 ± 0.92 2.21 ± 0.02 82.68 ± 18.17

MaskPlace [26] 6.56 79.98 79.32 75.75 2.42 82.61
17.06%+WireMask-EA (1000min) 5.84 ± 0.10 61.43 ± 1.23 59.24 ± 2.71 60.35 ± 1.38 2.10 ± 0.01 74.93 ± 7.79

Additional results. We propose a post local search procedure to further improve final placement
results. We investigate the influence of the two hyper-parameters of WireMask-BBO, i.e., number of
partitions in chip canvas discretization, and adjustment order of macros in objective evaluation. For
WireMask-EA, the best-performed variant of WireMask-BBO, the influence of different mutation
operators is also examined. We compare the number of evaluations of WireMask-BBO methods in
1000 minutes. Furthermore, we test on the ariane RISC-V CPU design benchmark [48], still showing
the clear superiority of WireMask-BBO over previous methods. We finally include comparisons with
two concurrent advanced methods, i.e., ChiPFormer [25] and AutoDMP [4], and our WireMask-EA
still maintains the superior performance. These results are provided in Appendix B.

5 Conclusion

This paper proposes the general framework WireMask-BBO for macro placement, which adopts a
wire-mask-guided greedy genotype-phenotype mapping and can be equipped with any BBO algorithm.
Extensive experimental results show that WireMask-BBO is clearly superior to previous packing-
based, analytical, and RL-based methods. Furthermore, it can be combined with any existing macro
placement method to further improve the final placement. Though showing significant potential,
WireMask-BBO also has some limitations. First, it can only deal with macro placement, leaving
standard cells for analytical placers. Second, its performance is limited for chips with a large number
of macros due to the expensive objective evaluation. This, however, can be alleviated by equipping
with high-dimensional BBO algorithms [8] or designing specific efficient BBO algorithms for macro
placement, which is a very interesting future work. Our method does not have negative social impacts.

10

Acknowledgement

We would like to thank Yao Lai from The University of Hong Kong for his generous help and valuable
discussions, and the anonymous reviewers for their helpful comments. This work was supported by
the National Key R&D Program of China (2022ZD0116600) and National Science Foundation of
China (62022039). Chao Qian is the corresponding author.

References
[1] Saurabh N Adya and Igor L Markov. Fixed-outline floorplanning through better local search.

In Proceedings of the 19th IEEE International Conference on Computer Design: VLSI in
Computers and Processors, pages 328–334, Austin, TX, 2001.

[2] Saurabh N Adya and Igor L Markov. Fixed-outline floorplanning: Enabling hierarchical design.
IEEE Transactions on Very Large Scale Integration Systems, 11(6):1120–1135, 2003.

[3] SN Adya, S Chaturvedi, JA Roy, D Papa, and IL Markov. Unification of partitioning, floorplan-
ning and placement. In Proceedings of the 17th International Conference on Computer-Aided
Design, pages 550–557, San Jose, CA, 2004.

[4] Anthony Agnesina, Puranjay Rajvanshi, Tian Yang, Geraldo Pradipta, Austin Jiao, Ben Keller,
Brucek Khailany, and Haoxing Ren. AutoDMP: Automated DREAMPlace-based macro
placement. In Proceedings of the 27th International Symposium on Physical Design, pages
149–157, Virtual, 2023.

[5] Mohammad Amini, Zhanguang Zhang, Surya Penmetsa, Yingxue Zhang, Jianye Hao, and
Wulong Liu. Generalizable floorplanner through corner block list representation and hypergraph
embedding. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 2692–2702, Washington, DC, 2022.

[6] Auger Anne and Benjamin Doerr. Theory of Randomized Search Heuristics: Foundations and
Recent Developments. World Scientific, 2011.

[7] Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolu-
tionary Programming, Genetic Algorithms. Oxford University Press, 1996.

[8] Mickael Binois and Nathan Wycoff. A survey on high-dimensional Gaussian process modeling
with application to Bayesian optimization. ACM Transactions on Evolutionary Learning and
Optimization, 2(2):1–26, 2022.

[9] Andrew E Caldwell, Andrew B Kahng, Stefanus Mantik, Igor L Markov, and Alexander
Zelikovsky. On wirelength estimations for row-based placement. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 18(9):1265–1278, 1999.

[10] Heming Chan, Pinaki Mazumder, and Khushro Shahookar. Macro-cell and module placement
by genetic adaptive search with bitmap-represented chromosome. Integration, 12(1):49–77,
1991.

[11] Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu, and Shu-Wei Wu. B*-trees: A new
representation for non-slicing floorplans. In Proceedings of the 37th Annual Design Automation
Conference, pages 458–463, Los Angeles, CA, 2000.

[12] Tung-Chieh Chen, Zhe-Wei Jiang, Tien-Chang Hsu, Hsin-Chen Chen, and Yao-Wen Chang.
Ntuplace3: An analytical placer for large-scale mixed-size designs with preplaced blocks and
density constraints. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 27(7):1228–1240, 2008.

[13] Chung-Kuan Cheng, Andrew B Kahng, Ilgweon Kang, and Lutong Wang. Replace: Advancing
solution quality and routability validation in global placement. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 38(9):1717–1730, 2018.

11

[14] Ruoyu Cheng, Xianglong Lyu, Yang Li, Junjie Ye, Jianye Hao, and Junchi Yan. The policy-
gradient placement and generative routing neural networks for chip design. In Advances in
Neural Information Processing Systems 35, New Orleans, LA, 2022.

[15] Ruoyu Cheng and Junchi Yan. On joint learning for solving placement and routing in chip
design. In Advances in Neural Information Processing Systems 34, pages 16508–16519, Virtual,
2021.

[16] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek.
Scalable global optimization via local Bayesian optimization. In Advances in neural information
processing systems 32, Vancouver, Canada, 2019.

[17] Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

[18] Shinn-Ying Ho, Shinn-Jang Ho, Yi-Kuang Lin, and WC-C Chu. An orthogonal simulated
annealing algorithm for large floorplanning problems. IEEE Transactions on Very Large Scale
Integration Systems, 12(8):874–877, 2004.

[19] Xianlong Hong, Gang Huang, Yici Cai, Jiangchun Gu, Sheqin Dong, Chung-Kuan Cheng, and
Jun Gu. Corner block list: An effective and efficient topological representation of non-slicing
floorplan. In Proceedings of the 13th IEEE/ACM International Conference on Computer Aided
Design, pages 8–12, San Jose, CA, 2000.

[20] Meng-Kai Hsu, Yao-Wen Chang, and Valeriy Balabanov. TSV-aware analytical placement for
3D IC designs. In Proceedings of the 48th Design Automation Conference, pages 664–669, San
Diego, CA, 2011.

[21] Demšar Janez. Statistical comparisons of classifiers over multiple data sets. Journal of Machine
Learning Research, 7:1–30, 2006.

[22] Andrew B Kahng and Sherief Reda. A tale of two nets: Studies of wirelength progression in
physical design. In Proceedings of the 7th International Workshop on System-level Interconnect
Prediction, pages 17–24, Munich, Germany, 2006.

[23] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph
partitioning: Application in VLSI domain. In Proceedings of the 34th annual Design Automation
Conference, pages 526–529, Anaheim, CA, 1997.

[24] Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[25] Yao Lai, Jinxin Liu, Zhentao Tang, Bin Wang, Jianye Hao, and Ping Luo. Chipformer:
Transferable chip placement via offline decision transformer. In Proceedings of the 40th
International Conference on Machine Learning, pages 18346–18364, Honolulu, HA, 2023.

[26] Yao Lai, Yao Mu, and Ping Luo. Maskplace: Fast chip placement via reinforced visual
representation learning. In Advances in Neural Information Processing Systems 35, New
Orleans, LA, 2022.

[27] Jai-Ming Lin and Yao-Wen Chang. TCG-S: Orthogonal coupling of P*-admissible representa-
tions for general floorplans. In Proceedings of the 39th Annual Design Automation Conference,
page 842–847, New Orleans, LA, 2002.

[28] Yibo Lin, Zixuan Jiang, Jiaqi Gu, Wuxi Li, Shounak Dhar, Haoxing Ren, Brucek Khailany, and
David Z Pan. DREAMPlace: Deep learning toolkit-enabled gpu acceleration for modern VLSI
placement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
40(4):748–761, 2020.

[29] Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Jen-Hsin Huang, Chin-Chi
Teng, and Chung-Kuan Cheng. ePlace: Electrostatics-based placement using fast Fourier
transform and Nesterov’s method. ACM Transactions on Design Automation of Electronic
Systems, 20(2):1–34, 2015.

12

[30] Done MacMillen, Raul Camposano, D. Hill, and Thomas W. Williams. An industrial view of
electronic design automation. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1428–1448, 2000.

[31] Igor L Markov, Jin Hu, and Myung-Chul Kim. Progress and challenges in VLSI placement
research. In Proceedings of the 25th International Conference on Computer-Aided Design,
pages 275–282, San Jose, CA, 2012.

[32] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement
methodology for fast chip design. Nature, 594(7862):207–212, 2021.

[33] Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and Yoji Kajitani. VLSI module
placement based on rectangle-packing by the sequence-pair. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 15(12):1518–1524, 1996.

[34] Shigetoshi Nakatake, Kunihiro Fujiyoshi, Hiroshi Murata, and Yoji Kajitani. Module packing
based on the BSG-structure and IC layout applications. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 17(6):519–530, 1998.

[35] Gi-Joon Nam, Charles J Alpert, Paul Villarrubia, Bruce Winter, and Mehmet Yildiz. The
ISPD2005 placement contest and benchmark suite. In Proceedings of the 9th International
Symposium on Physical Design, pages 216–220, San Francisco, CA, 2005.

[36] Jan M Rabaey, Anantha P Chandrakasan, and Borivoje Nikolic. Digital Integrated Circuits.
Pearson, 2002.

[37] Jarrod A Roy, Saurabh N Adya, David A Papa, and Igor L Markov. Min-cut floorplacement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(7):1313–
1326, 2006.

[38] Khushro Shahookar and Pinaki Mazumder. VLSI cell placement techniques. ACM Computing
Surveys, 23(2):143–220, 1991.

[39] Arun Shanbhag, S Danda, and Naveed Sherwani. Floorplanning for mixed macro block and
standard cell designs. In Proceedings of 4th Great Lakes Symposium on VLSI, pages 26–29,
Notre Dame, IN, 1994.

[40] M Shunmugathammal, C Christopher Columbus, and S Anand. A novel b*-tree crossover-based
simulated annealing algorithm for combinatorial optimization in VLSI fixed-outline floorplans.
Circuits, Systems, and Signal Processing, 39(2):900–918, 2020.

[41] Peter Spindler and Frank M Johannes. Fast and accurate routing demand estimation for efficient
routability-driven placement. In Proceedings of the 14th Conference on Design, Automation &
Test in Europe, pages 1–6, Nice, France, 2007.

[42] Maolin Tang and Xin Yao. A memetic algorithm for VLSI floorplanning. IEEE Transactions
on Systems, Man, and Cybernetics, 37(1):62–69, 2007.

[43] Michael Upton, Khosrow Samii, and Stephen Sugiyama. Integrated placement for mixed macro
cell and standard cell designs. In Proceedings of the 27th ACM/IEEE Design Automation
Conference, pages 32–35, San Francisco, CA, 1991.

[44] Dhruv Vashisht, Harshit Rampal, Haiguang Liao, Yang Lu, Devika Shanbhag, Elias Fallon, and
Levent Burak Kara. Placement in integrated circuits using cyclic reinforcement learning and
simulated annealing. arXiv preprint arXiv:2011.07577, 2020.

[45] Laung-Terng Wang, Yao-Wen Chang, and Kwang-Ting Tim Cheng. Electronic Design Automa-
tion: Synthesis, Verification, and Test. Morgan Kaufmann, 2009.

[46] Qi Xu, Hao Geng, Song Chen, Bo Yuan, Cheng Zhuo, Yi Kang, and Xiaoqing Wen. Good-
floorplan: Graph convolutional network and reinforcement learning-based floorplanning. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(10):3492–3502,
2021.

13

[47] Junchi Yan, Xianglong Lyu, Ruoyu Cheng, and Yibo Lin. Towards machine learning for place-
ment and routing in chip design: A methodological overview. arXiv preprint arXiv:2202.13564,
2022.

[48] Florian Zaruba and Luca Benini. The cost of application-class processing: Energy and per-
formance analysis of a linux-ready 1.7-ghz 64-bit RISC-V core in 22-nm FDSOI technology.
IEEE Transactions on Very Large Scale Integration Systems, 27(11):2629–2640, 2019.

[49] Zhi-Hua Zhou, Yang Yu, and Chao Qian. Evolutionary Learning: Advances in Theories and
Algorithms. Springer, 2019.

14

A Experimental Settings

The detailed statistics of benchmarks are in Table 5. Each column in the table represents the following:

• #Macros: the number of macros.

• #Standard cells: the number of standard cells.

• #Hyper-edges: the number of hyper-edges.

• #Macro-related Hyper-edges: the number of hyper-edges that are related to Marco, which is
used in the objective evaluation process of WireMask-BBO.

• Area Utilization Ratio: the proportion of the total area of the chip canvas that is occupied
by the macros, calculated by dividing the area of the macros by the total area of the chip
canvas. A higher Area Utilization Ratio to some extent indicates a harder placement problem,
because we have to maintain the non-overlapping property.

• #Partitions: the number of partitions when discretizing the chip canvas into grids.

Table 5: Detailed statistics of different benchmarks.

Benchmark #Macros #Standard cells #Hyper-edges #Macro-related Hyper-edges Area Utilization Ratio #Partitions

adaptec1 543 210,904 3,709 693 0.48 160
adaptec2 566 254,457 266,009 4,201 0.63 158
adaptec3 723 450,927 466,758 3,259 0.55 113
adaptec4 1,329 494,716 515,951 2,949 0.48 108
bigblue1 560 277,604 284,479 409 0.27 160
bigblue2 23,084 534,782 577,235 33,223 0.38 /
bigblue3 1,298 1,095,514 1,123,170 3,937 0.66 234
bigblue4 8,170 2,196,183 2,229,886 22,223 0.37 273

ariane 932 0 12,404 12,404 0.78 357

All columns, except for #Partitions, are predetermined and unalterable in the benchmark.3 The
#Partitions, however, constitutes a crucial hyperparameter, which is determined heuristically based on
the heights and widths of the macros and the canvas. To elaborate, in the case where multiple macros
of identical size, e.g., 30 × 20, are present on a given chip, with the canvas size 9000 × 9000, the
value of #Partitions would be set to 300, thereby resulting in a grid size of 30× 30 for each grid. The
influence of #Partitions is discussed in Table 7 of Appendix B.2.

B Additional Results

B.1 Post local search

As the genotype-phenotype mapping in the objective evaluation of WireMask-BBO is performed
greedily, guided by wire mask, we propose a post local search procedure to modify the final generated
macro placement, which will probably bring further improvement. For a final generated macro
placement, the positions of all macros are sequentially adjusted; the position of each macro is
adjusted to the best grid (ties are broken randomly) which reduces the current HPWL value most.
Note that when adjusting the position of one macro, all the other macros are fixed, which is different
from that in the objective evaluation of WireMask-BBO, which is only based on the positions of
those macros that have been adjusted. We have applied this post local search procedure to the final
placements generated by SP-SA [33], MaskPlace [26] and WireMask-BBO. The macros are adjusted
sequentially according to the order employed by WireMask-BBO (i.e., lines 1–2 in Algorithm 1); this
process is performed twice. Note that the adjustment order of macros can be arbitrary when applying
this post local search process. The results in Table 6 show that the final placements can be further
improved, which is expected because both MaskPlace and WireMask involve (probabilistically)
greedy incremental placement guided by wire mask.

3Note that for the bigblue2 chip, which has over 20,000 macros and 30,000 macro-related hyper-edges, a
single objective evaluation by step-by-step placement costs more than an hour. Thus, we do not include this chip
in our experiments as [26], and its #Partitions is denoted as /.

15

Table 6: HPWL values (×105) obtained by post local search on existing placements. The last column,
Avg. Imp., denotes the average improvement ratio across seven chips, obtained by comparing the
HPWL values before and after post local search.

benchmark adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 bigblue4 Avg. Imp.

SP-SA [33] 18.84 ± 4.62 117.36 ± 8.73 115.48 ± 7.56 120.03 ± 4.25 5.12 ± 1.43 164.70 ± 19.55 25.49 ± 2.73 25.62%after_local_search 12.52 ± 1.59 97.22 ± 8.34 104.46 ± 7.73 102.17 ± 5.50 2.70 ± 0.17 138.85 ± 14.53 14.94 ± 0.84

MaskPlace [26] 6.56 79.98 79.33 75.75 2.42 82.61 / 9.69%after_local_search 6.15 ± 0.05 72.46 ± 3.69 74.18 ± 0.68 67.99 ± 1.13 2.22 ± 0.02 77.87 ± 1.54 /

WireMask-RS 6.13 ± 0.05 59.28 ± 1.48 60.60 ± 0.45 62.06 ± 0.22 2.19 ± 0.01 62.58 ± 2.07 8.20 ± 0.17 3.57%after_local_search 5.99 ± 0.06 57.23 ± 1.75 59.22 ± 0.40 60.99 ± 0.82 2.17 ± 0.01 58.32 ± 3.57 7.64 ± 0.24

WireMask-BO 6.07 ± 0.14 59.17 ± 3.94 61.00 ± 2.08 63.86 ± 1.01 2.14 ± 0.03 67.48 ± 6.49 8.62 ± 0.18 3.77%after_local_search 6.04 ± 0.12 54.24 ± 2.92 60.29 ± 2.29 62.96 ± 1.16 2.13 ± 0.01 63.87 ± 8.26 7.86 ± 0.21

WireMask-EA 5.91 ± 0.07 52.63 ± 2.23 57.75 ± 1.16 58.79 ± 1.02 2.12 ± 0.01 59.87 ± 3.40 8.28 ± 0.25 3.32%after_local_search 5.89 ± 0.07 49.04 ± 2.35 57.41 ± 1.04 57.72 ± 0.76 2.11 ± 0.01 56.29 ± 5.23 7.66 ± 0.26

B.2 Hyper-parameter analysis

We empirically investigate the influence of the the hyper-parameters of WireMask-EA, i.e., the
number of partitions when discretizing the chip canvas into grids, the order of adjusting the positions
of macros in objective evaluation, and the mutation operator.

Number of partitions. In our main experiments, the number of partitions is heuristically determined
based on detailed macro statistics and varies across different chips, ranging from 108 for adaptec4 to
273 for bigblue4, as shown in Table 5. The first two rows of Table 7 show the results of WireMask-EA
after increasing and decreasing the number of partitions by 100, respectively. The last row gives the
results of the default WireMask-EA, achieving the highest average rank.

Table 7: HPWL values (×105) obtained by WireMask-EA under different grid partition numbers.
The symbol × denotes that the method fails to generate non-overlapping placements. The best
(smallest) mean value on each chip is bolded. The symbols ‘+’, ‘−’, and ‘≈’ indicate that the number
of chips where the result is significantly superior to, inferior to, and almost equivalent to the default
setting, respectively, according to the Wilcoxon rank-sum test with significance level 0.05.

Method adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 bigblue4 +/− / ≈ Avg. Rank

+100_grid_num 5.88 ± 0.09 56.97 ± 2.16 57.74 ± 0.98 59.36 ± 1.10 2.30 ± 0.02 62.93 ± 3.36 8.32 ± 0.24 0/3/4 1.71
−100_grid_num 7.07 ± 0.18 × × × 3.06 ± 0.07 84.37 ± 4.14 10.14 ± 0.30 0/4/0 3.00
default setting 5.91 ± 0.07 52.63 ± 2.23 57.75 ± 1.16 58.79 ± 1.02 2.12 ± 0.01 59.87 ± 3.40 8.28 ± 0.25 1.28

By increasing the grid partition number, more fine-grained genotype-phenotype mapping guided by
wire mask can be achieved, but the computational overhead is also increased. If the grid partition
number is too small, the mapping may even not lead to non-overlapping placements, as observed on
the chips adaptec2, adaptec3 and adaptec4 after decreasing the grid partition number by 100. Thus,
a good balance needs to be considered, when determining the grid partition number in practice.

Order of adjusting the positions of macros. In the objective evaluation of WireMask-BBO, the
positions of macros are adjusted sequentially, in the decreasing order of the sum of area of each
macro’s connected cells, as shown in lines 1–2 of Algorithm 1. Here, we also test the random
adjustment order and the order only considering the area of each macro itself, the results of which are
shown in the first two rows, respectively, of Table 8.

Table 8: HPWL values (×105) obtained by WireMask-EA using different orders to adjust the
positions of macros in objective evaluation. The symbol × denotes that the method fails to generate
non-overlapping placements. The best (smallest) mean value on each chip is bolded. The symbols
‘+’, ‘−’ and ‘≈’ indicate that the number of chips where the result is significantly superior to, inferior
to, and almost equivalent to default setting, respectively, according to the Wilcoxon rank-sum test
with significance level 0.05.

Benchmark adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 bigblue4 +/− / ≈ Avg. Rank

random_order 12.65 ± 0.68 × × 93.25 ± 4.66 3.40 ± 0.09 × × 0/3/0 3.00
size_only_order 6.32 ± 0.13 47.39 ± 1.02 61.18 ± 1.03 54.57 ± 1.69 2.16 ± 0.01 102.99 ± 7.69 10.80 ± 0.24 2/5/0 1.71
default setting 5.91 ± 0.07 52.63 ± 2.23 57.75 ± 1.16 58.79 ± 1.02 2.12 ± 0.01 59.87 ± 3.40 8.28 ± 0.25 1.28

16

The random order always leads to the worst result, and may even fail to generate non-overlapping
placements. Compared with using the order only considering each macro’s area, the original
WireMask-EA performs significantly better on five chips, and worse on the other two chips. Its best
overall performance is expected, because the order considering the sum of area of each macro’s
connected cells is more closely related to the performance metric HPWL.

Mutation operator. For WireMask-EA, which performs the best among the three variants of
WireMask-BBO, we also examine the influence of its mutation operator. We employed the swap
mutation operator in our experiments, which randomly selects two macros and interchanges their
coordinates. To further investigate, we implement the uniform mutation operator as well, which
selects a macro at random and uniformly reallocates it on the chip canvas. Moreover, we combine
these two mutation operators, with each being executed with a probability of 1/2. As shown in
Figure 5, the utilization of the swap mutation operator alone (i.e., Swap_only) performs better than
using the uniform mutation operator alone (i.e., Uniform_only) or their combination (i.e., Mix).

0 200 400 600 800 1000
Wall Clock Time (min)

5.8

6.0

6.2

6.4

6.6

6.8

7.0

HP
W

L

adaptec1

0 200 400 600 800 1000
Wall Clock Time (min)

45
50
55
60
65
70
75
80
85
90

HP
W

L
adaptec2

0 200 400 600 800 1000
Wall Clock Time (min)

55

60

65

70

75

80

85

90

HP
W

L

adaptec3

0 200 400 600 800 1000
Wall Clock Time (min)

60

65

70

75

80

HP
W

L

adaptec4

0 200 400 600 800 1000
Wall Clock Time (min)

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

HP
W

L

bigblue1

0 200 400 600 800 1000
Wall Clock Time (min)

60

70

80

90

100
HP

W
L

bigblue3

MaskPlace Mix Uniform_only Swap_only

Figure 5: HPWL (×105) vs. wall clock time of WireMask-EA using different mutation operators,
where the shaded region represents the standard error derived from 5 independent runs.

B.3 Number of evaluations

Table 9 lists the number of evaluations used by WireMask-RS, WireMask-BO and WireMask-EA in
Table 1, each of which runs for 1000 minutes. The number of evaluations of RS and EA is rather
close, indicating that our EA operator is quite efficient. Besides, BO uses fewer evaluations than RS
and EA, owing to the time-consuming cost of updating the Gaussian process model and optimizing
the acquisition function.

Table 9: Number of evaluations of WireMask-RS, WireMask-BO and WireMask-EA in Table 1.

1000 min adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue3 bigblue4

WireMask-RS 3610 3689 5257 2791 7367 976 106
WireMask-BO 820 655 810 600 1580 540 59
WireMask-EA 3526 3540 5179 2685 7217 877 97

17

B.4 Results on the ariane benchmark

We evaluate the performance of our WireMask-BBO framework on another benchmark, the ariane
RISC-V CPU design [48], which has been previously studied in works such as [32, 26]. Our
evaluation involves a comparison with three analytical methods and three RL methods, and the results
are summarized in Table 10. The results of analytical and RL methods are directly from [26]. The
analytical methods all fail to generate non-overlapping placement results on ariane, likely due to its
high macro area utilization ratio of 0.78, which is the largest among all the benchmarks in Table 5.
The overlapping issue is consistent with our discussion presented in Section 2.3. The RL-based
methods show significantly worse performance compared to our proposed WireMask-BBO methods.
The three different variants of WireMask-BBO are comparable based on the statistical test, with
WireMask-EA demonstrating the lowest mean HPWL value.

Table 10: Comparison of HPWL values (×105) on the ariane benchmark [48]. A ‘×’ symbol
means that the method fails the legalization and thus cannot generate non-overlapping placement
results.The best (smallest) mean value is bolded. The symbols ‘+’, ‘−’ and ‘≈’ indicate that the
result is significantly superior to, inferior to, and almost equivalent to WireMask-EA, respectively,
according to the Wilcoxon rank-sum test with significance level 0.05.

Method Type ariane +/− / ≈
NTUPlace3 [12] Analytical ×

RePlace [13] Analytical ×
DREAMPlace [28] Analytical ×

Graph [32] RL 16.89 ± 0.60 −
DeepPR [15] RL 52.20 ± 0.89 −

MaskPlace [26] RL 14.63 ± 0.20 −
WireMask-RS Ours 9.90 ± 0.18 ≈
WireMask-BO Ours 9.71 ± 0.46 ≈
WireMask-EA Ours 9.68 ± 0.61

B.5 Comparison with concurrent works

Recently, ChiPFormer [25] and AutoDMP [4] are proposed as new state-of-the-art methods in macro
placement. For a comprehensive comparison, we also conduct experiments with these two concurrent
works here.

ChiPFormer. ChiPFormer [25] incorporates an offline learning decision transformer to improve
the generalizability. The pre-trained model provides placement results with acceptable quality within
minutes, and converges to better results than MaskPlace [26] using fewer evaluations. We have
compared our proposed WireMask-EA with ChiPFormer on ten chips, as outlined in Table 11. The
experimental results show that our WireMask-EA clearly outperforms ChiPFormer on 9 circuits out
of 10, no matter the number of evaluations is 1, 300 or 2k.

AutoDMP. AutoDMP [4] improves the efficient DREAMPlace [28], using Bayesian optimization
to explore the configuration space and showing potential in real EDA application. We have included
running time comparison between the state-of-the-art method AutoDMP [4] and our proposed
WireMask-EA as shown in Figure 6. The results of MaskPlace (3k evaluations) and ChiPFormer (2k
evaluations) are ploted by dotted lines in the figure. We can observe that on the two chip benchmarks,
adaptec1 and bigblue1, AutoDMP and WireMask-EA can surpass MaskPlace and ChiPFormer
quickly, and WireMask-EA performs the best.

18

Table 11: HPWL values (×105) obtained by the recent proposed state-of-the-art method ChiP-
Former [25] and our proposed WireMask-EA on ten chips, including adaptec and bigblue from
ISPD2005 benchmark [35] and ibm from ICCAD2004 benchmark [3]. The number in () denotes the
number of evaluations used. Each result consists of the mean and standard deviation of five runs. The
best (smallest) mean value on each chip is bolded.

Benchmark ChiPFormer (1) WireMask-EA (1) ChiPFormer (0.3k) WireMask-EA (0.3k) ChiPFormer (2k) WireMask-EA (2k)

adaptec1 8.87 ± 0.98 7.20 ± 0.34 7.02 ± 0.11 6.29 ± 0.07 6.62 ± 0.05 5.96 ± 0.08
adaptec2 122.37 ± 22.61 111.04 ± 20.09 70.42 ± 2.67 61.25 ± 4.10 67.10 ± 5.46 53.88 ± 2.53
adaptec3 107.11 ± 8.84 75.37 ± 2.93 78.32 ± 2.03 64.49 ± 1.69 76.70 ± 1.15 59.26 ± 1.30
adaptec4 85.63 ± 7.52 75.63 ± 1.30 69.42 ± 0.54 64.52 ± 1.81 68.80 ± 1.59 59.52 ± 1.71
bigblue1 3.11 ± 0.03 2.31 ± 0.06 2.96 ± 0.04 2.18 ± 0.01 2.95 ± 0.04 2.14 ± 0.01
bigblue3 131.78 ± 17.36 99.20 ± 24.69 81.48 ± 4.83 64.51 ± 4.15 72.92 ± 2.56 56.65 ± 2.81
ibm01 4.57 ± 0.27 3.76 ± 0.36 3.61 ± 0.08 2.92 ± 0.07 3.05 ± 0.11 2.39 ± 0.07
ibm02 6.01 ± 0.41 5.13 ± 0.16 4.84 ± 0.17 3.86 ± 0.03 4.24 ± 0.25 3.56 ± 0.05
ibm03 2.15 ± 0.17 3.10 ± 0.12 1.75 ± 0.07 2.20 ± 0.11 1.64 ± 0.06 1.69 ± 0.11
ibm04 5.00 ± 0.14 3.60 ± 0.17 4.19 ± 0.11 2.93 ± 0.11 4.06 ± 0.13 2.62 ± 0.04

0 200 400 600 800 1000
Wall Clock Time (min)

5.75

6.00

6.25

6.50

6.75

7.00

7.25

7.50

HP
W

L

adaptec1

0 200 400 600 800 1000
Wall Clock Time (min)

2.2

2.4

2.6

2.8

3.0

HP
W

L

bigblue1

MaskPlace (3k) ChiPFormer (2k) AutoDMP WireMask-EA

Figure 6: HPWL (×105) vs. wall clock time of WireMask-EA and AutoDMP [4], where the shaded
region represents the standard error derived from 5 independent runs.

19

	Introduction
	Background
	Macro Placement
	Packing-based Methods
	Analytical Methods
	Grid-based RL Methods

	Proposed Framework WireMask-BBO
	Wire-Mask-Guided Problem Formulation
	Black-Box Optimization

	Experiments
	Conclusion
	Experimental Settings
	Additional Results
	Post local search
	Hyper-parameter analysis
	Number of evaluations
	Results on the ariane benchmark
	Comparison with concurrent works

