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ABSTRACT
Generative mechanism-based models of social systems, such as
those represented by agent-based simulations, require that intra-
agent equations (or rules) be specified. However there are often
many different choices available for specifying these equations,
which can still be interpreted as falling within a particular class
of mechanisms. Whilst it is important for a generative model to
reproduce historically observed dynamics, it is also important for
the model to be theoretically enlightening. Genetic programs (our
own included) often produce concatenations that are highly predic-
tive but are complex and hard to interpret theoretically. Here, we
develop a new method – based on multi-objective genetic program-
ming – for automating the exploration of both objectives simulta-
neously. We demonstrate the method by evolving the equations for
an existing agent-based simulation of alcohol use behaviors based
on social norms theory, the initial model structure for which was
developed by a team of human modelers. We discover a trade-off
between empirical fit and theoretical interpretability that offers
insight into the social norms processes that influence the change
and stasis in alcohol use behaviors over time.
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1 INTRODUCTION
1.1 Inverse generative social science
In describing Inverse Generative Social Science, Epstein writes that,
“Artificial intelligence and machine learning are displacing humans,
but not explaining them. Machines can crush humans at chess, but
do not illuminate how humans play chess. When asked how he
came up with a winning brilliancy against IBM’s Deep Blue, Gary
Kasparov answered simply: ‘it smelled right.’ While it has not been
used in this way, machine learning can help explain human be-
havior, even moving our modeling of complex social systems into
a new epoch.” [7] The agent-based model (ABM) is the principal
scientific instrument for understanding how individual behaviors
and interactions, the micro-world, generates change and stasis in
macroscopic social regularities. So far, agents have been iterated
forward to generate such explananda as settlement patterns, scal-
ing laws, epidemic dynamics, and many other phenomena [6]. But
these are all examples of the forward problem: we design agents
and grow the target phenomenon. The motto of generative social
science is: “If you didn’t grow it, you didn’t explain it.” [5] But
there may be many ways to grow it! How do we find ‘all’ the non-
trivial generators? This is inverse generative social science – agent
architectures as model outputs not model inputs – and machine
learning can enable it. Our application of multi-objective genetic
programming in the present paper represents a starting point for
building the tools needed to perform the model discovery process
of inverse generative social science. Our focus is the internal rules
that describe the dispositional dynamics of the agents, since these
constitute a pillar of the agent-based generative approach. How-
ever we are clear that a comprehensive model discovery process
would also include identification of social contact structures such
as networks.

https://doi.org/10.1145/3321707.3321840
https://doi.org/10.1145/3321707.3321840
https://doi.org/10.1145/3321707.3321840
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1.2 Related works
Evolutionary computation forms one of the main classes of method
for calibration of an agent-based model’s parameters, given a pre-
defined model structure [23]. These methods emulate natural se-
lection processes in order to find the numerical parameters that
optimize an ABM’s goodness-of-fit metric when comparing model
outputs to empirical observations. However it is only relatively re-
cently, in a handful of studies, that evolutionary computing has also
been used to search for agent-based model structures – the agents’
internal rules and structuring computational architectures. In an
early study, Smith used a genetic algorithm to evolve the rules in a
classifier in order to reproduce the observed social assortativity of
birds [22]. More recently, Zhong and colleagues used gene expres-
sion programming to optimize the structure of a reward function
used by agents to evaluate behavioral choices, such that the ABM
could better reproduce empirically observed crowd behaviors [28].
Later, Gunaratne & Garibay used genetic programming to evolve
agents’ farm selection rules to identify new model structures for
a NetLogo implementation of the seminal Artificial Anasazi ABM
in order to reproduce the archeological population demography
of Long House Valley, Arizona [9]. In all three cases, the focus
for structural calibration was on aspects of agent decision-making,
rather than any other parts of the model.

The multi-agent system (MAS) community faces a related – yet
distinct – problem to ABM structural calibration, where the en-
gineered system is seeking to fulfill an overall desired objective
(rather than replicate empirical observations). Whilst the appli-
cation is most emphatically not inverse generative social science,
the evolutionary computing methods used in these studies, again
focusing on agent decision-making processes, are very relevant
to the generic requirement for model discovery. Junges & Klügl
used genetic programming to find decision tree representations of
agent decision-making that minimized collisions in a pedestrian
evacuation scenario [13]. van Berkel and colleagues developed in-
frastructure for automatic discovery of behavioral algorithms for
MAS, in which grammatical evolution was used to find optimal
algorithm structures for solving five types of multi-agent problem,
based on defined primitives implemented in the NetLogo ABM soft-
ware [25]. Husselmann and colleagues extended a domain-specific
language known as SOL to enable parallel search over evolved
sets of abstract syntax trees, applying the method to solve two
multi-agent problems [11, 12]. In both latter cases, researchers have
been particularly sensitive to the computational burden of perform-
ing structural optimization in agent-based contexts, developing
enabling, although perhaps rather esoteric, infrastructure to help
meet these needs.

1.3 Aim of the present study
This paper seeks to demonstrate how multi-objective genetic pro-
gramming can be used as a tool for inverse generative social sci-
ence. This aim is supported by using the case study of an existing
individual-level simulation model developed to explain trends in
patterns of alcohol use in the United States. In Section 2, this model
is introduced in sufficient detail for the subsequent manipulation
of its structure to be understood. Then, in Section 3, an overall
process of model discovery is introduced, with particular focus on

the evolutionary computing tools used to search through the space
of model structures. Results of the model discovery process for the
case study are provided in Section 4. The findings are discussed in
detail in Section 5. The field of inverse generative social science is
in its infancy and so the paper closes with a plethora of directions
for future research on this exciting topic.

2 AN INDIVIDUAL-LEVEL MODEL OF SOCIAL
NORMS

2.1 Overview
The present study makes use of a mathematical model which aims
to explain the change and stasis in patterns of alcohol use within
the United States over the past four decades. The model is based
on theoretical concepts from social norms theory [4], in which
the modeler has used the theory abductively as a framework for
interpretation of the temporal changes in alcohol use patterns in
American society [2]. The conceptual design of the model uses
the analytical sociology framework [18], in which the sequence of
mechanisms that generate the dynamics of macro-level patterns
involve, for every mechanism, the dispositions and behaviors of
individuals. Empirical-based falsification is also a key part of the
framework – with mechanism-based explanations only remaining
as candidates if they are able to sufficiently reproduce observations.

2.2 The phenomenon to be explained
The model attempts to reproduce population-level patterns of alco-
hol use, in terms of prevalence of use in the last 12 months, average
frequency of use (in terms of average number of drinking days in
a month), and average quantity of use (in terms of average grams
of ethanol consumed per day). Empirical data on these measures
comes from the National Survey on Drug Use and Health (NSDUH,
until 2002 called the National Household Survey on Drug Abuse),
which is a nationally representative, cross-sectional survey of the
noninstitutionalized civilian population of the US aged 12 or older
[24]. The survey has been conducted annually since 1990, and be-
fore then in the years 1979, 1982, 1985 and 1988. The observed
patterns of alcohol use are shown, separately for males and females,
in Figure 1. Whilst alcohol use prevalence is observed to decline
over the period 1979 to 2016, a corresponding initial decline in
drinking frequency is observed to reverse its trend in the mid-1990s.
Also of interest, since the mid-2000s, average drinking quantities
per day have been observed to be decreasing in males but to be
stable or slightly increasing in females.

2.3 Model description
While we will exercise the modeling approach in the context of
alcohol, it will be useful to step back and briefly discuss the overar-
ching idea, as it applies to social norms in general. As per Einstein’s
famous adage, we want the simplest model capturing the main
drivers; therefore when developing the social norms model, the
modelers in question have aimed for parsimony. The dependent
variable is the agent’s disposition to engage in the behavior of in-
terest (e.g., drinking, smoking, consuming drugs). There are but
four independent variables: payoff, autonomy, and injunctive and
descriptive norms. These all range from zero to one and can vary
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Figure 1: Empirical observations used as targets in the model discovery process: alcohol use dynamics in the United States,
1979–2016

across agents, by gender, age and other heterogeneous attributes,
and also change over time as affected by agent behavior. In the
health context, payoff is hedonic and could be the neuro-biological
satisfaction derived from consumption. The agent also makes an
appraisal of the social opprobrium associated with the behavior.
This is the injunctive norm, capturing the agent’s perceived rules
and expectations regarding acceptable and unacceptable drinking
behavior. The descriptive norm is the agent’s empirical estimate
of the behavior’s prevalence in a relevant reference group. In this
case, it is the perceived fraction of individuals who drink and the
perceived amount consumed on a drinking occasion. The percep-
tion of descriptive norms is imperfect as it is biased by the agent’s
own drinking habits.

The crux of the model is autonomy – the agent’s disregard for
social norms. An agent with autonomy of one does not care about
society and is driven purely by her individual hedonic payoff. At the
other extreme is the agent who is a ‘slave to fashion’ and exhibits
no autonomy whatsoever. She is willing to sacrifice individual
pleasure for social conformity and acceptance. Disposition is the
convex combination of individual and social forces, as autonomy
ranges from zero to one. How then to represent these social forces,
the influence of the injunctive and descriptive norms? Because all
variables are bounded to the unit interval, an initial hypothesis
postulated by the modelers is that the social force term could be
the geometric mean of these factors. The exact structure – how
these concepts work together – remains tentative. It is hoped that
the process of model discovery can elucidate new expressions to
stimulate further theorizing about the model, but in a way that is
empirically grounded.

For context, it should be noted that the social norms model
contains other mechanisms beside that which drives agents’ dis-
positions. While the agent’s behavior is – to a varying degree –
impacted by the social norms, the inverse is also true. In taking
decisions about individual drinking, the agents transform the de-
scriptive norms that are perceived by their peers. Furthermore,
excessive drinking can become less acceptable over time when it is
so prevalent that it causes perceptible social, material or physical
harm to society and its members. Via the perception of descriptive

and injunctive norms on the one hand and the collective transforma-
tion of social norms on the other, individual agents form a dynamic
agent society. The emerging population-level drinking behaviors
are therefore a result of individual-level interactions between global
social norms and individual desire to drink.

2.4 Implementation
The social norms model follows an object-oriented design using the
mediator design pattern. The model is implemented in C++ using
Repast HPC libraries [1]. For the present study, the model was
coarsely parallelised across 36 cores of an Intel i9 9980XE processor
by assigning separate sub-populations to each core.

3 MODEL DISCOVERY METHODS
3.1 Overview
A flow chart depicting the overall process of model discovery is
shown in Figure 2. The process both extends and formalises the
recent approach described by Gunaratne & Garibay [9]. The differ-
ent steps in the process are discussed here, making reference to the
case study model introduced previously.

In Step 1, we make explicit the abductive reasoning process of
developing a mechanism-based mathematical model – at present
there is no library of context-free model components or “building
blocks” [17] that can be drawn upon to automate this reasoning
stage. In summary, we expect to be starting with a specific model
developed by a human modeler.

The social norms model described in Section 2 comprises a num-
ber of entities and mechanisms. Here, we focus on the situational
mechanism [10] by which an individual’s disposition to drink (de-
fined by the agent property disposition) is affected by perceptions
of norms (properties descriptive and injunctive), in combina-
tion with his or her desire to disregard norms (property autonomy)
and beliefs about the value of drinking (property payoff). The orig-
inal equation that defines this mechanism is given in Equation 1.

disposition = (autonomy * payoff)

+ (1 - autonomy) * sqrt(injunctive * descriptive) (1)
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Repeat Step 5 for child models.

Step 3b. A posteriori calibration of 
non-dominated models in converged 
population.

Step 6d.
Convergence
achieved?

yes

no

Figure 2: Model discovery process

Note that agents are heterogeneous in their autonomy and in
their appraisals of injunctive and descriptive norms, as well as by
gender, age, and other factors that may also be dynamic. The above
equation describes the single explanatory architecture that induces
disposition in every agent, but agent dispositions have the capacity
to be heterogeneous due to the heterogeneity in their properties.

3.2 Structural primitives
In Step 2, we work with the modeler (or relevant documentation)
to develop a set of primitives that can be used as the building blocks
in the creation of new model structures. In our case study, the prim-
itives relate simply to elements of the situational mechanism given
in Equation 1. The modeler in this case was also uncertain about
whether descriptive and injunctive norms should be averaged
arithmetically or geometrically, so we included both operators as
functions in the set of primitives. We also included a composite
function complement rather than introduce constants such as 1.
The full set of primitives used in the model discovery process is
shown in Table 1.

3.3 Calibration of model parameters
The full social norms model contains 27 parameters that must be
specified prior to running the model – these relate both to effect
sizes in mechanisms and also hyperparameters that define the het-
erogeneity of properties (such as autonomy) in the population of
agents. It is conventional practice, in empirically grounded studies,
to calibrate such parameters using available evidence [23]. If the
calibration procedure were cheap, we would calibrate the param-
eters afresh for each and every model structure proposed during
the model discovery process. However, the computational cost of
calibration makes this infeasible, and we must be more circumspect
in how often we choose to run a parameter calibration for a given
structure. In the present process, we split parameter calibration
into two stages. In Step 3a a single parameter calibration is per-
formed using a baseline model structure (i.e. Equation 1). This set
of parameters is then used for all other model structures during the
model discovery process. Once the process has converged, a further
round of calibration is performed in Step 3b for each model in the
set of structures that are most promising according to two criteria
described below. Clearly, some promising model structures will be
penalised by this approach and we return to this topic in Section 5.

For the case study, we employ a Latin hypercube space-filling
design to sample 5,000 parameter sets from the joint prior distribu-
tion that represents judgements about plausible values. We then
evaluate the model at these parameter sets and assess the model out-
put against empirical observations using a goodness-of-fit metric,
and select the best-fitting parameterisation. In each case, the social
norms model is initialised in 1979 with 1,000 agents (sampled from
a microsynthesis of the US population based on 1980 census data)
and run forward in time for 15 years. The goodness-of-fit metric
quantifies the distance between the model outputs for drinking
prevalence, frequency and quantity (split by male and female sub-
populations) and their corresponding empirically observed values
(see Figure 1).

This goodness-of-fit metric also forms one of the two objective
functions used in the model structure discovery process step of the
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Table 1: Model primitives derived from the social norms model

Type Name Arity Description

Terminals

injunctive 0 Perceived injunctive norm
descriptive 0 Perceived descriptive norm
payoff 0 Positive utility derived from drinking alcohol
autonomy 0 Tendency to ignore social norms

Functions

+ 2 Adds two quantities, i.e. x + y
- 2 Subtracts two quantities, i.e. x − y
* 2 Multiples two quantities, i.e. xy
mean 2 Takes the arithmetic mean of two quantities, i.e. (x + y)/2
root 1 Takes the square root of a quantity, i.e.

√
x

complement 1 Takes the complement of a quantity, i.e. 1 − x

calibration process. The objective function for model structure x
is an implausibility metric [27] that measures the error betweenm
simulated outputs y⋆m and equivalent empirical target data ym over
temporal observations k defined by:

z1 =
1

KM

K∑
k=1

M∑
m=1

|y⋆m[k] − ym[k]|√
(sm[k])2 + (dm )2

(2)

whereM is the number of output measures, K is the number of
observations, sm[k] is the observed standard error for outputm at
time point k , and (dm )2 is the variance of the model discrepancy
for outputm, which is taken as 10% of the possible output range for
each output. ‘Model discrepancy’ is the error in a model output that
arises because the model is not a perfect representation of reality.

3.4 Evolutionary search using genetic
programming

The evolutionary computing approach requires specification of: (i)
a representation of a candidate solution; (ii) an objective function
for evaluating each candidate; (iii) selection mechanisms for emu-
lating survival-of-the-fittest mechanisms; (iv) variation operators
for manipulating existing candidates to form new candidates; and
(v) a convergence measure that can act as a stopping criterion. Each
of these aspects forms part of the model discovery process and is
discussed in more detail below.

In order to represent new models (essentially new right-hand
sides of the situational mechanism given in Equation 1) we adopt
the syntax tree structure used in conventional genetic programming
[14]. The tree represents the terminals and functions abstracted
during Step 2 (shown in Table 1). In Step 4 an initial population of
trees (representing new model structures) is then created – here we
adopt the ramped half-and-half tree-building method developed by
Koza [14, 15]. Next, in Step 5, we simulate the newmodel structures
and compare them to empirical target data using Equation 2.

For inverse generative social science, goodness-of-fit is not the
only criterion by which the worth of a model should be measured.
Here, we consider one of the other critically important criteria
– interpretability. A substantive, although not only, part of inter-
pretability is the number of terms in the model’s equations, since
there are cognitive limits on how a large a structure can be com-
prehended. However, for the present time we use this complexity

measure as the second criterion. The choice of a complexity mea-
sure is, of course, quite common in model selection more generally
and also of relevance to the issue of bloat in the specific context of
genetic programming [20]. We calculate interpretability therefore
as the number of nodes in the tree:

z2 = nodes(x), (3)
where nodes(.) calculates the number of nodes in the tree en-

coding model structure x.
Step 6 forms the heart of the evolutionary approach. Objectives

z = [z1,z2] are to be minimized simultaneously. In the case study
we have used the selection mechanisms of the NSGA-II optimizer
[3]. This algorithm is suitable for unconstrained bi-objective prob-
lems and aims to develop an even, sample-based representation
of the Pareto front representing the anticipated trade-off between
goodness-of-fit and interpretability. NSGA-II’s conventional varia-
tion operators are replaced with equivalents for tree-based genetic
programming [14, 15].

The resulting multi-objective genetic programming (MOGP) al-
gorithm is run until convergence is achieved or the resources for
optimization have been exhausted (Step 7). In this study, we mon-
itored convergence using the hypervolume indicator, which is a
popular performance metric for multi-objective problems [8].

3.5 Implementation details
The multi-objective genetic programming algorithm was imple-
mented using existing components from the ECJ toolkit [16]. To
evaluate a new model structure generated by the algorithm, addi-
tional scripting was necessary to: (i) modify the C++ source code of
the situational mechanism embedded in the agents decision mak-
ing; (ii) re-compile the overall Repast HPC model; (iii) execute the
simulation; and (iv) compare simulated population-level outputs
against empirical targets. The population of the MOGP was set at
450 and it was allowed to run for 50 generations, during which
convergence was monitored. During testing, little progress was
identified in the hypervolume measure following generation 35.

4 RESULTS
The optimizer ran for 50 generations, by which time stability was
observed in the hypervolume measure of convergence. The final
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Figure 3: Pareto front of promising model structures:
◦ uncalibrated models; • calibrated models; -·- uncalibrated
Pareto front; — calibrated Pareto front

population of the optimizer was filtered for non-dominated model
structures, of which 8 were identified. The parameters of these
models were then re-calibrated for each model in turn. The per-
formance of the models, in terms of both estimation error against
target data (before and after calibration) and also structural com-
plexity, is shown in the Pareto plot in Figure 3. The corresponding
details of the model structures are shown in Table 2. The time series
plots that underpin the estimation errors are shown in Figure 4 for
three exemplary model structures.

The pre-calibration Pareto front is convex and offers good cov-
erage of the trade-off between estimation accuracy and structural
complexity: errors range between approximately 0.4 and 1.2 units
of empirical implausibility, with structures ranging in size from
16 nodes to just one node. A so-called “knee” in the trade-off sur-
face is apparent at the seven node model, GP4, where increases in
model complexity provide rapidly diminishing returns in terms of
improved non-implausibility. As clear from Table 2, model struc-
tures become substantially more difficult to interpret for tree sizes
in double figures.

The post-calibration Pareto front shows reductions in implausi-
bility for all models, as expected. However only relatively small
improvements are seen for the three most complex models (GP1-3)
in comparison to the less complex models, such that GP1-3 be-
come dominated by the seven node GP4. The remaining models
remain non-dominated with respect to each other and comprise
the remainder of the post-calibration trade-off surface.

5 DISCUSSION
5.1 Findings
The model discovery process has produced a number of interesting
findings. Firstly, of the four possible choices for the single-terminal
structure given in Table 1, the MOGP identified disposition =
payoff as the non-dominated option. This result can be traced

back to the choice of targets shown in Figure 1 combined with
the averaging nature of the goodness-of-fit metric in Equation 2 –
whilst patterns of alcohol use in US society are not in stasis, they can
be relatively well approximated in the long-run over the calibration
window by a straight line. Since payoff is initialised using agent
drinking at baseline, the notion that “past behavior predicts future
behavior” is sufficient to offer an explanation within almost one
unit of implausibility (although, from the plots in Figure 4, it is
apparent that this model, GP8, has particular issues representing
observed drinking prevalences).

Secondly, payoff is more implausible than other model struc-
tures, including those involving normative concepts as components.
Technically, we have not tested an orthodox utility-maximizing
agent with prices and budget constraints. Nonetheless, it is intrigu-
ing that the closest relatives to homo economicus – the solutions
that include payoff only – rank at the bottom of the rules evolved
by the MOGP. Norms, typically absent from standard economic
models, loom large in the better-fitting variants. In particular, con-
cepts of autonomy and descriptive norms are needed to reduce the
estimation error of the model below 0.5 units of implausibility.

Thirdly, we see extensive use of square-root operators in better-
fitting models identified by the MOGP; and we also observe lit-
tle benefit when calibrating the parameters of these models post-
discovery. Recalling that the MOGP was unable to re-calibrate any
of the structures that it identified during the discovery process, our
results suggest that the algorithm is implicitly attempting to assign
effect modifiers through use of the root function as a means of
compensation. It would be interesting to see if this behavior would
be lessened if the MOGPwere able to perform parameter calibration
during the search process.

5.2 Joint structure-parameter model discovery
In the current state-of-the-art process for model discovery – as
represented by Figure 2 – parameter calibration only occurs at the
start and the end of the process. This is a clear limitation of the
approach and a central research challenge for future efforts. Joint
structure-parameter calibration can be conceived of as a bi-level
optimization problem, in which there exists a corresponding pa-
rameter calibration problem for every candidate model structure.
Methods for solving bi-level optimization problems are also some-
what in their infancy; however there are a number of approaches
based on surrogate modeling of fitness functions or best-responses
in a Stackelberg game that are worthy of investigation in the cause
of inverse generative social science [21].

5.3 Managing uncertainty
Empirically-grounded models of social systems often have to cope
with variable-quality empirical evidencewithwhich to calibrate and
validate the models – fundamentally, uncertainty abounds and this
uncertainty should be represented in the model discovery process
and accounted for in conclusions drawn from the findings of the
process. For example, our model structure GP4 is seen to dominate
the only identified structure that includes injunctive norms, GP1 –
but the difference in model fit is only one hundredth of a unit of
implausibility. Does this finding present sufficient grounds to falsify
injunctive norms as explanatory components of alcohol use patterns
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Table 2: Estimated Pareto optimal structures for an agent’s disposition to drink

ID Estimation error Model Structure
Uncalibrated Calibrated size

GP1 0.451 0.407 16 (payoff * (autonomy + sqrt(((1 - (1 - sqrt((sqrt(descriptive)
+ injunctive)))) + descriptive)))) * payoff

GP2 0.452 0.412 13 ((autonomy + sqrt((sqrt((autonomy + descriptive))
+ descriptive))) * payoff) * payoff

GP3 0.457 0.427 10 (payoff * (autonomy + sqrt((autonomy + payoff)))) * payoff

GP4 0.495 0.395 7 ((autonomy * payoff) + payoff) * payoff

GP5 0.675 0.599 6 (descriptive + sqrt(payoff)) * payoff

GP6 0.783 0.630 4 payoff * sqrt(payoff)

GP7 0.929 0.689 3 payoff * payoff

GP8 1.243 1.118 1 payoff
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(d) Prevalence: females
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(e) Frequency: females
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(f) Quantity: females

Figure 4: Model time series results for themost complexmodel (· · ·GP1), best-fittingmodel (- · - GP4), and least complexmodel
(- - - GP8), in comparison to target data (—)

in the US during the 1980s and ’90s? We would argue not, and that
an explicitly probabilistic approach to uncertainty management
would offer a more nuanced approach to model falsification.

Bayesian methods offer a suitable approach for managing uncer-
tainty in simulation models, where the class of methods known as
Approximate Bayesian Computation has been developed to copewith
the lack of an explicit likelihood function [26]. At present, these

methods are limited to parameter calibration but have the potential
for extension to structural calibration. It is important to recognise
that most evolutionary approaches to calibration are not probabilis-
tic, although Purshouse et al. [19] presented a quasi-probabilistic
evolutionary approach in the context of individual-level model pa-
rameter calibration. It remains to be seen how methods such as
genetic programming can be used within a probabilistic framework.
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5.4 Fully unleashed inverse generative social
science

The small number of existing works on inverse generative social
science, including the present paper, have been very modest in the
degree of model discovery attempted. In all cases, the studies have
focused on modifying a single aspect of agent decision-making.
They have not attempted to discover wider aspects of the mod-
els, such as network structures or alternative types of mechanism
(e.g. transformational mechanisms [10]). To fully unleash the power
of inverse generative social science, full models should be opened
up to the process of model discovery. Further, we should aim to
compare and combine model components drawn from multiple
models, where those models have each been developed from a par-
ticular theoretical perspective. Such ambition also raises important
questions around model identifiability and the most appropriate
level at which model primitives should be specified.

6 CONCLUSION
Inverse generative social science offers new possibilities for the
development of empirically-grounded social theory. In this paper,
we have developed a first formal process for model discovery that
can underpin inverse generative efforts. We have harnessed a multi-
objective genetic programming framework for this purpose and
demonstrated how it can be used to identify promising new mod-
els for social norms-based theorising in a practical application. A
multi-objective perspective on model discovery can offer important
insights into the trade-off between empirical goodness-of-fit and
theoretical interpretability. Meanwhile, consideration of evidential
uncertainties remains a key challenge for evolutionary approaches,
such as genetic programming, to address.
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