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Abstract—In approximate computing, the requirement of per-
fect functional behavior can be relaxed because some applications
are inherently error resilient. Approximate circuits, which fall
into the approximate computing paradigm, are designed in such
a way that they do not fully implement the logic behavior given by
the specification and hence their accuracy can be exchanged for
lower area, delay or power consumption. In order to automate
the design process, we propose to evolve approximate digital
circuits which show a minimal error for a supplied amount
of resources. The design process which is based on Cartesian
Genetic Programming (CGP) can be repeated many times in
order to obtain various tradeoffs between the accuracy and area.
A heuristic seeding mechanism is introduced to CGP which allows
for improving not only the quality of evolved circuits, but also
reducing the time of evolution. The efficiency of the proposed
method is evaluated for the gate as well as the functional level
evolution. In particular, approximate multipliers and median
circuits which show very good parameters in comparison with
other available implementations were constructed by means of
the proposed method.

Index Terms—Approximate Computing, Cartesian Genetic
Programming, Digital circuits, Population Seeding.

I. INTRODUCTION

Approximate computing is a new design paradigm emerging

as a response to the never ending need for performance

and energy efficiency of computing systems [1]. It exploits

the fact that the requirement of perfect functional behavior

(i.e. accuracy) can be relaxed because some applications are

inherently error resilient. The errors are not recognizable as

human perception capabilities are limited (e.g. in multimedia

applications), no golden solution is available for validation of

results (e.g. in data mining applications), or users are willing to

accept some inaccuracies (e.g. when the battery of a mobile

phone is almost depleted, but at least a basic functionality

is still requested). Therefore, this accuracy can be used as

a design metric, traded for area, delay, throughput or power

consumption.

In approximate computing systems, approximations can be

introduced at all design levels, starting from the circuit via the

architecture and operating system to programming language.

Examples of applications in which the principles of approxi-

mate computing are utilized range from inaccurate arithmetic

circuits (e.g. adders [2], multipliers [3]) via high-level pro-

cessing blocks (e.g. image compression [3], discrete cosine
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transform, finite and infinite impulse response filters [4]) to

general purpose approximate computing machines [5] and pro-

gramming languages [6]. The circuits which are intentionally

designed in such a way that the specification is not met in

terms of functionality and some savings are expected in terms

of energy, performance or area are called approximate circuits.

Approximate computing as a field is in an early stage of

development and without an established methodology. Ap-

proximate circuits have initially been constructed manually, by

removing those parts of existing fully functional designs that

did not contribute to the result significantly [3]. The current

trend is to create general design methods (such as SALSA [4]

and SASIMI [7]) capable of constructing approximate circuits

which never exceed a predefined error. These ‘error-oriented’

approaches, however, represent only one of the possible ap-

proaches in order to approximate circuits design.

Evolutionary circuit design techniques were successful in

the task of designing a specific class of electronic circuits

which has been documented in numerous survey articles

(e.g. [8], [9]). The aim of this paper is to show that the

approximate circuit design methodology based on principles

of evolutionary design can produce efficient and competitive

approximate gate-level as well as functional level combina-

tional circuits. Because of the nature of approximate circuits

(in fact, partially working circuits are sought) and principles

of evolutionary circuit design (evolutionary-based improving

of partially working circuits), we expect a synergy effect

which could lead to establishing an evolutionary design as

a competitive design method for approximate circuits.

In our previous work, we took advantage of the fact that

the evolutionary design always provides a partially working

solution even when resources needed for constructing a fully

functional solution are not available [10]. It has to be noted

that conventional methods do not usually provide any result

when allocated resources are insufficient. As power consump-

tion is often highly correlated with occupied resources, we can

evolve a partially working circuit using constrained resources

and assume that the circuit’s power consumption will be

reduced.

This idea is further elaborated as follows. Let n be the

(minimum) number of gates required to implement a given

logic circuit. The approximate circuit is created by means

of randomly seeded Cartesian Genetic Programming (CGP)

whose objective is to minimize a given error function and

which can use up to m gates (m < n). If various other

approximations are requested, CGP is executed multiple times

with a gradually reduced amount of available gates. The user

thus obtains a set of approximate combinational circuits, each

of which typically exhibits different tradeoffs between the
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functionality and the number of gates. The proposed design

approach can be considered as an ‘area-oriented’ method

because the user can control the used area (and so power

consumption) more comfortably than by means of the error-

oriented methods. Another important contribution of this arti-

cle is a new method of seeding the initial population of CGP,

which enables us to significantly reduce the time of evolution.

In order to demonstrate a wider applicability of our ap-

proach, the proposed method will be evaluated for gate-

level as well as functional-level circuits. It should be noted

that systematic methods have only been introduced for the

bit (gate) level design of approximate circuits. Hence two

case studies will be reported: the design of approximate

combinational parallel multipliers (the gate level) and the

design of a median computing circuit (the functional level).

We will study the tradeoff between the correctness, area and

power consumption for 2-bit, 3-bit and 4-bit multipliers. These

small multipliers will be used as building blocks for larger

multipliers, and again, the correctness will be traded for power

consumption and area. The median computing circuit is a

key component for median filters in image processing. It

is expected that approximate median circuits can lead to a

significant area reduction while the error of filtering remains

small. In summary, the key contributions of this article are as

follows:

• We propose a new methodology for approximate circuit

design which exploits the area-oriented design approach

and CGP seeded by heuristically created approximate

circuits.

• We propose to extend the concept of approximate circuit

evolution from the gate level to the functional level.

• We present novel implementations of approximate com-

binational multipliers created by CGP. These multipliers

show very good parameters in comparison with similar

multipliers reported in the literature.

• We present novel implementations of approximate me-

dian circuits created by CGP.

The rest of the paper is organized as follows. Section II

surveys relevant research in areas of approximate circuits and

evolutionary circuit design. The proposed design methodology

is introduced in Section III. An experimental framework is

presented together with obtained results in Section IV. After

discussing the impact of this work, conclusions are given in

Section V.

II. RELATED WORK

Only a few papers on evolutionary circuit design have

up to now directly or indirectly addressed the problem of

approximate circuit design. Before introducing them in Sec-

tion II-B we will give an overview of current (conventional)

approximate circuit design techniques in Section II-A.

A. Approximate Circuits: Overview

Power consumption reduction is one of the key challenges

of the current chip design industry. Conventional approaches

to power reduction of digital circuits are applied at all de-

sign levels, starting from the architecture via the circuit to

the technology [11]. Further reductions can be obtained by

approximating the original circuit function by a new one

whose implementation is more energy efficient. The require-

ment on functional equivalence between the specification and

implementation is thus relaxed in order to minimize energy

consumption, accelerate computations or reduce the area on

a chip. The concept of approximate circuits is similar to

probabilistic circuits which take into account the importance

of bits of the circuit’s output with respect to the complexity of

their implementation [12]. However, approximate computing

does not involve assumptions on the stochastic nature of any

underlying processes implementing the system [1].

The next subsections will present basic design techniques

(over-scaling and functional approximation), systematic design

methodologies and error metrics used in approximate circuit

designs.

1) Over-scaling: In the case of over-scaling, circuits are

designed to be working perfectly under a normal environment.

However, their energy consumption can be reduced by volt-

age over-scaling (i.e. using deliberately lower power supply

voltage in which the circuit is known to occasionally produce

erroneous outputs). Similarly, performance can be increased

when the circuit is over-clocked. Timing induced errors are due

to the fact that some paths in the circuit fail to meet the delay

constraints. The combination of scaling the supply voltage and

clock frequency is known as dynamic voltage scaling.

2) Functional Approximation: Functional approximation

means that the circuit is designed in such a way that it does not

fully implement the logic behavior given by the specification.

A simple method is to reduce the precision of computations in

the case of arithmetic circuits by ignoring the least significant

bits. However, only insignificant area savings can be obtained

for some key circuits such as multipliers. Other methods adopt

logic synthesis scenarios in which implementations that satisfy

the specification almost perfectly are sought, but the amount

of resources is significantly reduced (see e.g. [2], [7]).

For example, a two-bit multiplier was manually constructed

which consists of 5 gates only and exhibits a delay of 2d,

where d is a unit delay. Its output is correct for 15 out of 16

possible inputs. A usual conventional solution requires 8 gates

and exhibits a delay of 3d. This approximate multiplier has

been used in larger approximate multipliers and then employed

in approximate image processing applications [3].

3) Systematic Design Methodologies: As the manual re-

design is not a universal and efficient method, systematic

methods to synthesis of approximate circuits are currently

being developed.

The Systematic methodology for Automatic Logic Synthesis

of Approximate circuits (SALSA) starts with a RT level

description of the exact version of the circuit and an error

constraint that specifies the type and amount of error that the

implementation can exhibit [4]. The methodology introduces

the so-called Q-function which takes the outputs from both the

original and approximate circuits and decides if the quality

constraints are satisfied. The Q-function outputs a single

Boolean value. The SALSA algorithm attempts to modify the

approximate circuit with the goal of keeping the output of the

Q-function unchanged.
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Another systematic approach, Substitute-And-SIMplIfy

(SASIMI), tries to identify signal pairs in the circuit that

exhibit the same value with a high probability, and substitutes

one for the other [7]. These substitutions introduce functional

approximations. Unused logic can be eliminated from the

circuit which results in area and power savings. The method is

combined with technology-level optimizations such as down-

sizing of gates (i.e. creating smaller than normally sized gates

to reduce power consumption, in exchange for increased delay)

on critical paths and voltage over-scaling which results in

additional significant area and power savings.

SASIMI and SALSA are very new methods and, unfortu-

nately, are not currently available to the public.

4) Error Metrics: The above methods are error-oriented in

the sense that all logic optimizations leading to an approximate

solution are constrained by a predefined error criterion. The

error can be expressed by various metrics such as worst case

error, average error, and error probability [13]. The design

process has to be repeated when a new error criterion is

established.

B. Evolutionary Circuit Design

Recent surveys on evolutionary circuit design (see, e.g. [8],

[9]) clearly demonstrate that although some evolved imple-

mentations of target circuits can be considered as innovative,

the evolutionary design approach fails in producing useful

implementations of complex circuits. In order to at least

partially eliminate this disadvantage, various approaches have

been proposed to improve the problem representation and

genetic operators (such as functional level representations [14],

[15], decomposition [16], and developmental encodings [17])

and accelerate the fitness computation (such as partial evalu-

ation [18], formal functional equivalence checking [19], and

phenotype precompilation [20]).

1) Previous Works Related on Approximate Circuits: There

are some examples of evolutionary circuit design that could

be considered as approximate circuit design. For example,

Miller evolved finite impulse response filters at the gate level

where functionality was traded for area [21]. In fault tolerance

applications, if a critical number of elements is damaged,

the original function cannot fully be recovered; however, a

partial functionality can be obtained by means of evolutionary

design. This concept has been surveyed in [22]. In another

research, Kneiper et al. investigated the robustness of evolved

classifiers [23]. A classifier system was reported which is

able to cope with changing resources at run-time. During

optimization, the number of pattern matching elements was

modified and its influence on classification accuracy was

studied (i.e. there is a tradeoff between the classification

accuracy and area).

Thompson’s famous evolutionary design of a tone discrim-

inator circuit in the XC6216 FPGA belongs to this class of

applications too. Thompson’s evolutionary algorithm discov-

ered a tone discriminator requiring significantly less resources

than usual solutions would occupy in the same FPGA [24].

Though the evolved discriminator was fully functional, its

robustness was limited. Higher sensitivity to fluctuations in the

environment (external temperature, power supply voltage) and

dependability on a particular piece of FPGA were reported.

Hence we can observe a tradeoff between the robustness and

the amount of resources in the FPGA.

All these approaches and applications have something in

common with approximate circuits. None of them, however,

has fully exploited the capability of evolutionary design as a

systematic method for an approximate circuit design.

2) Direct Evolution of Approximate Circuits: Finally, this

section summarizes our previous work on evolutionary design

of approximate circuits.

In [10], we evolved approximate implementations of small

combinational circuits (3-bit and 4-bit adders and single output

circuits) using randomly seeded CGP operating at the gate

level. In order to provide solutions for every possible num-

ber of gates, CGP was repeatedly executed with gradually

reduced resources available for implementation. The objective

was to minimize the mean absolute error with respect to a

fully functional circuit. Because the utilized power estimation

algorithm (which is embedded into the SIS tool [25]) is very

time consuming, it has not been included in the fitness function

directly. Power consumption was calculated at the end of

evolution for the best evolved approximate circuits.

An inherently multiobjective approach to evolutionary de-

sign of approximate multiplierless multiple constant multipli-

ers (MCMs) was proposed in [26]. Three design objectives—

accuracy, area and delay—were optimized by multiobjective

CGP, where the area was inexpensively estimated as the

number of utilized components and delay as the number of

components along the longest path between the input and the

output.

Both approaches utilized randomly generated initial popu-

lations which led to relatively time consuming evolutionary

runs. Seeding the initial population by suitable pre-generated

designs is one contribution of our work reported in the

following sections. Another feature is that for circuits from

papers [10], [26], we could check in the fitness function

their responses for all possible input combinations, which is

impossible for complex circuits such as median circuits.

III. PROPOSED METHOD

After emphasizing key features of the current approach

to approximate circuit design, this section introduces the

overall idea of the proposed method, the utilized evolutionary

algorithm and the heuristic population seeding procedure.

A. Initial Considerations

Existing systematic approximate circuit synthesis methods

(such as [4], [7]) always begin with a fully functional circuit

C and a given quality constraint (acceptable error) e. Then C

undergoes the “approximating procedure” and an approximate

circuit C1 is generated. It is ensured that the predefined error

e is not exceeded by C1. As the acceptable error (and a

corresponding power consumption reduction) can be difficult

to define for a given application in advance, the design process

is usually repeated for several error values e2, e3, . . . , ek,

yielding approximate circuits C2, C3, . . . , Ck. The solution
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which exhibits the most suitable tradeoff between design

objectives is then the resulting approximate circuit. However,

the area, power consumption and delay are not directly under

the control of the “approximating procedure”.

This is inherently a multiobjective circuit design problem

which could be solved by a suitable multiobjective evolu-

tionary algorithm (MOEA); for example, algorithms reported

for evolution of conventional circuits in [26], [27] are based

on NSGA-II [28]. It is expected that MOEAs will have

difficulty with delivering really compact approximate circuits

for complex problem instances because:

• Evolutionary design of non-trivial combinational circuits

(e.g. 4-bit multipliers) from scratch is a difficult prob-

lem. Only a small fraction of runs usually produce a

working circuit. The reason is that corresponding fitness

landscapes are very rugged [29].

• It is even harder to evolve a working circuit (e.g. 4-bit

multiplier) which is better than a conventional design

according to a chosen criterion (i.e. the number of gates

in our case) [30].

• A reasonably reliable estimate of power consumption

which is important for building trustworthy Pareto fronts

in MOEA can be very time consuming for complex cir-

cuits. For example, while the evaluation of a candidate 4-

bit multiplier takes 35 µs, power consumption simulation

by SIS requires 0.59 s (average numbers calculated on a

3 GHz processor are given).

Another difficulty lies in the scalability problem of the

evolutionary circuit design. In this work, we adopted two

approaches: (1) complex approximate median circuits are

evolved by means of the functional-level evolution; (2) in the

case of gate-level circuits, we focus on arithmetic circuits and

adopt the approach introduced in [3] in which relatively small

approximate circuits are used as building blocks of complex

approximate circuits. In our case, these small approximate

circuits are evolved by CGP.

B. Approximate Circuit Evolution

The main features of the proposed area-oriented method

which addresses the above mentioned problems are as follows:

(1) The direct control of the resulting area (and possibly

power consumption) could be very useful for some application

scenarios (e.g. computing with the minimum error for a

given power budget in a mobile phone). Hence the proposed

method generates approximate circuits as a function of the

area rather than the error. This ‘area-oriented’ approach cannot

be accomplished by conventional circuit design tools because

they do not provide any solution when available resources are

insufficient.

(2) The proposed method works as follows. Let us suppose

that P is a procedure capable of creating an approximate

version of a fully functional circuit C which consists of n com-

ponents (gates). P is employed to construct an approximate

circuit C1 using m1 components with the aim of minimizing

the predefined error criterion. This approximation exhibits the

error e1. Similar to error-oriented methods, such as SALSA

and SASIMI, the design procedure can be repeated; however,

here it is for various number of gates (not for various errors),

in order to obtain different tradeoffs among design objectives.

Approximate circuits C2, C3, . . . , Ck are then constructed by

P wherein m2,m3, . . . ,mk gates are supplied; mk is the

number of gates in the smallest required approximation of C.

It is expected that the resulting errors are e1 ≤ e2 ≤ . . . ≤ ek.

If m is successively n−1, n−2, . . . , 2, and 1, an approximate

circuit is constructed for every possible number of gates.

(3) In order to implement P , from available evolutionary

circuit design methods we chose a single-objective CGP which

enables the gate as well as functional level evolution [31].

Multiple runs of CGP are performed for a given amount of

resources in order to find a circuit which exhibits the smallest

possible error. Multiobjective NSGA-II-based CGP [26] will

be used for comparative purposes in Section IV.

(4) The following features of the proposed method enable

us to accelerate the whole design process:

• The initial population is seeded by approximate circuits

(created according to Section III-E) in order to find much

better solutions than a randomly seeded CGP.

• Power consumption is computed only for selected best

circuits at the end of CGP runs.

• Fitness evaluation exploits the idea of parallel simulation

of candidate circuits and circuit translation to the binary

machine code [20].

• Multiple runs are executed on a computer cluster (p runs

on p processors).

C. Cartesian Genetic Programming

CGP and its various versions are probably the most popular

methods for the evolutionary circuit design [30], [31]. In

this work, we utilize the standard CGP for combinational

circuit evolution with a few modifications as explained in the

following paragraphs.

1) Circuit Representation in the Chromosome: A candidate

circuit is modeled by means of an array of processing nodes

arranged in nc columns and nr rows. The processing elements

can be either elementary gates or functional level components

such as adders, comparators and shifters. The nc.nr product

is constrained by the maximum number of available nodes in

the case of approximate circuit evolution.

The set of functions implemented by processing elements

will be denoted Γ. The circuit utilizes ni primary inputs and

no primary outputs. All signals are defined over b bits, where

b = 1 for the gate level evolution.
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Fig. 1. A candidate 2-bit multiplier, with inputs b1b0a1a0 and outputs
p3p2p1p0, represented by CGP with parameters: ni = no = 4, nc = 6,
nr = 1, l = 4, Γ = {0AND , 1OR}. Chromosome: 1, 3, 0; 0, 2, 0; 1, 2, 0;
0, 1, 0; 7, 6, 1; 8, 8, 1; 5, 8, 4, ‘0’.

Primary inputs and processing node outputs are labeled

0, 1, . . . , ni−1 and ni, ni+1, . . . , ni+nc.nr−1, respectively.

Each node input can be connected either to the output of
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a gate placed in the previous l columns or to one of the

primary circuit inputs. A candidate solution consisting of two-

input nodes is represented in the chromosome by nc.nr triplets

(x1, x2, ψ) determining for each processing node its function

ψ, and addresses of nodes x1 and x2 which its inputs are

connected to. The last part of the chromosome contains no

integers specifying either the nodes, where the primary outputs

are connected to, or logic constants (’0’ and ’1’), which can

be directly connected to the primary output. The support of

logic constants at the primary outputs is crucial for evolving

some approximate circuits.

In order to illustrate the CGP encoding in Figure 1, we chose

the approximate 5-gate multiplier discussed in Section II-A2.

One important feature of CGP is that not all gates have to be

included in the phenotype (e.g. gate 9). The CGP encoding is

redundant which, according to some studies [32], enables us

to improve the quality of the search.

D. Fitness Function

The goal of evolution is to maximize the functionality of

approximate circuits whose size is constrained by the nc.nr

product. The fitness is then defined as error to be minimized:

f =

K∑

j=1

|y(j)− t(j)|, (1)

where y is candidate circuit’s no-bit response and t is target

response. The number of fitness cases is K = 2ni , because we

have to evaluate circuit responses for all possible combinations

of operands for arithmetic circuits. This definition of the

fitness function is preferred over the Hamming distance based

function because a better performance has been reported in

in [10].

In the functional level evolution, the design problem is often

understood as a symbolic regression problem. Then, K is the

number of fitness cases in the training set.

1) Search Algorithm: We will use the (1+λ) search method

as recommended in [31].

1) The initial population of the size 1 + λ is created.

2) The fitness function f is called for each candidate

circuit.

3) The highest-scored candidate circuit is selected as the

new parent. It has to be noted that the previous parent

α is never selected as the new parent if there are more

individuals with fitness f(α) and f(α) is the best fitness

value in a given population [31].

4) By applying a point mutation, λ offspring individuals

are generated from the parent. In this type of mutation,

h genes (integers) undergo a mutation.

5) Steps 2—4 are repeated until the termination condition

is not satisfied.

E. Heuristic Population Seeding

Let C be a fully functional circuit consisting of n two-input

gates. Let us suppose that CGP has to minimize the error (f )

and only up to n − 1 gates can be utilized. The proposed

heuristic for seeding the initial population is based on a local

search and works as follows.

Every single gate of C is independently replaced by a wire

connection (the upper input is connected to the output of the

gate), which results in n approximate circuits consisting of

n − 1 gates. The fitness values are then calculated for all n

circuits. The whole procedure is repeated, but now the lower

input is connected to the output for all the gates. In total, 2n
new approximate versions of C, each of them containing n−1
gates, are obtained. The circuit producing the smallest error is

taken as the seed for CGP.

A natural extension of this heuristic for a circuit in which

n gates have to be reduced to n − k gates consists of: (1)

a random selection of k gates and their replacement by wire

connections; (2) calculating the fitness value of the modified

circuit; (3) repeating steps (1) and (2) N times (where N is

a suitable constant); and outputting the circuit with the best

fitness value. This approach is suitable for complex circuits

(thousands of gates or more) in which modifying all the gates

could be very time consuming.

F. Embedding the Heuristic into CGP

Providing a single approximate circuit is not usually the

most valuable output of approximate circuit design methods.

Designers are looking for various tradeoffs among the design

objectives. In order to find approximate circuits for every

possible number of gates, the proposed approximate circuit

design flow will call CGP several times. We have developed

two approaches for embedding the heuristic into CGP in order

to obtain approximate circuits containing n−1, n−2, . . . , 2, 1
gates. Together with the random population seeding, we thus

propose and compare the following three scenarios for seeding

the initial populations of CGP.

• RS – All initial populations are randomly generated.

• HS1 – Heuristic seeding, according to Section III-E, in

which the best result of CGP containing m gates is

used by the heuristic to build a new seed containing

m − 1 gates. Applying HS1 means that each CGP run

is, therefore, interleaved by a single run of the heuristic

procedure removing just one gate from the best evolved

solution.

• HS2 – Heuristic seeding, according to Section III-E, in

which the heuristic is applied iteratively on its previous

result in order to build a set of seeds containing n−1, n−
2, . . . , 1 gates. This means that all requested seeds are

firstly generated by the heuristic and independent CGP

runs are then initialized using the created seeds.

The initial, fully functional solution which the heuristics HS1

and HS2 begins with is a conventional implementation of

target circuits.

IV. EXPERIMENTAL RESULTS

Several papers have addressed the evolutionary design of

small combinational parallel w-bit multipliers with the goal of

minimizing the number of gates (see, e.g. [30], [33]). This task

is considered as a very difficult benchmark for evolutionary

circuit design methods; much harder than the evolution of
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Fig. 2. Error of the randomly generated seeds (left column) and error of the evolved solutions (right column) for 2-bit, 3-bit and 4-bit approximate multiplier
in the RS scenario.

adders, multiplexers or parity circuits. Hence results competi-

tive with conventional synthesis algorithms were reported for

up to 4-bit multipliers. This section extends these results by

considering approximate versions of the multiplier circuits.

Moreover, it presents a comparison of the proposed single

objective CGP with MOEA. The second case study deals with

the synthesis and optimization of approximate median circuits

with 9 inputs (9-median, for short) and 25 inputs (25-median)

working over 8 bits. Results will be reported for every possible

number of gates (components) in order to show all available

tradeoffs.

A. Approximate Multipliers

The goal of CGP is to design a multiplier showing the

lowest possible error for a given number of gates. The error

is expressed according to Eq. 1. The CGP parameters are

initialized as follows: nr = 1, l = nc, λ = 4, h = 5%, and

Γ = {BUF, NOT, AND, OR, XOR, NAND, NOR, XNOR},

where BUF stands for an identity function. The setting of the

CGP parameters is based on experiments conducted in our

previous research [10]. The evolutionary algorithm stops when

the predefined number of generations gmax is exhausted. All

the experiments were performed on a cluster of computation

nodes equipped with Intel Xeon processors running at 3 GHz.

CGP, seeded by the RS strategy, is applied as follows. Let

nbst be the number of two-input gates required to implement

a conventional fully functional multiplier. All experiments

were conducted for nbst = 7, 23 and 59, corresponding to

the 2-bit, 3-bit and 4-bit multiplier constructed according to

the conventional Ripple-Carry-Array-Multipliers. For each w-

bit multiplier, we performed nbst independent experiments

consisting of 50 independent CGP runs each. The parameter

nc = nbst, nbst−1, . . . , 1 is used in these experiments. The ini-

tial population is always randomly generated. The maximum

number of generations is limited to gmax = 800 ·106, 500 ·106

and 350 ·106 for the 4-bit, 3-bit and 2-bit multiplier (which is
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Fig. 3. Error of the seeds (left column) and error of the evolved solutions (right column) for 4-bit approximate multiplier in HS1 (top) and HS2 (bottom)
scenarios.

consistent with [30]), corresponding to a single evolutionary

run of 24 hours, 3 hours and 50 minutes, respectively.

In the case of the HS1 and HS2 strategies, all the evolu-

tionary runs of the first experiment (when nc = nbst − 1)

are seeded with the same initial circuit obtained from a

conventional solution by removing exactly one gate. Seeding

the initial population means that the number of generations can

be reduced (see below). Hence we chose gmax = 200 · 106,

100 · 106 and 100 · 106 for 4-bit, 3-bit and 2-bit multiplier,

respectively. The corresponding runtime of a single CGP run

is 2 hours, 30 minutes and 30 minutes, respectively.

1) Random Seeding: Figure 2 depicts fitness values of the

randomly generated seeds and resulting fitness values at the

end of evolution for all approximate multipliers in all runs. The

column on the left in Figure 2 shows that the fitness values

of seeds are distributed similarly for all problem instances,

independently of the number of gates. The fitness values

of evolved circuits (the right column) are one order of the

magnitude smaller than in the case of the seeding circuits.

However, the errors are still relatively high, especially for

the 4-bit multiplier. With decreasing amount of resources, the

spread of fitness values becomes smaller.

One can observe that the mean fitness fmean of the initial

seed (calculated over all runs) is practically independent of

the number of available gates for a given multiplier. In

additional experiments, we analyzed this phenomenon in detail

for various multipliers and adders. Table I gives the mean

relative error

ǫmrt =
fmean

2ni(2no − 1)
(2)

of randomly generated circuits consisting of one gate (nc = 1)

and nbst gates. It seems that ǫmrt ≈ 25% is a reasonable

error estimation, not only for multipliers, but also for other

approximate arithmetic circuits such as adders that are ran-

domly generated using the proposed method, independently of

the number of used gates. This is an important experimental

outcome which should help to establish the initial error of any

approximation of small combinational circuits performed by

means of CGP.

TABLE I
RELATIVE ERROR ǫmrt [%] FOR VARIOUS BIT WIDTHS w AND DIFFERENT

NUMBER OF CGP COLUMNS nc FOR TWO SELECTED ARITHMETIC

CIRCUITS (200 INDEPENDENT RUNS)

multiplier adder

w nc = 1 nc = nbst w nc = 1 nc = nbst

2 30.440 23.702 2 18.566 20.477
3 28.943 23.877 3 18.671 22.431
4 28.434 24.090 4 19.467 22.439
5 28.540 25.246 5 19.856 23.100
6 28.874 25.531 6 20.774 23.145
7 29.339 25.628 7 21.609 23.780
8 29.498 25.426 8 22.453 24.063

2) Heuristic Seeding: Because the HS1 strategy starts with

already pre-optimized circuits, it can provide seeds which are

very close to resulting circuits (Figure 3, above). Contrasted

to a very large spread of error values in RS (Figure 2, right

column), it can be seen in HS1 that the CGP runs often

converge to one or two fitness values (errors). This is valuable

for practice because it means that a single run almost always
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Fig. 4. Convergence curves for the best 4-bit multipliers in all 50 evolutionary
runs (nc = 58, RS strategy).

provides a high-quality solution. The quality of seeding by

HS2 is 2–4 times worse as all seeds are generated before the

CGP is employed and no intermediate results from CGP can

influence the HS2 procedure (the y-axis in Figure 3, bottom

left). The CGP runs converge to several solutions with different

fitness values (errors). However, in both cases the error of

the generated seeds is significantly lower than the error of

the randomly generated seeds (see last row of Figure 2 and

Figure 3).

3) Convergence Curves: Figures 4 and 5 show convergence

curves of all runs in the case where the 4-bit multiplier can

utilize 58 gates (nbst = 59). Random seeding leads to long

convergence times (the best fitness value f stagnates after

104 generations) and relatively high errors (see the y-axis of

Figure 4). The HS1 strategy starts with error f=128 and ends

up with error f=32 in most cases (see the y-axis of Figure 5).

The average error at the end of evolution seeded by RS is

approximately 50 times higher than in the case of the HS1

strategy.
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Fig. 5. Convergence curves for the best 4-bit multipliers in all 50 evolutionary
runs (nc = 58, HS1 strategy).

4) Overall Comparison: Figure 6 compares the best so-

lutions obtained in scenarios RS, HS1, and HS2 for 3-bit

and 4-bit approximate multipliers. We also included the best

results obtained from 50 independent runs of MOEA which

was seeded randomly (MOR) and, in another series of 50 runs,

using conventional implementations of multipliers (MOB).

The utilized MOEA implements NSGA-II according to [26],
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Fig. 6. Error of the best 3-bit (top) and 4-bit (bottom) approximate multi-
pliers obtained by the proposed seeding strategies and in the multiobjective
optimization scenario (MOR, MOB).

and employs a 50-member population. In order to allow the

same number of evaluations as in the proposed CGP, gmax =
40 ·106 and 64 ·106 for 3-bit and 4-bit multiplier, respectively,

in the case of random seeding. The number of generations was

decreased to gmax = 8 ·106 and 16 ·106 in the case of seeding

by conventional implementations.

While performance of all the methods is similar on the 3-bit

multiplier, HS1 and HS2 seeding strategies clearly outperform

RS and both MOEAs in terms of quality of results on the

4-bit multiplier. The gap is significant, especially when 60–

90% gates remain in the circuit, which is a typical situation

in practice.

Another improvement is in terms of time: RS requires 15

times more generations to reach a solution of the same quality

as HS1 and HS2.

A detailed analysis of the best evolved approximate circuits

revealed that a circuit containing k gates can exhibit a higher

error than a circuit containing k − 1 gates (see, for example,

the small peak in the fitness function for circuits containing 16

gates and 17 gates in Figure 6, HS1, w = 4). In practice, the

circuit containing 16 gates should be taken, even if 17 gates are

allowed. There are two explanations for this behavior. Either

the evolutionary algorithm did not find a better solution for

17 gates under our setup or a better solution for 17 gates does

not exist at all.

5) Power Consumption vs. Error vs. Area: Using the SIS

software [25] we calculated dynamic power consumption and

delay for the best fully functional conventional as well as

evolved multipliers (Table II) which will be serving as refer-
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ence solutions in the following comparisons. The calculations

are valid for the MCNC library [25], Vdd = 5 V and 20 MHz.

The relative area of the used gates is: INV-A 0.67, BUF 0.0,

NAND2 and NOR2 1.00, AND2 and OR2 1.33, XOR2 2.00,

XNOR2 1.66. The sum of relative areas of gates connected into

a particular circuit will be denoted ‘area’ and will represent

the total circuit area relatively to the area of a single NAND

gate in the following text.

TABLE II
PARAMETERS OF THE BEST FULLY FUNCTIONAL MULTIPLIERS

power [uW] area [-] delay [ns]

w nc best worst mean best worst mean best worst mean

2 7 44.5 65.3 51.5 ± 5.2 8.3 10.7 9.4 ± 0.8 4.8 13.5 8.4 ± 1.8

3 23 220.4 248.9 235.9 ± 8.4 32.3 34.6 33.1 ± 0.7 20.9 26.8 24.3 ± 1.4

4 59 790.1 1425.4 1119.6 ± 193.3 83.9 87.5 86.2 ± 1.3 47.8 55.0 50.5 ± 2.5

Power consumption and error of the best evolved approx-

imate 2-bit multipliers are analyzed for a given number of

gates in Figure 7. Power consumption is given relatively

to the best conventional solution from Table II. The 7-gate

implementations are fully functional. It makes no sense to

choose a 6-gate (3-gate, respectively) implementation because

the same error can be obtained using a 5-gate (2-gate, respec-

tively) implementation. The evolved 5-gate solution (error =

2) is identical (in terms of structure as well as parameters)

with the approximate 2-bit multiplier discovered manually

in [3] (see Section II-A2). Contrasted to 7-, 6-, 4- and 3-

gate implementations, there is only one (we believe that truly

optimal) unique solution in terms of power consumption and

error composed of 5 gates.

Figures 8 and 9 show power consumption and error of the

best evolved 3-bit and 4-bit approximate multipliers. A general

observation is that the amount of different implementations

(and spread of power consumption) decreases with reducing

available resources.
6) Comparison With Other Approximate Multipliers: We

rediscovered the manually created 2-bit approximate multiplier

consisting of 5 gates (it is denoted M2 in Table III) [3].

Contrasted to the manual design we were able to find very

good approximate 4-bit multipliers using CGP (see E4a and

E4b in Table III). In order to demonstrate the quality of the

evolved solutions, we composed (by the method introduced

in [3]) larger approximate multipliers (4-bit, 8-bit and 16-bit)

using M2, E4a and E4b. The approximate multipliers E4a and

E4b were included in the table because they match the number

of gates (47 in the case of E4a) and the average error (1.23%

in the case of E4b) of the 4-bit approximate multiplier (C4)

composed of M2 multipliers.

Table III gives the resulting area and error of the chosen

approximate multipliers. The errors are given relative to the

corresponding maximum values. The maximum value of the

worst case error as well as average error is equal to emax =
22w − 1. The average error is the total error (as defined in

Eq. 1) averaged over all 22w inputs.

Approximate multipliers composed of evolved approximate

4-bit multipliers show a better tradeoff between the area

and error than approximate multipliers composed of M2. For

example, the 8-bit multiplier (E8a) composed of evolved 4-bit

multipliers E4a exhibits the average error 0.32%, while the

average error of the 8-bit multiplier (C8) composed of M2 is

1.38%. Moreover, the worst case error of E8a is 5 times lower.

Both 8-bit multipliers, however, consists of 276 gates. A more

compact implementation E8b (208 gates) shows an average

error of 1.28%, which is even better than C8 can provide.
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Fig. 7. Power consumption and error of the best evolved approximate 2-bit
multipliers for a given number of gates. The mean power reduction is shown
as dotted line.
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Fig. 8. Power consumption and error of the best evolved approximate 3-bit
multipliers for a given number of gates.
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Fig. 9. Power consumption and error of the best evolved approximate 4-bit
multipliers for a given number of gates.

Our results are hardly comparable with the SASIMI method,

because SASIMI employs a different technology library
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TABLE III
PARAMETERS OF MANUALLY CREATED AND EVOLVED APPROXIMATE

MULTIPLIERS FOR LARGER BIT-WIDTHS (w)

Code w gates worst err. error prob. average err. area delay [ns]

M2 2 [3] 5 13.33% 0.06 0.83% 6.7 5.3

C4 4 47 19.61% 0.19 1.23% 71.2 38.9

C8 8 276 22.05% 0.47 1.38% 427.4 93.5

C16 16 1288 22.22% 0.81 1.39% 2006.5 184.3

Code w gates worst err. error prob. average err. area delay [ns]

E4a 4 47 3.92% 0.17 0.28% 66.2 34.4

E8a 8 276 4.41% 0.45 0.32% 407.3 87.8

E16a 16 1288 4.44% 0.81 0.32% 1926.3 178.7

Code w gates worst err. error prob. average err. area delay [ns]

E4b 4 30 7.06% 0.77 1.23% 41.9 27.4

E8b 8 208 7.94% 0.98 1.28% 310.2 81.4

E16b 16 1016 8.00% 0.99 1.29% 1537.9 172.2

and applies various technology-dependent operations such as

downsizing of gates, which allows for an additional area

reduction. For example, an 8-bit multiplier initially consisting

of 1055 gates was processed by SASIMI which resulted in a

37% area reduction (it roughly corresponds to an approximate

multiplier consisting of 664 gates) and the average error of

0.32% [7]. For the same average error, our 8-bit approximate

multiplier E8a consists of 276 gates only. It thus exhibits a

reduction of 13% of gates in comparison with a different initial

implementation containing 319 gates.

B. Approximate Median Circuits

As it is intractable to evaluate all possible input combina-

tions (2569 and 25625 vectors) for candidate median circuits,

we randomly generated 104 training vectors for the 9-median

circuit and 105 vectors for the 25-median circuit. These

values were selected according to Table IV which shows the

average deviation of the error if a certain number of randomly

generated test vectors is applied to evaluate the quality of these

circuits. In order to eliminate the dependency on a certain

solution, 10 evolved median circuits utilizing 50% of the

resources were used. Each circuit was evaluated using a set of

10 different randomly generated test vectors. It can be seen that

if we apply multiple times at least 104 test vectors to evaluate

the error of the 9-median circuit, the obtained deviation is less

than 1%.

CGP operates with parameters nr = 1, l = nc, λ = 4,

h = 5%, and Γ = {BUF, MIN, MAX}. All components and

connections are defined over 8 bits. Fully functional imple-

mentations with nbst = 37 for the 9-median and nbst = 221
for the 25-median were constructed using the bitonic sorter

algorithm [34]. The number of generations of the RS-based

TABLE IV
RELATIVE ERROR DEVIATION OF 10 EVOLVED MEDIAN CIRCUITS FOR

VARIOUS NUMBERS OF TEST VECTORS

# test vectors

problem 10 10
2

10
3

10
4

10
5

10
6

10
7

9-median 62.82% 13.24% 3.98% 0.98% 0.48% 0.15% 0.01%

25-median 46.41% 10.22% 2.28% 1.11% 0.30% 0.10% 0.01%

CGP is limited by gmax = 3 · 106 for the 9-median and

gmax = 300 · 103 for the 25-median which corresponds to

3 hour CGP runs in both cases. CGP exploiting HS1 and HS2

utilized only 1/3 of the previously mentioned time budget.

Each CGP run is repeated 50 times.

1) The Role of Seeding: The randomly seeded CGP led to

fully functional solutions for the 9-median while no correct

solution was discovered for the 25-median. It seems that solv-

ing the 25-median design problem from scratch is impossible

for any evolutionary algorithm based on a direct encoding.

Although CGP could utilize up to nbst = 221 components, the

most complex circuits only use 106 components (Figure 10).

In order to investigate this phenomenon, we conducted an

another experiment and seeded CGP by randomly created

circuits that utilize all 221 components, but most of them

were disconnected in the course of evolution, thus reaching

106 components again.

Figure 10 shows the fitness values of all randomly created

circuits and the resulting evolved approximate median circuits.

Compared to the multiplier problem, the error values of the

randomly generated circuits are not distributed uniformly.
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median circuits obtained by the proposed strategies.
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Fig. 10. Error of the seeds (left column) and error of the evolved solutions (right column) for 9-input (top) and 25-input (bottom) median circuit.

The effect of RS, HS1 and HS2 seeding strategies is com-

pared in Figure 11 which gives the error of the best evolved

solution for a given number of components. All strategies

perform almost identically for the 9-median when the number

of components is lower than 20. RS is clearly outperformed

by HS1 for the 25-median. We can again observe the situation

in which a circuit containing k components exhibits a higher

error than a circuit containing k − 1 components.

2) Best Approximate Median Circuits: Power consumption,

area and delay of the best evolved fully functional solutions

are summarized in Table V. These circuits are composed of

8-bit subcomponents: minimum and maximum. Each of them

is represented as a netlist containing the gates presented in

Section IV-A5. All the circuit parameters were obtained from

the SIS tool. Power consumption is given for 320 thousand

randomly generated input vectors.

TABLE V
PARAMETERS OF THE BEST CONVENTIONAL MEDIAN CIRCUITS

power [mW] area [-] delay [ns]

w nc best worst mean best worst mean best worst mean

9 31 10.8 12.9 12.6 2314.2 2836.7 2750.8 285.9 429.7 295.1

25 221 72.4 72.4 72.4 16497.7 16497.7 16497.7 539.5 539.5 539.5

Figures 12 and 13 show power consumption and error of

the best evolved approximate median circuits. The error is

calculated using 106 test vectors. Power consumption is given

relatively to the fully functional circuit showing the lowest

power consumption.

Median circuits are very good examples of circuits for

which it makes sense to introduce their approximate versions.

The mean error remains relatively low, even for significant

reductions of available gates. Hence significant improvements

in energy consumption are obtained.
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Fig. 12. Power consumption and error of the best evolved approximate 9-
median for a given number of components.

V. DISCUSSION AND CONCLUSIONS

The proposed method and experimental results can be

interpreted from several points of view. Firstly, the proposed

method is a new systematic method for the design of ap-

proximate circuits. Its main contribution lies in the ‘area’

rather than the ‘error’ oriented approach to approximate circuit

design which enables the user to comfortably control the used

resources. It is useful, for example, when an image filter has

to be approximated because the conventional implementation

does not fit in the available space on a chip. The method

works at the logic level and no special technology-oriented

techniques (such as downsizing of gates) were considered
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Fig. 13. Power consumption and error of the best evolved approximate 25-
median for a given number of components.

during our experimental evaluation. Secondly, because the

method is based on evolutionary computation, it can naturally

provide more tradeoffs than current methods based on man-

ual modifications of existing designs or reusing conventional

synthesis tools. Thirdly, we evolved new approximate imple-

mentations of key circuits (multipliers, median computing cir-

cuits) which can immediately be used in various applications.

These circuits, together with approximate adders and other

approximate combinational circuits presented in our previous

work [10], demonstrate that the CGP-based method is suitable

for approximate circuits design. Fourthly, we have shown that

the proposed method can easily be extended from the gate

to the functional level evolution. Conventional methods (such

as SALSA and SASIMI) work at the bit level only and hence

they cannot be applied to directly approximate circuits such as

the median. Fifthly, we provided detailed analyses of selected

features of CGP, particularly the population seeding, which

had not been done before.

Our initial assumption that the power consumption is highly

correlated with area (see Section III-A) and that the proposed

methodology can be based on reducing the number of gates

was positively confirmed. Figure 14 shows the dependence

for evolved multipliers. By considering the area (amount of

gates) only, without calculating power consumption for every

candidate circuit, we obtained very good approximations in a

relatively short time.

Experimental results confirmed the superiority of heuristic

seeding of the initial population over random seeding. The

benefits are not only in improving the quality of evolved

circuits, but also in reducing the time of optimization. Another

advantage is that each run of CGP seeded by the HS1

strategy provides a high-quality solution. For more complex

problem instances (such as the 25-median), the randomly

seeded standard CGP did not provide satisfactory results. A

suitable seeding approach thus remains a method to overcome

this limitation.

The execution time is certainly the most critical disadvan-

tage of the proposed method. It mainly depends on the number

of inputs and size of the circuit. When a suitable seeding of the

initial population is available, then CGP runtimes are typically

in the order of tens of minutes on a common desktop computer.

As no execution times were reported for SASIMI, we give the
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Fig. 14. Relation between the number of gates and power consumption (top)
and delay (bottom) for all evolved approximate 4-bit multipliers.

execution times of SALSA which, on a server with an AMD

Opteron 6176 (2.29 GHz) processor, ranged from 4 minutes

to 2.5 hours depending on the circuit complexity.

Our future research will be focused on applying selected

approaches (such as incremental evolution, functional equiv-

alence checking) introduced to eliminate the scalability prob-

lems of evolutionary circuit design to evolutionary design

methods intended for approximate circuits. We believe that

the notion of approximate computing offers new applications

for genetic programming (such as a design of underdesigned

software for embedded systems) which should be explored in

future research.
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