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Abstract—A genetic programming-based circuit synthesis
method is proposed that enables to globally optimize the number
of gates in circuits that have already been synthesized using
common methods such as ABC and SIS. The main contribution is
a proposal for a new fitness function that enables to significantly
reduce the fitness evaluation time in comparison to the state of the
art. The fitness function performs optimized equivalence checking
using a SAT solver. It is shown that the equivalence checking
time can significantly be reduced when knowledge of the parent
circuit and its mutated offspring is taken into account. For a cost
of a runtime, results of conventional synthesis conducted using
SIS and ABC were improved by 20-40% for the LGSynth93
benchmarks.

I. INTRODUCTION

Recent works on logic synthesis have shown that commonly

used logic synthesis algorithms are not capable of efficient

synthesis for some circuit classes, especially for large circuits

and circuits containing hard-to-synthesize substructures [1].

The area of the synthesized circuits is of orders of magnitude

higher than the optimum.

While synthesis of some large circuits can efficiently be

accomplished using advanced decomposition and hierarchi-

cal techniques (see e.g. recent work on large-scale Boolean

matching [2]), evolutionary algorithms have been adopted to

synthesize circuits that are difficult for conventional synthesis

[3]. As evolutionary synthesis allows for any transform to be

performed over circuit representation it can implicitly discover

compact circuit structures unreachable using conventional syn-

thesis. Koza has reported tens of human-competitive results

in various areas of science and technology obtained auto-

matically using evolutionary design techniques, in particular

using genetic programming [4]. This approach has mainly been

adopted for analog circuit design [5], [6]. In case of digital

logic synthesis, the evolutionary synthesis has led to innovative

designs only for small circuits (with up to 8–12 inputs) mainly

because of very time consuming and so non scalable fitness

evaluation [7], [8]. Note that in a typical scenario, all possible

assignments to the inputs have to be applied in order to

evaluate a candidate circuit. In summary, evolutionary circuit

design can produce quite compact designs for a cost of a

runtime, whereas conventional synthesis (such as ABC or

SIS) gets quickly stuck in a local optimum. Unfortunately,

the currently used evolutionary approaches are not scalable.
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In this paper, we propose a genetic programming-based

circuit synthesis method that enables to globally optimize the

number of gates in circuits that have already been synthesized

using common methods such as ABC and SIS. We propose

and compare two techniques allowing a significant acceleration

of the fitness evaluation of a candidate logic design even for

large circuits. Both methods utilize an equivalence checking

algorithm to decide whether a candidate circuit is functionally

equivalent or not. This operation is performed using a SAT

solver. The methods differ in construction of the set of clauses

that are submitted to the SAT solver. It is shown that the

equivalence checking time can significantly be reduced when

knowledge of the mutation operator is taken into account (the

idea is that the parent circuit and its offspring created using the

mutation operator share many subcircuits, i.e. in order to check

their functional equivalence it is sufficient to check whether

their non-shared subcircuits are functionally equivalent).

Apart from the synthesis of conventionally hard to synthe-

size circuits the method can be used to reduce the number of

gates in already synthesized circuits. Experimental evaluation

which has been performed using the LGSynth93 benchmark

suite shows that the proposed method can significantly reduce

the number of gates in circuits synthesized using ABC or

SIS. For the cost of runtime, genetic programming is able

to produce compact circuits that conventional synthesis is not

able to reach.

II. CARTESIAN GENETIC PROGRAMMING

Cartesian Genetic Programming (CGP) is a widely-used

method for evolution of digital circuits and programs [9].

A candidate entity (circuit) is modeled as an array of nc

(columns) × nr (rows) of programmable nodes (gates). The

number of inputs, ni, and outputs, no, is fixed. Each node

input can be connected either to the output of a node placed

in the previous l columns or to one of the circuit inputs.

Feedback is not allowed. Each node is programmed to perform

one of na-input functions defined in the set Γ (nf denotes |Γ|).
Each node is encoded using three integers (x, y, z) where x

denotes the index for the first input, y denotes the index for

the second input and z is the function code. While the size

of chromosome is fixed, the size of phenotype is variable (i.e.

some nodes are not used). Every individual is encoded using

nc × nr × (na + 1) + no integers.



CGP utilizes evolutionary strategy ES(1 + λ) that operates

with the population of 1 + λ individuals. The initial solution

(the seed) is constructed either randomly or by means of map-

ping of the circuit obtained from conventional synthesis (and

specified e.g. in the BLIF format) to the CGP representation.

The fitness value of a candidate circuit is traditionally

defined in CGP as fitness = B + (ncnr − z), where B

is the number of correct output bits obtained as response

for all possible assignments to the inputs, z denotes the

number of gates utilized in a particular candidate circuit and

nc.nr is the total number of gates available. The last term

ncnr − z is considered only if the circuit behavior is perfect,

i.e. B = no2
ni . This approach is not scalable because of

exponentially growing evaluation time with respect to the

number of inputs.

III. PROPOSED METHOD

A. Overview

The proposed method starts with the circuit synthesis using

a conventional synthesis algorithm. From the conventional

and routinely used synthesis methods we have chosen the

SIS [10] tool (version sis1.2) which provided in most cases

better results than the ABC tool [11] (version abc70930) – see

Table IV. The tools were applied with the standard setting. In

order to improve their results it is usually useful to apply them

on their own results iteratively [11].

The result of conventional synthesis is converted to the CGP

representation and used to seed the initial population of CGP.

The fitness calculation carried out by proposed method differs

from the traditionally used formula. Instead of evaluating all

possible assignments to the inputs, the candidate circuit is

verified against the reference circuit (the result of conventional

synthesis) as described in Section III-B.

B. Fitness Calculation

Since the satisfiability (SAT) solvers were improved during

the last few years, the SAT-based equivalence has been used.

In this case, the circuits to be checked are transformed into one

Boolean formula which is satisfiable if and only if the circuits

are functionally equivalent [12]. The SAT solvers assume that

the equivalence checking problem is expressed using Boolean

formula ϕ in conjunctive normal form (CNF).

For our purposes, the most suitable transformation of the

circuit to CNF is represented by Tseitin’s algorithm proposed

in [13]. Each gate is converted to the CNF according to the

equations given in Table I.

TABLE I
CNF REPRESENTATION OF SOME COMMON GATES

Gate Corresponding CNF representation

y = NOT(x1) (¬y ∨ ¬x1) ∧ (y ∨ x1)
y = AND(x1, x2) (y ∨ ¬x1 ∨ ¬x2) ∧ (¬y ∨ x1) ∧ (¬y ∨ x2)
y = OR(x1, x2) (¬y ∨ x1 ∨ x2) ∧ (y ∨ ¬x1) ∧ (y ∨ ¬x2)
y = XOR(x1, x2) (¬y ∨ ¬x1 ∨ ¬x2) ∧ (¬y ∨ x1 ∨ x2)∧

(y ∨ ¬x1 ∨ x2) ∧ (y ∨ x1 ∨ ¬x2)
y = NAND(x1, x2) (¬y ∨ ¬x1 ∨ ¬x2) ∧ (y ∨ x1) ∧ (y ∨ x2)
y = NOR(x1, x2) (y ∨ x1 ∨ x2) ∧ (¬y ∨ ¬x1) ∧ (¬y ∨ ¬x2)

Let CA and CB be combinational circuits, both with k

inputs denoted as x1 . . . xk and m outputs denoted as y1 . . . ym

and y′

1
. . . y′

m respectively. For SAT based equivalence check-

ing of two circuits, corresponding primary outputs yi and

y′

i are connected using the XOR-gate. The corresponding

primary inputs are connected as well. The goal is to obtain

one circuit that has only k primary inputs x1 . . . xk and m

primary outputs z1 . . . zm, zi = XOR(yi, y
′

i). In order to

disprove the equivalence, it is necessary to identify at least

one XOR-gate which evaluates to 1 for an input assignment,

i.e. it is necessary to find an input assignment for which the

corresponding outputs yi and y′

i provide different values and

thus zi = 1. This can be done by checking one output zi

after another (i.e. a CNF is created and solved for each output

separately) or by the all outputs approach (all outputs are

connected using the m-input OR gate; thus one CNF is created

and solved only).

Assume that C is a k-input/m-output circuit composed of

n gates and the goal is to reduce the number of gates. The

first step involves creating a reference solution by converting

C to the corresponding CNF ϕ1 using the approach described

above. The fitness calculation consists of the following steps.

A new instance of the SAT solver is created and initialized

with the reference circuit. Then, a candidate solution is

transformed to a list of clauses that are submitted into the

SAT solver. The transformation includes reading the CGP

representation according to the indexes of the nodes. If a

node contributes to the phenotype, it is converted to the

corresponding CNF according to Table I, otherwise it is

skipped. In the next step, a miter circuit is created. This

step requires to apply the XOR gate to each output pair and

combine the XOR outputs by m-input OR gate. Finally, the

SAT solver determines whether the submitted set of clauses is

satisfiable or not. If the CNF is satisfiable, the fitness function

returns 0 (the candidate circuit and the reference circuit are not

equivalent); otherwise the number of utilized gates is returned.

C. Improved Equivalence Checking

One of the hardest cases is the equivalence checking of the

combinational multipliers where the time needed to decide

whether two multipliers are functionally equivalent is enor-

mous even for instances with operands of modest size. In order

to improve the performance of SAT solvers in this particular

case, various techniques have been proposed in literature.

A common goal of the proposed techniques is to modify

(preprocess) the input CNF instance in order to decrease the

proving effort of the SAT solver. For example, a preprocessing

tool which derives implications according to the computed

implication graph is proposed in [14].

In order to shorten the decision time in our case, we have

proposed a new approach which utilizes knowledge of the dis-

similarities between the reference circuit and checked circuit

to reduce the size of CNF instance. Because the evolutionary

approach is based on the modify-and-test approach, we can

easily determine the difference between the parent individual

and its modified (mutated) version during the mutation phase



Fig. 1. Construction of the miter circuit (c) from the reference circuit (a) and modified (mutated) circuit (b)

(i.e. no additional processing to determine the dissimilarities

is required). The proposed extension of the previous algorithm

works as follows. We can construct a set ∆ that contains the

indexes of modified primary outputs or the indexes of such

gates where at least one gene has been modified. An example

of the reference circuit and modified circuit is shown in Fig 1.

Here, ∆ = {7} because the second input of gate 7 has been

modified. Then, we can calculate auxiliary sets ∆e and ∆r.

The ∆e set contains the indexes of all the gates and outputs in

the mutated circuit which are directly or indirectly connected

to the outputs of the gates of ∆. The ∆r set contains the

indexes of all the gates in the reference parental circuit that

contribute to any of the outputs listed in ∆e. According to

the knowledge of ∆e and ∆r, we can construct a set ∆f

containing the indexes of all the gates of mutated circuit that

have to be included to CNF. All the sets can be constructed in

linear time. In our example ∆e = {7, 9, x}, ∆r = {4, 6, 7, 9}
and ∆f = {9, 7, 5}. Finally, the SAT solver is applied on the

clauses representing all the gates that are included in ∆r and

∆f , and only those outputs that are in ∆e. In our example,

the final circuit consists of 8 gates (7 + 1 XOR). This is a

significant reduction with respect to the approach described in

Section III-B that led to 17 gates (14 + 2 XOR + 1 OR).

IV. RESULTS

In order to compare the time of evaluation for standard

fitness function tCGP , the proposed SAT-based fitness function

tsat (Section III-B) and the improved SAT-based fitness func-

tion timp (Section III-C), the problem of the combinational

multiplier optimization has been chosen. Further experiments

were performed using the LGSynth93 benchmark set (only

circuits with more than 20 inputs were considered).

The CGP parameters are as follows: λ = 2, Γ =
{BUF,NOT,AND,OR,XOR,NAND,NOR,XNOR}, l =
Ng , 1 mutation/chromosome, nc = Ng and nr = 1 where

Ng is the number of gates of the reference (seed) circuit, i.e.

in the circuit created using conventional synthesis. The circuits

were mapped to the 2-input gates using SIS. The experiments

were carried out on a cluster consisting of Intel Xeon X5670

2.4GHz processors using the Sun Grid Engine that enables

to run the experiments in parallel. The MiniSAT 2 (version

070721, http://minisat.se) has been used as a SAT solver.

A. Fitness Evaluation Time

Table II gives the mean evaluation time for the three fitness

functions. The results were obtained from fifty 10-minute

independent runs of CGP in the task of w-bit combinational

multiplier evolution. The size of the initial circuits (seed) that

were synthesized using the SIS tool, is given in the Ng column.

In the last column, we can observe a significant speedup

achieved using the improved SAT-based fitness function.

B. LGSynth93 Benchmarks

The improved CNF construction (as described in Sec-

tion III-C) enables very fast evaluation of candidate solutions.

Hence more generations can be produced by CGP and thus

more compact designs can be discovered within a given time.

This phenomenon has been confirmed using the LGSynth93

benchmarks. Table III compares the number of gates obtained

after 3 and 12 hours of optimization using the SAT-based

fitness function (Ngsat) and improved SAT-based fitness func-

tion (Ngimp). The results clearly show the more runtime

available, the more compact circuits obtained in comparison to

the reference circuit (the Ng column) synthesized using SIS.

The Ne columns give the mean number of evaluations which

has been performed within a given time limit. The results were

obtained from fifty independent runs of CGP.

Figure 2 shows convergence curves for two selected bench-

mark circuits – apex1 (the largest one) and ex4p (the highest

number of inputs). We can observe that the improved SAT-

based fitness function exhibits better convergence in compar-

ison with the common SAT-based fitness function.

Table IV contains the best results obtained using the non-

commercial and commercial tools. We have used the standard

settings for the tools and technology library with the same set

of gates as CGP. It can be seen that the commercial synthesis

tools provide results that are comparable with the noncommer-

cial synthesis tools such as ABC and SIS. The results from

SIS and ABC were obtained by iterative application of the

synthesis script (1000 iterations). None of the tools provide

better result than CGP (when CGP is seeded using the first

result provided by SIS) with the exception of apex5 where the

number of gates is very similar.

TABLE II
THE MEAN EVALUATION TIME IN MILLISECONDS FOR THREE FITNESS

FUNCTIONS IN THE TASK OF w-BIT MULTIPLIER EVOLUTION.

w PI PO Ng tcgp tsat timp tsat/timp

7 14 14 238 8 1 4 0,3
8 16 16 416 45 250 8 33,1
9 18 18 540 183 1 789 17 105,4
10 20 20 680 901 6 431 44 146,0
11 22 22 836 n/a 316 333 88 3 607,8



TABLE III
THE MIN. NUMBER OF GATES OBTAINED USING THE SAT-BASED FITNESS FUNCTION (Ngsat) AND IMPROVED SAT-BASED FITNESS FUNCTION (Ngimp)

FOR THE LGSYNTH93 BENCHMARKS. THE Ne COLUMNS GIVE THE MEAN NUMBER OF EVALUATIONS IN MILLIONS.

3h runtime 12h runtime

circuit PI PO Ng Ngsat Ngimp impr. Nesat Neimp speedup Ngsat Ngimp impr. Nesat Neimp speedup

apex1 45 45 1408 1179 946 20% 0,22 0,50 2,3 921 847 8% 0,22 0,49 2,2
apex2 39 3 235 104 93 11% 2,66 10,04 3,8 98 90 8% 3,20 10,77 3,4
apex3 54 50 1405 1280 1099 14% 0,23 0,54 2,4 1167 1038 11% 0,21 0,52 2,5
apex5 117 88 784 675 618 8% 0,93 2,22 2,4 633 613 3% 1,02 2,21 2,2
cordic 23 2 67 32 32 0% 10,44 17,46 1,7 32 32 0% 13,59 17,84 1,3
cps 24 109 1128 870 643 26% 0,32 0,81 2,5 698 585 16% 0,36 0,80 2,2
duke2 22 29 430 286 264 8% 0,98 1,79 1,8 268 260 3% 1,22 1,92 1,6
e64 65 65 192 133 138 -4% 3,52 2,39 0,7 129 129 0% 3,37 2,46 0,7
ex4p 128 28 500 404 368 9% 1,69 6,79 4,0 394 349 11% 1,96 7,08 3,6
misex2 25 18 111 76 73 4% 8,48 12,28 1,4 70 71 -1% 9,97 13,36 1,3
vg2 25 8 95 79 80 -1% 6,23 5,83 0,9 74 78 -5% 5,09 5,83 1,1
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Fig. 2. Convergence curves for the apex1 and ex4p benchmarks. The mean,
minimum and maximum number of gates from 50 independent runs of CGP
for two variants of fitness function.

TABLE IV
THE MIN. NUMBER OF GATES OBTAINED USING THE NONCOMMERCIAL

TOOLS (SIS, ABC), COMMERCIAL TOOLS (C1,C2,C3) AND THE

PROPOSED METHOD.

circuit SIS ABC C1 C2 C3 CGP impr.

apex1 1394 1862 1439 1272 1368 847 33,4%
apex2 151 225 221 195 299 90 40,4%
apex3 1405 1737 1494 1332 1515 1038 22,1%
apex5 751 768 728 609 921 613 -0,7%
cordic 67 61 67 49 90 32 34,7%
cps 1128 1109 1150 975 967 585 39,5%
duke 406 356 417 366 357 260 27,0%
e64 192 384 183 191 255 129 29,5%
ex4p 488 523 468 467 555 349 25,3%
misex2 111 121 94 89 108 71 20,2%
vg2 95 113 88 83 109 78 6,0%

V. CONCLUSIONS

We have proposed a new global optimization method for

combinational circuits. Applying the SAT solver in the fitness

function allowed us to significantly reduce the computational

requirements of the fitness function and thus evolve much

larger circuits than any other evolutionary design method is

capable of. Furthermore, we significantly reduced the number

of gates in the solutions that can be delivered by conventional

synthesis methods. The only cost is an additional (post syn-

thesis) time consuming computation.
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