
Approximating Complex Arithmetic Circuits with Formal
Error Guarantees: 32-bit Multipliers Accomplished

Milan Češka, Jiřı́ Matyáš, Vojtech Mrazek, Lukas Sekanina, Zdenek Vasicek and Tomas Vojnar
Faculty of Information Technology, Centre of Excellence IT4Innovations

Brno University of Technology, Brno, Czech Republic

{ceskam, imatyas, imrazek, sekanina, vasicek, vojnar}@fit.vutbr.cz

Abstract—We present a novel method allowing one to approx-
imate complex arithmetic circuits with formal guarantees on the
approximation error. The method integrates in a unique way
formal techniques for approximate equivalence checking into
a search-based circuit optimisation algorithm. The key idea of
our approach is to employ a novel search strategy that drives
the search towards promptly verifiable approximate circuits. The
method was implemented within the ABC tool and extensively
evaluated on functional approximation of multipliers (with up
to 32-bit operands) and adders (with up to 128-bit operands).
Within a few hours, we constructed a high-quality Pareto set
of 32-bit multipliers providing trade-offs between the circuit
error and size. This is for the first time when such complex
approximate circuits with formal error guarantees have been
derived, which demonstrates an outstanding performance and
scalability of our approach compared with existing methods that
have either been applied to the approximation of multipliers
limited to 8-bit operands or statistical testing has been used
only. Our approach thus significantly improves capabilities of
the existing methods and paves a way towards an automated
design process of provably-correct circuit approximations.

Index Terms—approximate computing, logical synthesis, ge-
netic programming, formal methods

I. INTRODUCTION

As many important applications are inherently error re-

silient, precision of the involved computations can be traded

for improved energy efficiency, performance, and/or chip area.

Various approaches exploiting this fact have been developed in

recent years and presented under the umbrella of the so-called

approximate computing [1]. These approximations can be

conducted at different system levels with circuit approximation

being one of the most popular.
Circuit approximation techniques can be classified into

two main groups: (1) Frequency/voltage over-scaling where

timing-induced errors can appear as the circuit is operated

on a higher frequency or lower voltage than the nominal

value. (2) Functional approximation where the original circuit

is replaced by a less complex one which exhibits some

errors but improves non-functional circuit parameters such

as power consumption or chip area. We only deal with the

latter approach in this paper. Circuit approximation can be

formulated as a multi-objective optimization problem where

the error and non-functional circuit parameters are conflicting

design objectives. Since the resulting approximate circuits are

common circuits, they can be implemented using the standard

circuit design flow.
We focus on approximate arithmetic circuits (AACs) be-

cause they are frequently used in key applications relevant

for approximate computing. Prominent examples are signal,

image, and video processing circuits (such as filters, discrete

transforms, and motion estimation blocks [2]), or the multiply-

accumulate-transform structures of artificial neurons in neural

networks (consuming about 50% of the total power in neural

network accelerators [3]).

Various error metrics, such as the worst-case relative error

or the mean absolute error, for evaluating approximate circuits

have been proposed (cf. Sect. III). A crucial question is then

how the error of a given approximation is derived. For that,

as discussed in more details in the related work section,

methods based on simulating the circuit on given inputs

are often used. However, such approaches suffer from low

scalability (exhaustive simulation), lack of strong guarantees

(when simulating the circuit for a random subset of the

possible inputs only), and/or specialization to certain circuits

only (statistical models). Alternatively, as in our case, the error

can be derived using formal verification. The main advantages

of this approach lie in that (1) formal error bounds can be given

as a part of the input and (2) the approach is more scalable

than exhaustive circuit simulation.

While formal methods of (exact) equivalence checking have

been studied for decades, only a few formal approximate

checking methods have been used in circuit approximation

tools. Depending on the particular error metric, the error

calculation is transformed to a decision problem and solved by

means of SAT solving or binary decision diagrams (BDDs).

Despite of enormous progress in the area of SAT solvers

and BDD libraries, approximation of arithmetic circuits with

formal error guarantees was so far limited to circuits no more

complex than 16-bit adders and 8-bit multipliers [4], [5], [6].

In this paper, we present a new method for designing

complex approximate arithmetic circuits with formal bounds

on the approximation error. The method uniquely integrates

new formal techniques for approximate equivalence checking

into search-based circuit optimization by means of Cartesian

genetic programming (CGP). The key idea is to employ

a novel search strategy driving the search towards promptly

verifiable approximate circuits. We have implemented the

strategy within the ABC tool and extended the underlying

equivalence checking algorithm to support queries on the

worst-case error. This extension builds on a new effective

construction of miters, i.e. auxiliary circuits interconnecting

the original correct circuit and its approximation such that

their approximate equivalence can be checked.

We decided to optimize for the worst-case error since its

exact value can be important in time-critical and dependable

978-1-5386-3093-8/17/$31.00 ©2017 IEEE 416

systems (e.g., inverse kinematics in robot control [7]) or when

complex approximate arithmetic circuits are constructed using

less complex approximate building (circuit) blocks. The final

error then depends on how the worst case error is propagated

from low-level blocks to the result. Moreover, even in not so

critical applications such as image processing, low average

error but excessive worst-case error can produce unacceptable

results [8]. Finally, our results suggest that there is also a high

correlation between the worst-case error and the mean absolute

error (Sect. V).

While our primary motivation is to automatically approxi-

mate complex multipliers, our method is directly applicable

to other arithmetic circuits too. The method is capable of

providing Pareto fronts showing high-quality compromises

between the circuit error and non-functional circuit parameters.

Results are presented for approximate multipliers (with up to

32-bit operands) and adders (with up to 128-bit operands)

and compared with several approximate circuits available

in literature. This is for the first time when such complex

approximate arithmetic circuits with formally guaranteed error

bounds have been presented.

Contributions: We propose a new miter construction al-

lowing for efficient approximate equivalence checking tailored

to search-based approximation of complex arithmetic circuits.

We design a novel search strategy for synthesis of approximate

circuits with formal error guarantees that integrates Cartesian

genetic programming and the proposed approximate equiva-

lence checking. Using a resource-limited verifier, the strategy

drives the search towards promptly verifiable candidates and

thus provides scalable approximation of complex circuits. We

develop an implementation of the miter construction and the

search strategy within the ABC tool and perform extensive

experimental evaluation of our approach on large circuits

including approximation of 128-bit adders and 32-bit multi-

pliers. Within several hours, we are able to construct high-

quality Pareto sets of 128-bit adders and 32-bit multipliers

that represent the trade-offs between the circuit error and non-

functional circuit parameters.

II. RELATED WORK

This section presents a brief survey of the most important

approaches developed for functional approximation of mul-

tipliers and adders. We restrict our attention to these two

arithmetic operations because they represent the key compo-

nents of more complex circuits and thus their approximation

has been intensively studied. Moreover, multipliers—due to

their complex structure—represent one of the most difficult

arithmetic circuits from the perspective of both approximation

as well as verification.

A. Approximation Methods

The approximation process usually starts with a fully func-

tional circuit and a target error. Circuit-dependent approx-
imation methods then take the structure of the arithmetic

circuit at the input and (manually or algorithmically) introduce

modifications to carefully preselected parts of the circuit. In

the case of adders, it is possible to approximate elementary

1-bit adders, modify the carry propagation chain, or introduce

segments of adders and generate the carry using different

methods [9]. In the case of multipliers, generation of partial

products, the summation tree, counters, or compressors are

approximated [10]. In addition to that, the simple bit-width

reduction belongs to this category of methods too.

More complex approximate circuits can be constructed by

a smart composition of approximate elementary blocks. For

example, a 2-bit multiplier was approximated in [11] and then

used as a building block of more complex multipliers. This

strategy can be improved, e.g., by configurable lossy compres-

sion of the partial product rows based on their progressive bit

significance [12].

The concept of quality configurable circuits uses elementary

circuits composed in such a way that their error can be

modified online using several configuration bits in order to

dynamically reduce the power consumption. The configuration

bits can (dis)connect some preselected parts of the circuit.

As the source codes of quality configurable adders [13] and

multipliers [2] are available online, we compare them with

approximate circuits obtained using our approach.

General-purpose methods, such as SALSA [14] or

SASIMI [15], aim at automatically approximating circuits in-

dependently of their structure. These methods operate with dif-

ferent circuit representations and employ various heuristics to

identify circuit parts suitable for approximation. Evolutionary

algorithms have been recently applied to accomplish desired

approximations in a holistic scenario [16], [17]. A compre-

hensive library of 8-bit adders and multipliers was built using

multi-objective CGP [18].

B. Simulation-Based Error Computation

Conceptually, the simplest approach to obtain precise error

bounds of an AAC is to simulate its function on all possible in-

puts. However, even on state-of-the-art computer architectures,

this approach has principal scalability limitations causing that

it cannot be used to synthesize approximate circuits with more

than 12-bit operands [19].

Due to that, the error is commonly estimated using a subset

of input vectors only, e.g. 108 inputs were used to evaluate

16-bit adders in [9]. Of course, the main drawback of this

approach is that no formal guarantees on the error bound can

be provided. Alternatively, the circuit error can be calculated

using a statistical model constructed for elementary circuit

components and their compositions [20], [21]. However, re-

liable and general statistical models can only be constructed

in some specific situations.

C. Formal Error Computation

Recently, various applications of formal methods have been

intensively studied in order to improve the scalability of

the design process of correct as well as approximate cir-

cuits. For designing correct circuits (where one insists on

preserving the original functionality but tries to optimize

non-functional parameters), one can consider combinational

417

equivalence checking based on modern SAT solvers, efficient

BDD representations of circuits, or algebraic computation

techniques combining polynomial representation of circuits

with logic reductions [22], [23]. For designing AACs, a more

challenging notion of relaxed or approximate equivalence
checking is needed. This notion requires to quantify the

approximation error or, alternatively, prove whether the error

is below a certain threshold.

To quantify the approximation error using formal verifi-

cation techniques, a use of auxiliary circuits, called miters,

combining the original circuit and the approximate circuit was

proposed in [24]. In order to check whether a predefined worst-

case error is violated by the candidate approximate circuit,

a pseudo-Boolean SAT solver combining a SAT solver with

integer linear programming was then employed.

The number of inputs for which an approximate circuit

returns an incorrect result can be quantified using SAT counting
methods (so-called #SAT solvers). However, despite the recent

progress in the area of #SAT solvers (see, e.g., [25]), our pre-

liminary experiments indicate that #SAT problems encoding

the error quantification are currently beyond the capabilities

of state-of-the-art #SAT tools even for 12-bit multipliers.

An efficient BDD-based approach allowing one to guarantee

the worst-case and the average-case arithmetic error of approx-

imate adders up to 16-bit operands was proposed in [5]. An

alternative approach that uses BDDs representing characteris-

tic functions was employed in [4]. Compared to our approach,

this approximation method lags behind in scalability, which

is demonstrated by the fact that it has been applied to the

approximation of multipliers limited to 8-bit operands and

adders limited to 16-bit operands only.

III. ERROR METRICS FOR AACS

Various metrics describing the error of AACs have been

proposed and shown suitable for different application domains.

The most popular error metrics relevant especially to arith-

metic circuits are the worst-case absolute error (WCAE) and

the mean absolute error (MAE). For a correct circuit G, fur-

ther denoted as the golden circuit, which computes a function

fG, and its approximation C, computing a function fC , where

fG, fC : {0, 1}n → {0, 1}m, these metrics, relativized by the

range of the output, are defined as follows:

WCAE(G,C) =
maxx∈{0,1}n |int(fG(x))− int(fC(x))|

2m
,

MAE(G,C) =

∑
x∈{0,1}n |int(fG(x))− int(fC(x))|

2m
,

where int(x) denotes the integer representation of a bit vec-

tor x and |i| denotes the absolute value of an integer i.

A. Checking Worst Case Errors

To compute whether the WCAE is violated, we can adopt

the concept of approximation miter introduced in [24]. The

general configuration of the approximation miter is shown

in Fig. 1. The miter consists of the inspected approximate

Fig. 1. Approximation miter for the worst-case error analysis, typically
e(x) = |fG(x)− fC(x)|.

circuit C, the golden circuit G which serves as the specifica-

tion, a subtractor, and a comparator which checks whether

the error introduced by the approximation is greater than

a given threshold T . The output of the miter is a single bit

which evaluates to 1 if and only if the error is violated, i.e.

WCAE(G,C) > T .

For a given input vector x, the subtractor calculates the

difference between the output of the golden circuit, i.e. fG(x),
and the output of the approximate circuit, i.e. fC(x). Let

d = int(fG(x))− int(fC(x)) be the error magnitude. A direct

computation of the WCAE according to its definition leads to

evaluating the expression e = |d|, i.e. the absolute difference

of the error magnitude. The absolute difference is typically

calculated by means of a common two’s complement subtrac-

tor (implemented using m full-adders with the first carry-in

set to 1 and inverting each bit of the subtrahend) followed by

a circuit determining the absolute value (computed using m
half-adders and m XOR gates).

B. The Proposed Miter Construction

Miters used in the literature compute the absolute value of

the difference between fG and fC . The computation is usually

performed in two steps. Firstly, a subtractor with a signed

output evaluates fG − fC . Secondly, the absolute value has

to be computed. The circuit performing such a task contains

XOR chains which are a known cause of poor performance

of the state-of-the-art SAT solvers [26]. The main reasons are

that unlike AND/OR gates, the Boolean constraint propagation

over XOR gates is limited, and the XOR operations cause the

CNF form of the formulae to grow rapidly.

In order to avoid long XOR chains at the output of the miter

which slowdown the decision process, we propose to employ

a different approach. The key idea is to compare the result

of the subtractor with both the positive and negative value

of the threshold and thus avoid the expensive evaluation of

the absolute value. For a given threshold T on the worst-case

absolute error WCAE, it holds that e > T is satisfied iff d
is positive and d > T , or d is negative and −d > T . As

we typically deal with numbers in the two’s complement, the

second condition is equal to ¬d > (T −1). Hence, we can use

the two’s complement representation and examine the positive

and negative values separately to avoid usage of the absolute

difference of the output.

Since the threshold T is fixed during the design process, we

can easily avoid the standard comparator consisting of a long

chain of XOR gates. This helps us to further simplify the

miter and improve the performance of the decision procedure.

418

Fig. 2. The proposed approximation miter for the worst-case error analysis:
an example for T = 5, N = 6.

In particular, we replace the sequential comparison of the

particular bits of the operands implemented as

A > B ≡
∨

0≤i≤N−1

⎛
⎝Ai ∧ ¬Bi

∧
i<j≤N−1

Aj ⊕Bj

⎞
⎠ ,

for B being a constant bit vector representing the threshold

T , by a simpler procedure implemented as

A > B ≡
∨

0≤i≤N−1 ∧ Bi=0

⎛
⎝Ai

∧
i<j≤N−1 ∧ Bj=1

Aj

⎞
⎠ .

As is evident, the resulting formula does not contain any

XOR gate. Note that d is represented as an m+1 bit number in

the two’s complement—hence, A corresponds to the N least

significant bits of d where N = m. The (m + 1)-th bit is

reserved for the sign and employed for determining whether d
encodes a positive or negative number. The miter for T = 5,

fC and fG with 6-bit outputs is illustrated in Fig. 2.

The proposed construction, compared to the construction us-

ing the absolute value and full comparators, allows us to obtain

smaller and structurally less complex miters. Such miters can

be efficiently used in the SAT-based CEC procedures, resulting

in a significant acceleration of the candidate circuit evaluation.

Our experiments show that, in the case of arithmetic circuits

having 64 output bits (e.g. 32-bit multipliers), the proposed

construction improves the size of the miters (in terms of the

number of And-Inverter Graph (AIG) nodes representing the

circuit) by about 25–35% depending on the value of T , where

T ranged from 0.0001% to 0.5% of the maximal value at the

output (i.e. 264) in our experiment.

IV. SEARCH-BASED DESIGN OF AACS

In this section, we present our novel approach to the search-

based design of AACs combining principles of CGP with

a verifiability-driven search strategy that employs a fitness

function based on the approximate equivalence checking.

A. Cartesian Genetic Programming

CGP is a form of genetic programming where the candidate

solutions are represented as a string of integers of a fixed

length that is mapped to a directed acyclic graph [27]. This

integer representation is called a chromosome. CGP can effi-

ciently represent common computational structures including

Fig. 3. Full adder represented by CGP. Chromosome: (0, 2, 2) (0, 1, 0)
(1, 3, 2) (3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8), node functions: AND (0), OR (1),
XOR (2), NOT (3).

mathematical equations, computer programs, neural networks,

and digital circuits. The candidate circuits are typically repre-

sented in a two-dimensional array of programmable two-input

nodes. Every node is encoded by three integers in the chromo-

some representation where the first two numbers denote the

node’s inputs, the third represents the node’s function (see the

illustration in Fig. 3).

In circuit approximation, the evolution loop starts with

a parent representing a correctly working circuit. New can-

didate circuits are obtained from the parent using a mutation
operator which performs random changes in the candidate’s

chromosome in order to obtain a new, possibly better candidate

solution. In the next step, the algorithm evaluates the quality of

each solution using a specified metric, called the fitness func-
tion. This function assesses important correctness and perfor-

mance aspects of circuits. The candidate with the best fitness

value is chosen as the parent of the next generation, the other

solutions are removed and the evolution continues with gener-

ating new candidate circuits. The whole loop is repeated until

a termination criterion is met. For details of CGP, see [27].

The most critical and time consuming part of the CGP loop

is the fitness evaluation, which principally limits the scalability

of the search-based design. To alleviate this problem, we

propose below a novel search strategy.

B. Verifiability-Driven Search Strategy

The verifiability-driven search strategy can be seen as a gen-

eral concept improving the scalability of evolutionary design

methods. We demonstrate its key idea on the below problem.

Problem: For a given golden circuit G and a threshold T ,
our goal is to find a circuit C∗ with the minimal size such
that the error WCAE(G,C∗) ≤ T .

This problem formulation allows us to define the fitness

function f in the following way:

f(C) =

{
size(C) if WCAE(G,C) ≤ T ,

∞ otherwise

where size(C) denotes the size of the circuit C. Since the

procedure deciding whether WCAE(G,C) ≤ T (further

denoted as SAT solver) represents the most time consuming

part of the design loop, we avoid calling the procedure as

much as possible. Therefore, we only call SAT solver for

circuits C satisfying size(C) < size(B) where B is the best

solution with an acceptable error (i.e., WCAE(G,B) ≤ T)

that we have found so far. Our experiments show that, during

the evolution process, a significant set of candidate designs C
does not satisfy the condition size(C) < size(B) and thus

their fitness can be easily assessed without SAT solver.

419

Miter template
Golden model G

Threshold on
WCAE

Initial circuit B

Time limit

Miter

UNSATSAT / limits L reachedGreater

yes Approximate circuit with WC absolute error guarantee

P‘

+

Resource
limits L

C

no

Golden model

C

B

Generate
approximate

circuit C from B

Compare
Size(C) and
Size(B)

SAT solver

Replace B by CTime limit
exceeded

Fig. 4. The main steps of the proposed verifiability-driven search scheme.

Our experiments further indicate that a long sequence of

candidate circuits Bi improving the size and having an ac-

ceptable error has to be typically explored to obtain a solution

that is sufficiently close to C∗. Therefore, both the SAT and

the UNSAT queries to SAT solver have to be short. To this

end, we use an additional criterion for the evaluation of the

circuit C, namely, the ability of SAT solver to prove that

WCAE(G,C) ≤ T with a given limit L on the resources

available to the underlying decision procedure. If the proce-

dure fails to prove WCAE(G,C) ≤ T within the limit L, we

set f(C) = ∞ and generate a new candidate. The design loop

using the verifiability-driven search is illustrated in Fig. 4.

The inputs of the design process include: (1) the golden

model G, (2) the threshold on the worst case absolute error T ,

(3) the initial circuit B having an acceptable error (it can

be either the golden model or a suitable approximation we

want to start with), and (4) the time limit on the overall

design process. The loop exploits the CGP principles; namely,

it uses mutations to generate new candidate circuits C from

the candidate circuit B representing the best approximation

of the circuit C∗ that we have found so far. The circuit C
is then evaluated using the fitness function f as described

above. If the candidate C belongs to the improving sequence

(i.e., size(C) < size(B) and WCAE(G,C) ≤ T), we replace

B by C. The design loop terminates if the time limit is reached

and B is returned as the output of the design process.

In our verifiability-driven search scheme, we use the re-

source limit L (as a parameter of the design loop) to drive the

search towards candidates that can be promptly evaluated. We

intentionally throw away improving candidates Bi that require

greater resources and thus longer, but still feasible, verification

time. The reason for this is the fact that by mutating these

candidates we would most likely obtain solutions that would

require the same or even longer verification times and thus

finding the whole improving sequence would become time-

infeasible. Instead, we require that every improving candidate

Bi has to be verifiable using the resource limit L and thus

drive the search towards candidates Bi that, for a given time

limit on the overall design process, lead to longer improving

sequences. Our experiments indicate that these sequences lead

to candidate circuits that are closer to C∗. Since we are able

to evaluate a much larger set of candidate circuits, we have

a better chance to find a long improving sequence within the

given time provided that it exists for the limit L.

The obvious disadvantage is that we possibly cut improving

sequences that would lead to good solutions within the given

design time. It can also happen that, for the limit L, no

improving sequence exists, while it exists for a slightly greater

resource limit. Despite of this limitation, our results clearly

show that the proposed verifiability-driven search strategy

allows us to utilise the given design time in a more efficient

way compared to the standard evolution schemes.

C. Integration to the ABC Tool

The proposed approach performs the approximation at the

level of the CGP problem representation (i.e., on acyclic

oriented graphs with arbitrary two-input logic functions in the

nodes). The green part of Fig. 4 shows the position of ABC in

our methodology. ABC is primarily used to construct the miter

and decide whether the maximal arithmetic error of the candi-

date circuit is not above T . The proposed miter construction

allows us to reduce the problem of approximate equivalence

checking to the Boolean satisfiability (SAT) problem. In order

to evaluate a candidate circuit, (1) a candidate chromosome

is used to construct a corresponding AIG, (2) another AIG,

representing the golden circuit, is constructed (just once at the

beginning of the evolution), and (3) the miter is built. The

state-of-the-art techniques used for CEC in the ABC tool—

the iprove engine—are then applied to decide the equiv-

alence. An important feature of the mix of techniques used

in iprove is that one can control the time needed for one

query, which is the key feature we exploit in our verifiability-

driven search strategy. In particular, the satisfiability checking

can be controlled by fine-tuning various resource limits for the

different techniques used, such as the number of simulations

performed to prove non-equivalence, the number of conflicts in

structural hashing, or the number of logic-reduction steps. We

so far used solely a limit on the maximal number of conflicts

in which a single variable (representing an AIG node) can

be involved during the backtracking process. Our experiments

show that this resource limit allows us to effectively control

the time needed for particular iprove queries and thus to

drive the search towards promptly verifiable circuits.

A similar approach has recently been used in circuit ap-

proximation exploiting the approximate-aware rewriting of an

AIG representation of circuits [4]. Principally, our approach

differs in the candidate circuit representation (the gate-level

CGP encoding), its evaluation, and in using the verifiability-

driven evolution instead of a simple greedy algorithm for AIG

pruning. The gate-level representation is an important feature

of our approach which allows us to efficiently capture XOR-

intensive structures existing in arithmetic circuits.

V. RESULTS

To evaluate the proposed method, we primarily focused on

complex approximate multipliers as they are the most chal-

lenging benchmark problems. Since only 8-bit multipliers with

guaranteed error bounds were presented in the literature so

far, there are no solutions available for a direct comparison in

the case of 16-bit and more complex approximate multipliers.

420

Hence, (1) we compare the 16-bit approximate multipliers

that we generated using our method with 16-bit multipliers

(available in the literature) whose error was determined using

simulation, and then (2) we present Pareto fronts (the error and

key circuit parameters) for 20-bit, 24-bit, 28-bit, and 32-bit

approximate multipliers and up to 128-bit approximate adders

to demonstrate the scalability of the proposed method.

A. Experimental Setup

We implemented our approach, including the miter con-

struction and verifiability-driven evolution, within the ABC

tool [28]. Array multipliers and ripple carry adders composed

of 2-input gates were employed as the initial (golden) circuits

for CGP. The number of nodes in the CGP’s grid is equal to

the number of gates of the initial circuit. The set of functions

consists of the common two-input logic gates, the buffer, and

the inverter. We used 2 circuits in the population and 5 integers

were modified by the mutation operator.

For each target WCAE, we performed 30 independent runs

of CGP to obtain statistically significant results. Each CGP

was executed for 2 hours on an Intel Xeon X5670 2.4 GHz

processor using a single core. The individual CGP runs are

independent and thus we executed them in parallel using

a cluster of these processors to accelerate the design process.

For purposes of the fitness evaluation, the circuit size is

estimated as the sum of the relative area of the two-input

gates used, where the sizes of each gate are taken from the

technology library. At the end of the evolution, the 5 most

fitting circuits for each WCAE were synthetized using the

Synopsys Design Compiler (high-effort compiling for a better

quality of the results) for a 45 nm technology library in

order to obtain non-functional parameters like the area and

power-delay product (PDP). The accurate implementations

were created by means of Verilog ∗ and + operators and

synthesized in the same way as approximate circuits.

B. 16-bit Approximate Multipliers

An evaluation of the verifiability-driven search: In the

first experiment, we approximated the golden 16-bit multiplier

for 9 target values of WCAE from the set {0.1, 0.2, 0.5, 1, 2,

5, 10, 15 and 20%} and evaluated the proposed method with

three different settings of the resource limit L controlling the

maximal number of conflicts for one AIG node: (1) no limits,

i.e., L=∞, (2) L=160K, and (3) L=20K. The limits L=160K

and L=20K roughly correspond to the time limit of 120 sec.

and 3 sec., respectively, on 16-bit multipliers.

Fig. 5 shows that, for WCAE ≥ 2%, the resource limit L has

a marginal impact on the PDP and area. However, with a de-

creasing target WCAE, the limit L=20K provides significantly

better results. For example, if WCAE = 0.1% and L=20K,

22,050 SAT calls were produced and 11% of them were

terminated on average because of the termination condition.

In the case of L=160K, 856 SAT calls were produced only

(15% terminated). The average number of SAT calls (across

all target errors) that were forced to terminate is 6.28%

(for L=160K) and 8.84% (for L=20K). If L=∞, 170 SAT

0.1 0.2 0.5 1 2 5 10 15 20
Maximal allowed worst-case absolute error [%]

0

1

2

3

4

5

6

7

8

9

P
D

P
 [
10
¡1
2
W
s]

0.1 0.2 0.5 1 2 5 10 15 20
Maximal allowed worst-case absolute error [%]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

A
re

a
 [
¹
m
2
]

limit L=1 limit L=160K limit L=20K

Fig. 5. PDP and area of approximate 16-bit multipliers for 9 target errors
obtained using 3 different resource limits L on the SAT solver. The red line
shows the PDP and area of the accurate multiplier.

calls were evaluated for WCAE = 0.1% only. Despite the

fact that some potentially good candidate circuits are quickly

rejected, the aggressive resource limits allowed us to generate

and evaluate significantly more candidate circuits and thus to

substantially improve the quality of results. Box plots in Fig. 5

also show that independent runs with L=20K lead to circuits

having very similar parameters (low inter-quartile distances)

and thus this limit is be used in the following experiments.

Note that the parameters of some approximate multipliers

shown in Fig. 5 are worse than for the accurate multiplier.

The reason is that the relative area is the only non-functional

circuit parameter optimized by CGP while the PDP and area

are computed at the end of the optimization using the Synopsys

Design Compiler. We have never observed this discrepancy for

the limit L=20K.

A comparison with other multipliers: Next, we generated

16-bit approximate multipliers using the setup described in

the previous section and compared them with approximate

multipliers available in the literature. In order to perform

a fair comparison (the error of the published multipliers

was originally estimated using simulation), we modified our

method and applied a binary search strategy to determine the

WCAE exactly. In addition to WCAE, we also provide MAE

obtained using simulation (109 vectors).

We considered the following 16-bit approximate multipliers:

M1 Approximate configurable multipliers from the lpACLib

library [13], where the multiplication is recursively sim-

plified using two different variants (denoted as Lit and

V1) of an elementary block representing a 2-bit multiplier.

The partial results are summed using accurate adders. We

implemented 32 different architectures consisting of four

8-bit multipliers where each of these multipliers is config-

urable as exact/approximate (24 configurations) and can

be built using either Lit (M1Lit) or V1 (M1V1) blocks.

421

103 104 105 106 107 108 109

Mean absolute error

0

2

4

6

8

10
P

D
P

[1
0−

1
2
W
s]

10−4 10−3 10−2 10−1 100 101 102

Worst case absolute error [%]

0

2

4

6

8

10

P
D

P
[1
0−

1
2
W
s]

Proposed method
M1Lit (ConfMult16x16Lit)
M1V1 (ConfMult16x16V1)
M2 (BSDLC)

M3 (Bit-width truncation)
M4 (Kulkarni 2x2)
M5 (EvoApproxLib8)
Accurate multiplier

Fig. 6. Parameters of 16-bit approximate multipliers considered in our study.

M2 The approximate multiplier employing the bit-significan-

ce-driven logic compression as introduced in [12].

M3 Approximate multipliers obtained from exact multipliers

using the bit-width reduction. The reduction replaces 16-

bit multipliers by accurate x-bit multipliers (for x < 16).

It ignores the LSBs of the operands and leaves the LSBs

of the result zero.

M4 The approximate multiplier composed of approximate

2-bit multipliers as proposed in [11].

M5 Approximate multipliers composed of 8-bit multipliers

that are available in the EvoApproxLib library [18]. The

construction principle is taken from [11].

For all considered multipliers, the value of PDP is plotted

against WCAE and MAE in Fig. 6 (only Pareto fronts are

visualized). While the bit-width reduction provides the same

quality of results as our method for large target errors (up to

20% WCAE), it is significantly outperformed by our approach

for small target errors. Despite that the existing approximate

multipliers typically exhibit good tradeoffs between the error

and PDP in specific applications (as demonstrated in the

relevant literature), Fig. 6 clearly shows that these multipliers

are considerably Pareto-dominated by the multipliers obtained

using our approach. These results were, in fact, expected as

the proposed method is based on a global holistic optimiza-

tion approach while the other approximate multipliers were

composed of smaller ones and the composition procedure

always introduces some overhead. Finally, it is an interesting

observation that MAE follows the trend of WCAE. It seems

that WCAE can be used as a good indicator of MAE.

C. Complex Multipliers

The aim of our further experiments is to show that the pro-

posed method is scalable and can approximate complex multi-

pliers. We present the results of the approximation process on

12-bit, 16-bit, 20-bit, 24-bit, 28-bit, and 32-bit multipliers. The

target WCAEs were adapted accordingly to respect the range

of values in the different considered bit widths. We used the

same setup as in the previous sections but increased the time of

optimization to 4 hours for the 24-bit multiplier and 6 hours for

larger multipliers. The reason is that the search space becomes

much bigger. While the exact 12-bit multiplier contains 850

two-input gates, the 32-bit exact multiplier requires over 6,300

gates. We obtained (as the result of evolution) over 1190

unique multipliers. Because of this huge number and for

the sake of clarity, Fig. 7 shows parameters of approximate

multipliers occupying the Pareto fronts only.

In the experiments, we observed that, in the case of 12-

bit multipliers, 2.4% of SAT calls were terminated on av-

erage due to the resource limit L=20K only. However, this

number increased to 36.9% in the case of approximate 32-bit

multipliers. For all bit widths, the MAE is around 30% of

the worst-case error, which again demonstrates that WCAE is

a good indicator of MAE. Fig. 7 also shows that the obtained

approximations cover the whole range (up to 100%) of the

Area axis. However, this is not the case for PDP. The reason

is that we optimize the relative area and PDP is computed

after the synthesis.

Since Pareto fronts shown in Fig. 7 follow the trend of the

highly competitive fronts for the 16-bit multipliers presented

before, we believe that the tradeoffs between the circuit error

and size obtained for more complex multipliers are also very

good and thus the corresponding circuits represent the cutting

edge of approximate multipliers and can serve as a new

benchmark set for approximate computing.

D. Approximate Adders

In order to demonstrate that the proposed method is appli-

cable for other complex arithmetic circuits, we constructed

Pareto fronts for approximate adders with 20-bit to 128-

bit operands. Approximation of adders is much easier than

approximation of multipliers since adders are structurally less

complicated and the number of outputs is lower. For example,

the exact 20-bit adder requires 140 two-input gates and the

128-bit adder consists of 1,000 gates.

The approximate adders were constructed using the same

setup as in the previous section. A single CGP run took 2 hours

(for all bit widths). Fig. 8 shows parameters of approximate

adders occupying the corresponding Pareto fronts. We report

16 to 18 non-dominated implementations of 24-bit, 28-bit, and

32-bit adders in terms of PDP and WCAE. For 64-bit and 128-

bit adders, 12 tradeoffs are reported only because we have

restricted the number of target error levels. Similarly to the

evolved multipliers, the proposed approximate adders are also

good candidates for including into a new benchmark suite.

VI. CONCLUSION

Automated design of approximate circuits with formal error

guarantees is a landmark of provably-correct construction of

energy-efficient systems. We present a solution to this prob-

lem, introducing a novel verifiability-driven search strategy

422

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

Worst case absolute error [%]

0%

20%

40%

60%

80%

100%
A

re
a
 [

%
]

Area and WCAE for multipliers

101 103 105 107 109 1011 1013 1015

Mean absolute error

0%

20%

40%

60%

80%

100%

P
D

P
 [

%
]

PDP and MAE for multipliers

10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

Worst case absolute error [%]

0%

20%

40%

60%

80%

100%

P
D

P
 [

%
]

PDP and WCAE for multipliers

12x12 multipliers 16x16 multipliers 20x20 multipliers 24x24 multipliers 28x28 multipliers 32x32 multipliers

Fig. 7. Pareto fronts showing parameters of evolved approximate multipliers. 100% refers to parameters of the accurate multiplier for a given bit width.

10-37 10-34 10-31 10-28 10-25 10-22 10-19 10-16 10-13 10-10 10-7 10-4 10-1

Worst-case absolute error [%]

0%

20%

40%

60%

80%

100%

P
D

P
 [

%
]

20+20 adders
24+24 adders

28+28 adders
32+32 adders

64+64 adders
128+128 adders

Fig. 8. Pareto fronts showing parameters of evolved approximate adders.
100% refers to parameters of the accurate adder for a given bit width.

that uniquely integrates approximate equivalence checking into

a search-based circuit optimisation algorithm. Able to con-

struct high-quality Pareto sets of 32-bit multipliers and 128-bit

adders, our method shows excellent scalability and paves the

way for design automation of complex approximate circuits.

In the future, we will thoroughly explore relationships be-

tween resource limits on the underlying SAT solvers and the

structure of the resulting circuits. This will allow us to further

improve the performance of our method and thus to go beyond

the approximation of 32-bit multipliers. We will also integrate

the constructed circuits into real-world energy-aware systems

to demonstrate practical impacts of our work.

Acknowledgments: This work has been supported by the

Czech Science Foundation grant No. GA16-17538S.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[2] M. Shafique, R. Hafiz et al., “Invited: Cross-layer approximate comput-
ing: From logic to architectures,” in Proc. of DAC’16, 2016, pp. 1–6.

[3] P. Judd, J. Albericio et al., “Proteus: Exploiting numerical precision
variability in deep neural networks,” in ICS’16, 2016, pp. 1–12.

[4] A. Chandrasekharan, M. Soeken et al., “Approximation-aware rewriting
of AIGs for error tolerant applications,” in Proc. of ICCAD’16, 2016,
pp. 83:1–83:8.

[5] Z. Vasicek, V. Mrazek, and L. Sekanina, “Towards low power approxi-
mate DCT architecture for HEVC standard,” in Proc. of DATE’17, 2017,
pp. 1576–1581.

[6] C. Yu and M. Ciesielski, “Analyzing imprecise adders using BDDs – a
case study,” in Proc. of ISVLSI’16, 2016, pp. 152–157.

[7] B. Grigorian and G. Reinman, “Dynamically adaptive and reliable
approximate computing using light-weight error analysis,” in Proc. of
AHS’14, 2014, pp. 248–255.

[8] D. S. Khudia, B. Zamirai et al., “Rumba: An online quality management
system for approximate computing,” in ISCA’15, 2015, pp. 554–566.

[9] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation
of approximate adders,” in Proc. of GLVLSI’15, 2015, pp. 343–348.

[10] H. Jiang, C. Liu et al., “A comparative evaluation of approximate
multipliers,” in Int. Symp. Nanoscale Architectures, 2016, pp. 191–196.

[11] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power
in a multiplier architecture,” J. Low Power Electronics, vol. 7, no. 4, pp.
490–501, 2011.

[12] I. Qiqieh, R. Shafik et al., “Energy-efficient approximate multiplier
design using bit significance-driven logic compression,” in Proc. of
DATE’17, 2017, pp. 7–12.

[13] M. Shafique, W. Ahmad et al., “A low latency generic accuracy
configurable adder,” in Proc. of DAC’15, 2015, pp. 86:1–86:6.

[14] S. Venkataramani, A. Sabne et al., “SALSA: systematic logic synthesis
of approximate circuits,” in Proc. of DAC’12, 2012, pp. 796–801.

[15] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: a unified design paradigm for approximate and quality config-
urable circuits,” in Proc. of DATE’13, 2013, pp. 1367–1372.

[16] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate
digital circuits design,” IEEE Trans. Evol. Comput., vol. 19, no. 3, pp.
432–444, 2015.

[17] K. Nepal, S. Hashemi et al., “Automated high-level generation of low-
power approximate computing circuits,” IEEE Trans. Emerg. Topics
Comput., pp. 1–13, 2017.

[18] V. Mrazek, R. Hrbacek et al., “Evoapprox8b: Library of approximate
adders and multipliers for circuit design and benchmarking of approxi-
mation methods,” in Proc. of DATE’17, 2017, pp. 258–261.

[19] V. Mrazek, S. S. Sarwar et al., “Design of power-efficient approximate
multipliers for approximate artificial neural networks,” in Proc. of
ICCAD’16, 2016, pp. 81:1–81:7.

[20] C. Li, W. Luo et al., “Joint precision optimization and high level
synthesis for approximate computing,” in DAC’15, 2015, pp. 1–6.

[21] S. Mazahir, O. Hasan et al., “Probabilistic error modeling for approxi-
mate adders,” IEEE Trans. Comput., vol. 66, no. 3, pp. 515–530, 2017.

[22] M. Ciesielski, C. Yu et al., “Verification of gate-level arithmetic circuits
by function extraction,” in Proc. of DAC ’15, 2015, pp. 52:1–52:6.

[23] A. Sayed-Ahmed, D. Große et al., “Formal verification of integer
multipliers by combining Gröbner basis with logic reduction,” in Proc.
of DATE’16, 2016, pp. 1048–1053.

[24] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “Macaco:
Modeling and analysis of circuits for approximate computing,” in Proc.
of ICCAD’11, 2011, pp. 667–673.

[25] S. Chakraborty, K. S. Meel et al., “Approximate probabilistic inference
via word-level counting,” in Proc. of AAAI’16, 2016, pp. 3218–3224.

[26] C.-S. Han and J.-H. R. Jiang, “When boolean satisfiability meets
gaussian elimination in a simplex way,” in CAV’12, 2012, pp. 410–426.

[27] J. F. Miller, Cartesian Genetic Programming, 2011.
[28] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength

verification tool,” in Proc. of CAV’10, ser. LNCS, 2010, pp. 24–40.

423

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

