
Automated discovery of test statistics using

genetic programming

Jason H. Moore1*, Randal S. Olson1*, Yong Chen1, and Moshe Sipper1,2

1 Institute for Biomedical Informatics, Perelman School of Medicine,

University of Pennsylvania, Philadelphia PA 19104, USA
2 Dept. of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel

Abstract. The process of developing new test statistics is laborious, requiring the

manual development and evaluation of mathematical functions that satisfy sev-

eral theoretical properties. Automating this process, hitherto not done, would

greatly accelerate the discovery of much-needed, new test statistics. This auto-

mation is a challenging problem because it requires the discovery method to

know something about the desirable properties of a good test statistic in addition

to having an engine that can develop and explore candidate mathematical solu-

tions with an intuitive representation. In this paper we describe a genetic pro-

gramming-based system for the automated discovery of new test statistics. Spe-

cifically, our system was able to discover test statistics as powerful as the t-test

for comparing sample means from two distributions with equal variances.

Keywords: Genetic Programming, Statistics, Optimization, T-Test

1 Introduction

Test statistics such as the t-test and chi-square test of independence summarize experi-

mental or observational data and, when coupled with a decision rule, can be used as

evidence to accept or reject a null hypothesis. Although we use a number of different

statistics in daily practice they are all limited by assumptions that must be true for their

distribution and derived p-value to be valid. For example, the two-sample t-test assumes

that the variances between the two groups of data are equal. Deriving a t-test that pro-

duces a valid p-value when the variances are not equal is an unsolved problem in sta-

tistics. The number of unsolved problems is growing due to the increasing diversity of

research questions that coincide with the increasing size and complexity of data that are

enabled by technology. Unfortunately, the process of developing new test statistics is

laborious, requiring the manual development and evaluation of mathematical functions

* J. H. Moore and R. S. Olson contributed equally to this paper. This is a post-peer-

review, pre-copyedit version of an article published in Genetic Programming and

Evolvable Machines. The final authenticated version is available online at:

http://dx.doi.org/10.1007/s10710-018-9338-z

2

that satisfy theoretical properties such as being unbiased, having low variance (effi-

cient), and capturing the relevant information contained in the data (sufficient) [1]. De-

termining these properties requires the test statistic to have a known probability density

function (PDF) that can be evaluated using differential and integral calculus. Despite

the many advances in applied statistics and data science, the development process for

new test statistics has not yet been automated using computational methods. Automa-

tion would greatly accelerate the discovery of new test statistics that are very much

needed in the era of big data. This would in turn accelerate scientific discovery and

research translation.

Artificial intelligence (AI) has shown promise for automating several human-driven

processes, such as object detection in images, speech recognition, game playing, finan-

cial trading, and more. The deep neural networks that are often in current-day use are

purely pattern recognition engines that differentiate signal from noise in big data. The

development of test statistics is a more challenging problem because it requires the

optimization system to know something about the desirable properties of a good test

statistic in addition to having an engine that can develop and explore candidate mathe-

matical solutions with an intuitive representation. Very few fundamental mathematical

problems have been tackled by automated systems to date (one prominent example be-

ing [2], who applied an evolutionary algorithm to the discovery of particular algebraic

terms).

The goal of the present study was to develop an evolutionary system for the auto-

mated discovery of new test statistics. There were three important challenges that

needed to be addressed to accomplish this objective. First, we needed an engine for

generating mathematical candidates for test statistics, in our case using available array-

based operators in a modern programming language with a data structure that is easy

for the computer to manipulate. Second, we needed a set of evaluation criteria that are

general enough to allow the computer to generate innovative solutions while specific

enough to satisfy human statistical objectives without directing the computer to pre-

determined outcomes. Third, we needed a system that could tinker with candidate test

statistics as a mathematician would, by making small changes and by interchanging

functional modules to create new solutions. We describe here a genetic programming

(GP) solution to this problem.

We believe the significance of the results presented in this letter lies beyond their

preliminary nature, in that we tap into an entirely novel application field for evolution-

ary computation.

2 Methods

2.1 Representation of Test Statistics

The raw materials or building blocks of new test statistics include mathematical func-

tions such as addition or square root, constants such as the sample size, and array-based

operations on the data such as sum, maximum, mean, median, and standard deviation.

We chose to develop our discovery system in the popular programming language Py-

thon, giving us access to an extensive library of scalar and array functions in NumPy

3

and SciPy. NumPy is a scientific computing library in Python, focused on n-dimen-

sional arrays of data while SciPy includes a wide range of modules for mathematics,

science, and engineering. Functions in these libraries serve as the building blocks for

candidate test statistics. We chose to represent candidate solutions in the computer us-

ing binary expression trees where the nodes of the tree are mathematical functions or

operators and the leaves of the tree represent experimental or observational variables.

2.2 Objective Criteria

The key to implementing an evolutionary approach to the discovery of test statistics is

to articulate the objective criteria that are important to human statisticians. We chose

here to focus on four very general criteria to allow the system to be innovative. First,

we want a test statistic to have a low rate of type I errors. These occur when the null

hypothesis is true but is rejected. Second, we want a statistic to have good power under

the alternative hypothesis (power is the probability that the test correctly rejects the null

hypothesis when a specific alternative hypothesis is true). Third, we want a statistic to

be invariant to the scale of the data, making it generalizable. Finally, we would like a

statistic to be as simple as possible, thus making it easy to understand and implement.

Our target discovery system must be able to consider these four criteria simultaneously

in a multi-objective framework. These general criteria allow the system to be innovative

in a way that might not occur if more specific mathematical or statistical constraints —

such as requiring a probability density function — were specified. This process opens

the door to the discovery of novel parametric and nonparametric test statistics.

2.3 Genetic Programming

The final piece of an evolutionary system for automated discovery of test statistics is a

framework for making changes in candidate test statistics with selection of increasingly

better solutions. We chose to implement genetic programming (GP) as our evolutionary

framework because it is ideally suited to working with binary expression trees and their

manipulation through a mutation operator for changing nodes and leaves in the trees

and a recombination operator that simply swaps modules of mathematical functions and

variables between different candidate solutions with fitness-based selection and learn-

ing [3–5]. This evolutionary approach is also ideally suited for multi-objective Pareto

optimization that can balance the four fitness criteria we outlined above. Here, we com-

bined the type I error rate and the power additively into a single objective. This yielded

three objectives used in the Pareto optimization. Genetic programming has been exten-

sively applied to classification and regression problems but not to the design and dis-

covery of new test statistics. We used the Distributed Evolutionary Algorithms in Py-

thon (DEAP) software package for this study because it is open-source and has the

desired functionality including Pareto optimization [6].

2.4 The Problem

Our goal was to apply this GP system to discover test statistics as powerful as the t-test,

a commonly used statistic for comparing sample means from two distributions with

equal variances. Equation 1 below shows the two-sample t-test statistic. Here, x bar is

4

the sample mean, S2 is the variance, and N is the sample size. The subscripts on each

indicate the sample number. Thus, the numerator of the t-test is the difference of the

sample means and the denominator is the standard error of the differences between the

means. This yields a t distribution under the null hypothesis whose shape is determined

be degrees of freedom equal to the two sample sizes added together minus two.

In these experiments, we asked whether the GP system is capable of discovering test

statistics similar in power to the t-test (Equation 1) when presented with our general

evaluation criteria.

To answer this question, we first simulated data drawn from two normal distribu-

tions, each with different means (0 and 1, 0 and 2, or 0 and 4) but the same variances

(standard deviations of 1, 2, or 4, respectively). A total of 30 data sets with sample size

of n=100 were simulated for each set of means. These data are used for the evaluation

criteria to represent data consistent with the alternate hypothesis of a difference in

means. Next, we permuted each of these 30 data sets to create pairs of distributions

consistent with the null hypothesis that the data were drawn from the same distribution

with equal means and variances. Finally, we simulated data under the alternate hypoth-

esis such that as the difference in the means increased (0 and 10 or 0 and 100) the equal

variances also increased (10 or 100, respectively). A total of 30 datasets were simulated

for each set of means and variances. These data were used for the third criterion to

evaluate the scale invariance. Finally, we implemented an evaluation criterion that en-

courages smaller models, to incentivize the GP system to explore smaller models while

at the same time being able to create diversity by considering larger models.

2.5 Experimental Design

To quantify the objective criteria in Section 2.2, we used the following fitness function.

When we evaluate an individual, we provide the aforementioned pairs of distributions

to the evolved test statistic to generate the test statistic scores for the pairs. Next, we

compute a Gaussian kernel density estimate (KDE) of the test statistics from the null

distribution pairs (the null distribution is the probability distribution of the test statistic

when the null hypothesis is true). The KDE allows us to measure the probability of a

test statistic value appearing in the null distribution.

For the first objective (low false positive rate), we take the evolved test statistic val-

ues computed from the null distributions across each set of 30 data sets and measure

the probability of them occurring in the null distribution. In this case, higher probabil-

ities are considered better because it entails that the null test statistic values are distrib-

uted together around a single value.

For the second objective (high power), we take the evolved test statistic values com-

puted from the distribution pairs with differences in means and measure the probability

of them occurring in the null distribution. In this case, lower probabilities are consid-

ered better because it entails that the test statistic values, when there is a difference in

means, fall outside the null distribution. We note that we combined objectives one and

(1)

5

two into a single fitness component to limit the multi-objective search space, as the

objectives are highly related.

For the third objective (scale invariance), we used the evolved test statistic values

from the distribution pairs with means of 0 and 1, 0 and 10, and 0 and 100. As these

distribution pairs are the exact same but with a multiplier of 1, 10, and 100, respectively,

a test statistic that is scale invariant should produce the exact same test statistic values

for these distributions. Thus, for this objective we considered lower sums of differences

between the test statistic pairs to be better.

For the fourth objective (simplicity), we used the number of primitives in the GP

tree as the measure of complexity. The number of primitives in the GP tree directly

correlates to the complexity of the function; thus, GP trees with fewer primitives are

considered better.

Using the GP system with these evaluation data and criteria, we ran 30 unique rep-

licate runs (i.e., with different random seeds) with a population size of 1000 candidate

test statistics for 1000 GP generations. We saved the entire Pareto front of test statistics

at the end of every replicate run and manually inspected every test statistic on the final

Pareto fronts. Each test statistic on the final Pareto front from one of the 30 independent

runs represents a tradeoff between the different objective criteria according to NSGA2

[7]. The details of the GP parameter settings are provided in Table 1.

Table 1. GP parameter settings.

Parameter Value

Population size 1000

Initialization method 50%: Randomly generate full trees with leaf

depth of 4

50%: Randomly generate partial trees with a

minimum leaf depth of 1 and maximum leaf

depth of 4

Function set Array-wise operations: sqrt, square, abs,

mean, median, min, max, std, var, size, sum,

standard error, add float

Float operations: add, subtract, multiply, di-

vide, square, sqrt, abs

Array + float operations: subtract float, mul-

tiply float, divide float

Terminal set x1 and x2 (the two sample distributions), x1

bar and x2 bar (means), v1 and v2 (vari-

ances), N1 and N2 (samples sizes)

Generations 1000

6

Selection Select top 1000 individuals according to

NSGA2 Pareto ranking

Crossover rate 50%, 1-point crossover

Mutation rate 50%, replace random sub-tree with random

sub-tree with leaf depth of 2

3 Results

Across all 30 replicate runs, the GP system discovered test statistics that had a fitness

that was equal to or better than the t-test. Figure 1 shows the binary expression tree for

the two-sample t-test. The left side of the tree is the numerator representing the differ-

ence in the sample means. The right side of the tree is the denominator representing the

standard error of the means across the two samples. We present this here to allow a

direct comparison with the binary expression trees for three different test statistics dis-

covered by the GP system (Figure 2). Note that the test statistics discovered by GP

include many of the same functions but are mathematically simpler. This tendency to

simplicity is likely due to the complexity objective in the fitness function.

Fig. 1. The two-sample t-test equation represented as a binary expression tree. The vector of

sample values is represented by X, sample means by X bar, variances by V, and sample sizes by

N for samples one and two.

7

Fig. 2. Three GP-generated test statistics represented as binary expression trees. The vector of

sample values is represented by X, sample means by X bar, standard deviations by S, standard

error by SE, and median by M.

Figure 3 shows scatterplots of the test statistic values for the t-test and those gener-

ated by one of the Pareto-optimal GP-based solutions across the simulated data used in

the fitness function. Note the linear relationship suggesting that the newly discovered

test statistics captures much of the information provided by the t-test. This was true

across all the solutions generated by GP. Thus, the GP system is finding approximations

of the t-test with equal or greater fitness based on our fitness objectives.

Figure 4 shows the distribution of values for the evolved test statistic from Figure

2A under the null hypothesis (orange) and alternate hypotheses (blue and green). Note

that the test statistic is centered at zero under the null hypothesis. This is the same as

the t-test. The test statistic values are negative or positive depending on whether mean

one is greater or less than mean two in the simulation. Both are considered in our fitness

function.

Fig. 3. Scatterplots of the linear relationship of the values of the evolved test statistic from Figure

2A with the values from the t-test applied to data simulated under the null hypothesis (A) and the

alternate hypothesis (B).

8

Figure 5 shows the distribution of values for the evolved test statistic from Figure

2A under the alternate hypotheses (blue) across means of 0 and 1, 0 and 10, and 0 and

100. Note that the center of the distributions is approximately the same regardless of

the difference in means. This satisfies the scale-invariance objective of the fitness func-

tion — a desirable property of all test statistics.

Fig. 4. Smoothed histograms summarizing the distribution of evolved test statistic values under

the null hypothesis (orange) and alternate hypotheses (blue and green).

Fig. 5. Smoothed histograms summarizing the distribution of evolved test statistic values under

the null hypothesis (orange) and alternate hypotheses (blue).

These results indicate that GP routinely generates test statistics for the comparison

of means from two distributions with equal variances that have low type I error, good

9

power, scale-invariance, and that are simple. Further, the evolved test statistics resem-

ble the t-test suggesting that the GP system finds functions that capture much of the

same information.

4 Discussion and Concluding Remarks

We have introduced here a computational framework for the automated discovery of

test statistics using genetic programming. Our approach starts with a list of scalar and

vector functions such as arithmetic operators, square root, mean, median, and standard

deviation that are often used in the manual construction of test statistics. We represented

the candidate test statistics as binary expression trees and then used GP as the discovery

engine. The key to this framework is the fitness function that is more complex than

many typical GP methods. We specified that good test statistics should have a low false

positive rate (i.e., type I error), a high power, scale-invariance, and should be as simple

as possible. These four objectives were implemented in a Pareto optimization frame-

work for evaluation and selection within the GP system. We then applied this frame-

work to the discovery of test statistics for comparing sample means from distributions

with equal variances. The evaluation of the type I error and power of each candidate

model require the use of data simulated under the null hypothesis of no differences

between the sample means and the alternate hypothesis that the means are different.

Our results show that in each of the replicate runs the GP system was able to generate

test statistics that had fitness values as good as or better than the t-test that is the widely

accepted and applied solution to this problem. Further, our GP-generated test statistics

were linearly related to the t-test and tended to be much simpler. We conclude that GP

is suited to the automatic generation of test statistics and should be extended and applied

to unsolved test statistic problems in statistics.

It is important to note that our GP implementation did not find the exact equation for

the t-test on the final Pareto front across the 30 replicate runs. There are several possible

reasons for this. First, we used complexity as an objective. This put pressure on the GP

system to find simple solutions that contained many of the same functions as the t-test

but perhaps not all. Second, we purposefully left the GP fitness function general to

encourage innovation. In other words, we did not want to guide it toward finding the t-

test. There is a mathematical component to developing test statistics that we did not

explore here. When developing a test statistic by hand it is necessary to use differential

and integral calculus to evaluate the bias, efficiency, and sufficiency of the functions.

We propose that our GP approach be used for discovery with the evaluative calculus

steps being saved at the end for fine-tuning of the discovered functions.

There are several limitations of the current study that could be explored in future

work. First, the fitness function is computationally complex given that simulated data

is used to evaluate the type I error and power of the solutions. This complexity will

only increase as more complex test statistics are tackled. There may be mathematical

solutions that could speed up the fitness function. Second, our fitness function with its

four objectives was developed to approximate the process that humans use when eval-

uating a test statistic. There may be other important objectives to consider. For example,

the efficiency of a test statistic is an important theoretical objective that is a measure of

the number of observations in a sample that are needed to maximize its power. Of

10

course, balancing more than three or four objectives in a Pareto optimization framework

can be challenging. Finally, our approach uses simulated data in the fitness function.

This means that the distribution of the data must be known. However, this does not

preclude the development of nonparametric tests.

The discovery of test statistics for comparing two means is just the start. There are

many unsolved problems in statistics that could benefit from our GP framework. For

example, Cox [8] outlines 22 unsolved problems from 1984. Some of these remain

challenges today. For example, in cancer genomic studies using DNA methylation data,

it has been found that the methylation measurements of the cancer and normal groups

could differ not only in means but also in variances [9, 10]. To account for these data

characteristics, we have previously developed an extension of the t-test using U-statis-

tics theory [11] and mixture models [12]. These extensions were not trivial and could

have been greatly accelerated using genetic programming. In addition, there are a num-

ber of interesting GP methods that have been developed that might be useful to enhance

our strategy. One such approach is layered GP that adds new functions to candidate

solutions instead of swapping them between expression trees using crossover [13]. This

is appealing because test statistics are often modular in nature. For example, the ability

of the GP to add a useful function such as standard error to a statistic could accelerate

the discovery process. This could even be done in a probabilistic way to prioritize com-

monly used modules from parametric statistics.

The need for new statistics is exploding as new technologies give us new data with

unique characteristics that yield new scientific questions. There is no question that data

and experimental designs are changing at a rate that exceeds that of mathematical stat-

isticians. In fact, the number of statisticians that actively develop new test statistics is

decreasing as trainees opt for more exciting and lucrative fields such as data science,

where the demand for the application of statistical methods and machine learning is

exploding. This is the right time to explore artificial intelligence methods for assisting

statisticians with the automated development of test statistics.

Acknowledgements

This work was supported by National Institutes of Health (USA) grants LM012601,

AI116794, and DK112217. We would like to thank the reviewers for the

thoughtful suggestions.

References

1. Casella, G., Berger, R.L.: Statistical Inference. Duxbury Press, Australia ; Pacific Grove, CA

(2001).

2. Spector, L., Clark, D.M., Lindsay, I., Barr, B., Klein, J.: Genetic Programming for Finite

Algebras. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Com-

putation. pp. 1291–1298. ACM, New York, NY, USA (2008).

3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural

Selection. MIT Press, Cambridge, MA, USA (1992).

11

4. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enter-

prises, UK Ltd (2008).

5. Sipper, M., Fu, W., Ahuja, K., Moore, J.H.: Investigating the parameter space of evolutionary

algorithms. BioData Min. 11, 2 (2018).

6. Fortin, F.-A., Rainville, F.-M.D., Gardner, M.-A., Parizeau, M., Gagné, C.: DEAP: Evolu-

tionary Algorithms Made Easy. Journal of Machine Learning Research. 13, 2171−2175

(2012).

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic al-

gorithm: NSGA-II. IEEE Transactions on Evolutionary Computation. 6, 182–197 (2002).

8. Cox, D.R.: Present Position and Potential Developments: Some Personal Views: Design of

Experiments and Regression. Journal of the Royal Statistical Society. Series A (General).

147, 306–315 (1984).

9. Gervin, K., Hammerø, M., Akselsen, H.E., Moe, R., Nygård, H., Brandt, I., Gjessing, H.K.,

Harris, J.R., Undlien, D.E., Lyle, R.: Extensive variation and low heritability of DNA meth-

ylation identified in a twin study. Genome Res. 21, 1813–1821 (2011).

10. Hansen, K.D., Timp, W., Bravo, H.C., Sabunciyan, S., Langmead, B., McDonald, O.G., Wen,

B., Wu, H., Liu, Y., Diep, D., Briem, E., Zhang, K., Irizarry, R.A., Feinberg, A.P.: Increased

methylation variation in epigenetic domains across cancer types. Nat. Genet. 43, 768–775

(2011).

11. Chen, Y., Ning, Y., Hong, C., Wang, S.: Semiparametric tests for identifying differentially

methylated loci with case-control designs using Illumina arrays. Genet. Epidemiol. 38, 42–

50 (2014).

12. Hong, C., Chen, Y., Ning, Y., Wang, S., Wu, H., Carroll, R.J.: PLEMT: A NOVEL

PSEUDOLIKELIHOOD BASED EM TEST FOR HOMOGENEITY IN GENERALIZED

EXPONENTIAL TILT MIXTURE MODELS. J Am Stat Assoc. 112, 1393–1404 (2017).

13. Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: A New Wave: A Dynamic Approach

to Genetic Programming. In: Proceedings of the Genetic and Evolutionary Computation Con-

ference 2016. pp. 757–764. ACM, New York, NY, USA (2016).

