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Abstract- We solve the Flexible Job-Shop Problem 
(FJSP) by using dispatching rules discovered through 
Genetic Programming (GP). While Simple Priority 
Rules (SPR) have been widely applied in practice, 
their efficacy remains poor due to lack of a global 
view. Composite Dispatching Rules (CDR) have been 
shown to be more effective as they are constructed 
through human experience. In this paper, we employ 
suitable parameter and operator spaces for evolving 
CDRs using GP, with an aim towards greater 
scalability and flexibility. Experimental results show 
that CDRs generated by our GP framework 
outperforms the SPRs and CDRs selected from 
literature in 74% to 85% of FJSP problem instances. 

1 Introduction 

In today’s highly competitive marketplace, a high level of 
delivery performance has become necessary to satisfy 
customers. Due to market trends, product orders of low 
volume – high variety types have been increasing in 
demand. Hoitomt et al. [1] mentions that these products 
comprise between 50 to 75 % of all manufactured 
components, thereby making schedule optimization an 
indispensable step in the overall manufacturing process. 

The Job-Shop Scheduling Problem (JSP) is one of the 
most popular manufacturing optimization model in 
practice [2]. It has attracted many researchers due to its 
wide applicability and inherent difficulty [3]-[6]. It is also 
well known that the JSP is NP-hard [7], hence general, 
deterministic methods of search are in general inefficient. 
The nxm classical JSP involves n jobs and m machines. 
Each job is to be processed on each machine in a pre-
defined sequence, and each machine processing only one 
job at a time.  In practice, the shop-floor setup typically 
consists of multiple copies of the most critical machines 
so that bottlenecks due to long operations or busy 
machines can be reduced. Therefore, an operation may be 
processed on more than one machine having the same 
function. This leads to a more complex problem known as 
the Flexible Job-Shop Scheduling Problem (FJSP). The 
extension involves two decisions; assignment of an 
operation to an appropriate machine and sequencing the 
operations on each machine. In addition, for complex 
manufacturing systems, a job can typically visit a machine 
more than once (known as recirculation). These three 
features of the FJSP significantly increase the complexity 
of finding optimal solutions [8]. 

The classical JSP and FJSP have been solved by many 
local search methods, such as Simulated Annealing [4], 
Tabu Search [5][9][10], or Genetic Algorithms [11]-[14]. 
These previous results show that these techniques can find 
optimal or near optimal results. However, a major 
disadvantage is their huge computational cost, particularly 
when the problem size increases. In practice, dispatching 
rules have been applied to overcome these costs faced by 
the former [15]-[17]. Although dispatching rules are 
unable to fare better than the local search methods, they 
are the more frequently applied heuristics due to their ease 
of implementation and their low time complexity. 
Whenever a machine is available, a priority-based 
dispatching rule inspects the waiting jobs and selects the 
job with the highest priority to be processed next. 
Recently, the introduction of composite dispatching rules 
(CDR) have been increasingly investigated by the some 
researchers [18][19], but typically only for classical JSPs. 
These rules are the heuristic combination of single 
dispatching rules that aim to inherit the advantages of the 
former. The results show that, with careful combination, 
the composite dispatching rules do perform better than the 
single ones in the quality of schedules. 

In this paper, we investigate the potential use of GP for 
evolving effective composite dispatching rules for solving 
the FJSP with recirculation, with the objective of 
minimizing total tardiness. The ultimate purpose is to find 
rules that better human-made dispatching rules in solving 
the same problem. We intend to use them to solve the 
FJSP and the other similar problems without any 
additional algorithmic improvements. 

The remainder of this paper is organized as follows. 
Section 2 gives the formal definition of the FJSP with 
recirculation. Section 3 reviews recent related works for 
solving the JSP and FJSP using dispatching rules and a 
overview of GP. Section 4 describes our proposed GP 
framework for evolving CDRs while Section 5 analyzes 
the performance results of the CDRs obtained with GP. 
Finally, Section 6 gives some concluding remarks and 
directions for future work.* 

 

2 Problem Definition 

Similar to the classical JSP, solving the FJSP requires the 
optimal assignment of each operation of each job to a 
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machine with known starting and completion times. 
However, the task is more challenging than the classical 
one because it requires a proper selection of a machine 
from a set of machines to process each operation of each 
job. Furthermore, if a job is allowed to recirculate, this 
will significantly increase the complexity of the system 
[20]. The FJSP with recirculation is formulated as 
follows: 
• Let J = {Ji}1≤i≤n, indexed i, be a set of n jobs to be 

scheduled. 
• Each job Ji consists of a predetermined sequence of 

operations Gi = {Oi,j}1≤j≤O(i) where Oi,j denotes 
operation j of Ji and O(i) is the total number of 
operations of job Ji.  

• Let M = {Mk}1≤k≤m, indexed k, be a set of m machines. 
• Each machine can process only one operation at a 

time. 
• Each operation Oi,j can be processed without 

interruption on one of a set of machines F(Oi,j) ⊆ M. 
Therefore, we denote by Oi,j,k to be operation j of Ji 
that is processed on machine Mk and pi,j,k be its 
processing time on machine Mk. 

• Recirculation occurs when a job can visit a machine 
more than once. Formally, this implies 
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• Let Ci and di be the completion time and the due date 

of the job Ji, respectively. The tardiness of this job is 
calculated by the following formula: 

Ti = max {0, Ci - di} 
• The objective function T of this problem is to find a 

schedule that minimizes the sum of tardiness of all 
jobs (total tardiness problem): 
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If F(Oi,j) is the set of machines that operation Oi,j can 
be processed on, then the FJSP is further classified into 
two sub-problems as follows: 
• Total FJSP (T-FJSP): each operation can be 

processed on any one machine of set M: F(Oi.j) = M. 
• Partial FJSP (P-FJSP): each operation can be 

processed on one machine of subset of M:  F(Oi,,j) ⊂ 
M. 

Total tardiness is one of the major objectives in 
production scheduling. A job that is late may penalize the 
company’s reputation and reduce customer satisfaction. 
Hence, keeping the due dates of jobs under control is one 
of the most important tasks faced by companies [19]. 

In this paper, we shall assume that 
• All machines are available at time 0. 
• Each job has its own release date and due date. 
• The order of operations for each job is predefined and 

cannot be modified. 

3 Previous Works 

Dispatching rules have received much attention from 
researchers over the past decades [15]-[17]. In general, 
whenever a machine is freed, a job with the highest 
priority in the queue is selected to be processed on a 
machine or work center. A comprehensive survey on 
dispatching rules is by Panwalkar and Wafik [15] and 
Blackstone et al. [16]. Depending on the specification of 
each rule, it can be classified [15] into: 
• Simple Priority Rules 
• CDRs 
• Weighted Priority Indexes 
• Heuristic Scheduling Rules 

Simple Priority Rules (SPR) are usually based on a 
single objective function. They usually involve only one 
model parameter, such as processing time, due date, 
number of operations or arrival time. The Shortest 
Processing Time (SPT) is an example of a SPR. It orders 
the jobs on the queue in the order of increasing processing 
times. When a machine is freed, the next job with the 
shortest time in the queue will be removed for processing. 
SPT has been found to be the best rule for minimizing the 
mean flowtime and number of tardy jobs [17]. The 
Earliest Due Date (EDD) is another example of a SPR 
where the next job to be processed is the one with the 
earliest due date. Unfortunately, no SPR performs well 
across every performance measure such as tardiness or 
flow time [21]. To overcome this limitation, CDRs have 
been studied to combine good features from such SPRs. 

There are two kinds of CDRs presented in literature; 
the first type involves deploying a select number of SPRs 
at different machines or work centers. Each machine or 
work center employs a single rule. When a job enters a 
specific machine or work center, it is processed by the 
SPR that is predetermined for that machine or work 
center. For instance, Barman [21] applied three different 
SPRs to solve the flow shop problem corresponding to 
three work centers. Experimental results show that it 
obtains better results than a single SPR that is common to 
all three machines. However, this approach may not be 
suitable for a shop floor with large number of machines or 
work centers; and the best independent use of single SPRs 
is difficult to predetermine. Furthermore, it still has the 
limitation of a localized view. The second type involves 
applying the composition of several SPRs (otherwise 
known as a CDR) to evaluate the priorities of jobs on the 
queue [17]. The latter type is executed similarly to SPRs; 
when a machine is free, this CDR evaluates the queue and 
then selects the job with the highest priority. For example, 
Oliver and Chandrasekharan [17] present five CDRs for 
solving the JSP. Their results indicate that CDRs are more 
effective compared to individual SPRs. CDRs inherit the 
simplicity of SPRs while achieving some scalability as the 
number of machines increase. Furthermore, if well 
designed, CDRs can solve realistic problems with 
multiple objectives [8]. However, the challenge is to find 
a good combination of SPRs to apply to all machines or 
work centers.  



Weighted priority index rules are the linear 
combination of SPRs described above with computed 
weights [18][19]. Depending on specific business 
domains, the importance of a job determines it’s weight. 
For instance, considering n jobs with different weights w, 
where weight wi is assigned to job Ji.  The sum of the 
weighted tardiness as the objective function is given as 
follows: 
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In this paper, the weighted priority rules are not 
considered as they are a generalization of our current 
formulation of total tardiness where we have assumed 
instead that all jobs have the same weight (see Section 2). 

Heuristic rules are rules that depend on the 
configuration of the system. These rules are usually used 
together with previous rules, such as SPRs, CDRs or 
weighted priority index rules. For instance, the heuristic 
rule may use the expertise of human experience, such as 
inserting an operation of a job into an idle time slot by 
visual inspection of a schedule [15]. 

The results from recent researchers [17][21] show that 
CDRs outperform individual SPRs in minimizing the 
performance of shop floor. In this work, we focus our 
attention on finding a computational method to build 
effective CDRs; one that is based on the composition of 
fundamental measures rather than on the algebraic 
combination of SPRs. However, this may be difficult to 
enumerate manually due to the large parameter and 
operator space, hence we employ a GP framework. 

Genetic programming (GP) [22] belongs to a family of 
evolutionary computation methods. It is based on the 
Darwinian principle of reproduction and survival of the 
fittest. Given a set of functions and terminals and an 
initial population of randomly generated syntax trees 
(representing programs), the programs are evolved 
through genetic recombination and natural selection. GP 
has been applied to many different problems; from 
classical tasks, such as function fitting or pattern 
recognition, to non-trivial tasks that are competitive with 
significant human endeavours such as designing electrical 
circuits [23] or antennas [24].  

The most important feature that makes GP different 
from the canonical GA is it’s ability to vary the logical 
structure and size of evolved computer programs 
dynamically. It can therefore solve more challenging 
problems that have eluded the canonical GA due to the 
latter’s requirement of a fixed-length chromosome. 
However, GP has rarely been applied to manufacturing 
optimization; this is due to the direct permutation property 
of scheduling where jobs and/or machines can be simply 
reordered (in the case of JSP) to obtain better results. For 
instance, the chromosomes presented in [10]-[14] have 
fixed lengths, which can be evolved easily by direct 
permutation. On the other hand, GP uses a tree-based 
encoding with dynamic length; making it difficult to 
encode the JSP (for that matter, a FJSP) into a tree-based 
chromosome. Unlike previous approaches [17]-[19], [21] 
where a predefined set of SPRs were combined in 
advance by human experience, we apply GP to find 

superior constructions of CDRs which composed of 
fundamental terminals (see Table I). These discovered 
rules are then used to solve the FJSP directly; the 
advantage being, the obtained CDRs can solve the FJSPs 
in shorter computational time as compared to genetic 
algorithms [10]-[14]. Recently, GP has been used to solve 
the classical one machine tardiness problem [25]. 
However, the results of for this specific problem with a 
smaller number of parameters cannot not be applied to 
solve general scheduling problems, such as the FJSP. In 
the next Section, we will present a GP framework with an 
important number of parameters suited for the FJSP. The 
obtained results described in Section 5 are simple and 
meaningful. We believe that this GP framework could be 
used to solve other problems such as the flexible flow 
shop or open shop. 

4 Design of the GP Framework 

In GP, an individual (ie, computer program) is composed 
of terminals and functions. Therefore, when applying GP 
to solve a specific problem, they should be well designed 
to satisfy the requirements of the current problem. After 
evaluating many parameters related to the FJSP, the 
terminal set and the function set that are used in our 
algorithm are described as follows. 

4.1 Terminal set 
In job-shop scheduling, there are many parameters that 
can effect the quality of results; potentially, all of them 
can be considered to comprise a dispatching rule. 
However, in order to create a short and meaningful 
dispatching rule, only a small and sufficient number of 
parameters should be evaluated properly. They also help 
to reduce the search space and improve the efficiency of 
the algorithm. Based upon the dispatching rules involving 
due dates in [15]-[17] and our experimental works, the 
terminal set proposed in this study is given in Table I. 

 
In Table I, CurrentTime represents the time when a 

particular machine is free and starts to select a job to 
process on its queue. RemainingTime corresponds to the 
elapsed time for the current job to finish. Some previous 
dispatching rules use total processing time of each job as 
one of their parameters. However, in FJSP, an operation 
of each job can be processed on a set of machines (see 

TABLE I   TERMINAL SET 

Terminal Meaning 
ReleaseDate Release date of a job (RD) 
DueDate Due date of a job (DD) 

ProcessingTime Processing time of each operation 
(PT) 

CurrentTime Current time (CT) 
RemainingTime Remaining processing time of each 

job (RT) 
numOfOperations Number of operations of each job 

(nOps) 
avgTotalProcTime Average total processing time of each 

job (aTPT) 
 



Section 2). We normalize the average processing time of 
each operation with the following formula:  

,

, ,
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,
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where pi,j,k stands for processing time of operation Oi,j on 
machine Mk and n(F(Oi,j) represents number of machines 
that can process Oi,j. 

4.2 Function set 
Similar to other applications of GP [22]-[24] for solving 
optimization problems, we use four basic operators: 
addition, subtraction, multiplication, and division for 
creating our CDR. Furthermore, we employ a well-known 
Automatically Defined Function (ADF) (proposed by 
Koza [26]). The ADF is sub-tree which can be used as a 
function in the main tree. The size of the ADF is varied in 
the same manner as the main tree. It enables GP to define 
useful and reusable subroutines dynamically during its 
run. The results from [26] indicate that GP using ADF 
outperforms GP without ADF in solving the same 
optimization problem. The more parameters that are used 
in ADF, the more changes will be needed for GP to 
evolve good subroutines. However, it can lead to a higher 
number of generations. We limit the ADF used in our 
approach to two parameters. The operators used in the 
ADF are also the four basic operators mentioned above. 
The operators of the function set in our approach are 
given in Table II. 

 
4.3 Fitness function 

The obtained results from each generation of GP are a 
set of computer programs modeled as trees. As mentioned 
in Section 2, the objective in our study is to minimize the 
total tardiness of the FJSPs. Therefore, we propose a 
method to form a CDR from the tree-based result of GP. 
This CDR is then combined with the least waiting time 
rule [13] to evaluate the total tardiness of the FJSPs. The 
FJSP is solved by applying two processes in succession. 
The first one finds a suitable machine to process each 
operation, and the second finds a proper order of 
operations on each machine’s queue. These two processes 
are described in detail as follows.   

To find a suitable machine (routing) to process an 
operation Oi,j, we apply the least waiting time rule [13] on 
the set of setting machines that can process Oi,j. This rule 
is intended to reduce the workloads of the machines by 
balancing operations to be assigned. It is calculated by 
summing up the processing times of all the subsequent 
operations in the waiting list plus the remaining 
processing time on each machine and the processing time 

of Oi,j. Therefore, it depends on the total time this 
operation has to wait to be processed in the worst case, 
not relying only on its own processing time.  

In determining the proper order of operations on the 
queue of a particular machine, we use the CDR generated 
by GP. When a machine is freed, the generated rule is 
applied directly to the set of operations that are waiting on 
the queue of the machine. The operation with the highest 
priority is then selected to be processed on the machine. 
Figure 1 below gives an example of a dispatching rule tree 
generated by GP: 

 
Fig. 1.  Example of a GP tree with defined functions and 
terminals 

Figure 1 shows the overall structure of the generated 
tree that gives a possible CDR. The left child of progn 
shows the function-defining branch (containing the 
defun). In this case, the ADF function is defined by: 
ADF(x1,x2)=x1∗x2. The right child gives the result-
producing branch. This CDR therefore represents the 
following formula: 

( )
( ) ( , )

DD CT
DD RD ADF PR nOps

−
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Since ADF(x1,x2)=x1∗x2, we obtain: 
( )

( ) ( )
DD CT

DD RD PR nOps
−

− + ∗
 

Any tree in the genomic population of GP that contains 
our defined functions and terminals can be interpreted as a 
CDR in the same way. 

5 Experimental results 

This Section reports and analyses the empirical results for 
evaluating the efficiency of our proposed algorithms. The 
framework was implemented using C++ running on a 2 
GHz PC with 512 MB RAM. 

5.1 Test Case Generation 
Various experiments were conducted. We categorized 
these experiments into three classes: T-FJSP, P-FJSP with 

values 
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nOps 

CT − ADF 

DD RD PT 

TABLE II   FUNCTION SET 

Function Meaning 
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∗ Multiplication 
/ Division 

ADF(x1, x2) Automatically Defined Function 



50% of flexibility (P-FJSP-50), and P-FJSP with 20% of 
flexibility (P-FJSP-20). The P-FJSP with c% of flexibility 
means that less than c% of all machines are selected to 
process an operation. Number of jobs and number of 
machines range from 10 to 200 and 5 to 15, respectively. 
Processing time of each operation was drawn out of 
U((number of machines)/2, (number of machines)×2) (U 
represents the uniform distribution function). In practice, 
an operation can be processed on any of a group of 
machines that constitute a work center. Deviation of these 
processing times is ideally zero or usually small. 
Therefore, in our test cases, we set the maximum 
deviation between two operations to be 5 unit times. The 
release date of each job depends on the number of jobs in 
a particular test case. If the number of jobs is larger than 
50, the release date is drawn out of U[0,40], else it is 
taken from U[0,20]. Baker [27] proposed a formula to 
estimate the due date of a job using the TWK-method:  

1

in
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where ri and di denote release and due dates of job i 
respectively. pij presents the processing time of operation 
Oij, and c denotes the tightness factor of the due date. The 
higher the value of c, the looser is the job’s due date. We 
adapt this formula to generate due dates of jobs with a 
replacement of the parameter iqp  with iqp . 

Depending on the tightness of the due date, we 
separate the samples of each class T-FJSP, P-FJSP-50, or 
P-FJSP-20 into tight, moderate, or loose due date 
corresponding to values of c = 1.2, 1.5, and 2. We also 
generate mixed samples where each sample contains 34% 
jobs with tight due dates, 33% of jobs with moderate due 
dates, and the remaining ones with loose due dates. 
Specifically, the class T-FJSP holds 9 samples of tight due 
date, 9 samples of moderate due date, 9 samples of loose 
due date, and 9 samples of mix due date. Similarly for P-
FJSP-50 and P-FJSP-20, with 36 samples each. Each 
training set contains three classes of 108 FJSP problems 
with different number of jobs, machines and different 
tightness of jobs. Another five validation sets of similar 
compositions were generated. The average results of the 
five validation sets were then reported. 
 

5.2 Parameter setting 
Through experimentation, the set of suitable parameter 
values used in our GP framework is listed in Table III. 

We implemented Ramped half and half to generate the 
initial population of GP. This method was proposed by 
Koza [22] and it has been widely used by previous 
researchers. It divides the initial population into two parts. 
Half of the initial population contains the random 
generated trees with maximum depth (in this experiment, 
this value is 7). The remaining part of the initial 
population contains the random generated trees with depth 
values ranging from one to the maximum depth. In order 
to keep the best trees that may be destroyed by GP’s 
operators, we sorted the current population and copied 
five of them to the next generation. 

 
5.3 Data Analysis 
The best five dispatching rules that were selected from 5 
runs times of GP on the training set are given in Table IV; 
where possible, they were simplified algebraically. Each 
GP run took 12.81 hours to complete the training set. 

 
In order to compare the efficiency of the evolved rules 

to the human-made rules presented in literature, some of 
frequently used single and composite dispatching rules 
were selected [16]: 

• FIFO (First In First Out). 
• SPT (Shortest Processing Time). 
• EDD (Earliest Due Date). 
• MDD (Modified Due Date) = max{CT+PTi, DDi} 

[18]. 
• SL (Slack Time) = DDi – CT – RTi [17]. 
The selected rules are also combined with the least 

waiting time rule [13] to evaluate the total tardiness of the 
FJSPs (see Section 4.3).  

Table V below compares the results of Rule_1 and the 
five selected dispatching rules for solving T-FJSP with 
different due date tightness. 

TABLE III   CHOICE OF PARAMETER VALUES 

Parameters Value 

Population Size 100 
Number of Generations 200 

Creation Type Ramped half and half 
Maximum depth for creation 7 
Maximum depth for crossover 17 
Crossover Probability 100% 
Swap Mutation Probability 3% 
Shrink Mutation Probability 3% 
Number of best rules copy to new 
generation 

5 

TABLE IV   GP GENERATED DISPATCHING RULES 

Rule Expression 

Rule_1 aTPT ∗ (CT +RD + PT − 3 )+ (CT ∗ PT + RD 
+ nOps)  − (nOps ∗ PT + 2PT+CT+1) 
 

Rule_2 ( PT+ CT+ RD + 2 ) ∗ (RT+  PT + aTPT) 
 

Rule_3 CT ∗ aTPT + 5nOps + 3RD 
 

Rule_4 DD ∗ (RD + aTPT + RT + PT) 
 

Rule_5 ( aTPT + PT) ∗ (CT + RD) + (DD - RD) 
 



 
Results from Table V show that the FIFO rule 

performs poorly in comparison with the others. This is 
because the due dates of jobs are ignored by FIFO, and 
therefore the rule does not focus on minimizing total 
tardiness. The composite dispatching rule SL can obtain 
slightly better results than FIFO but its results are still 
poor in comparison to the remaining rules. Table V 
indicates that MDD outperforms SL. From the definition 
of MDD and SL described above, we observe that 
although these two composite rules contain similar 
parameters (DD and CT), the gap between the results of 
the two rules are quite large due to different algebraic 
combinations of the parameters. This emphasizes that the 
functions that combine the rules can significantly affect 
the results. Blackstone et al. [16] mentioned that the SPT 
seems to be the best rule when the problem does specify 
due dates or have very tight due dates for a classical job 
shop. When the problem specifies loose or moderate due 
dates then EDD seems to be the best. However, the results 
presented in Table V indicate the contrary, that EDD 
outperforms SPT for all classes of tight due-dates when 
solving the FJSP. EDD is the best rule among five rules 
selected from literature (FIFO, SPT, EDD, MDD, SL) in 
solving T-FJSP. This could be explained by the flexibility 
feature of FJSPs where an operation can be processed on 
one of a group of machines. When a FJSP specifies tight 
due dates, each job in this problem still has alternative 
routes to take through the system, not just one route as in 
the classical JSP. Therefore, if the job on the queue is 
selected by EDD, it has more likely to finish on time. 
Although the other rules such as SL or MDD also contain 
the parameter - due date (DD), EDD obtains almost 50% 
better results than these rules. This again demonstrates 
that if an ineffective composite dispatching rule is applied 
to specific problems, it may achieve worse results than the 
single ones. The best performing rule in Table V is the 
generated rule - Rule_1. This rule performs slightly better 
than EDD in solving  problems with tight or moderate due 
dates, but for the loose and mix due date loads, it is better 
than EDD.  

Table VI and Table VII below compares the 
effectiveness of the generated rule - Rule_1 to the five 
dispatching rules from literature for solving the FJSP 
problems with different tightness on machine assignment. 
The values in two tables show that when the shop is less 
flexible, there are more tardy jobs. The observed quality 
of the rules in solving these FJSP problems remain similar 
to results in Table V. The EDD still outperforms the other 

dispatching rules in solving the P-FJSP with 50% and 
20% flexibility. Rule_1 remains the best for solving the 
same problems. Table VI and Table VII also demonstrates 
that when the shop is less flexible, Rule_1 is still much 
better than EDD on loose and mix due date problems. 

 

 
Table VIII summarizes and sorts the results for 

average tardiness when using Rule_1 and for other rules 
in solving the FJSP to minimize total tardiness. Note that 
the value given in each column is the average tardiness 
value for 180 different instances.  

 
In general, the FIFO obtains the worst results among 

the five selected rules from literature. The EDD emerges 
to be the best among the selected rules. Its performance is 
found to be significantly better than the SPT in all kinds 
of due date tightness. This finding is quite interesting 
because the existing literature notes that the SPT is an 
efficient rule under highly loaded job-shop conditions 
[17]. The best performing rule is the evolved rule - 
Rule_1. The values in bold-faced identify the instances 
where Rule_1 is observed to be fare better than the 
remaining ones. When the flexibility of the shop is tighter, 
Rule_1 still achieves better results than EDD.  

We now compare the other generated rules against the 
most effective rule (EDD) among the selected rules from 

TABLE VII   COMPARING PERFORMANCE OF DISPATCHING 
RULES ON P-FJSP WITH 20% FLEXIBILITY 

Rule Tight Moderate Loose Mix 

FIFO 63848.09 61366.56 56797.36 61628.31 
SL 61611.89 54097.24 42499.18 51239.93 
SPT 52274.91 50422.31 44913.31 49603.13 
MDD 49144.64 45729.60 38990.09 45431.42 
EDD 36797.33 34308.91 29692.22 35264.09 
Rule_1 36358.47 33795.56 29156.11 33746.71 

 

TABLE VI   COMPARING PERFORMANCE OF DISPATCHING RULES 
ON P-FJSP WITH 50% FLEXIBILITY 

Rule Tight Moderate Loose Mix 

FIFO 59984.31 58119.93 54183.93 57233.27 
SL 59812.00 53131.51 43076.04 49119.18 
SPT 48778.44 46326.53 42702.47 45437.40 
MDD 45497.78 41904.98 36446.64 40933.71 
EDD 33276.33 30891.76 27110.93 31068.89 
Rule_1 33233.16 30901.20 27035.47 30090.89 

 

TABLE V   COMPARING PERFORMANCE OF DISPATCHING RULES 
ON T-FJSP 

Rule Tight Moderate Loose Mix 

FIFO 56698.04 54494.69 50991.18 54037.56 
SL 57035.16 50716.69 40837.24 47317.84 
SPT 45019.78 43101.13 39024.53 42762.09 
MDD 41747.31 38426.49 33294.87 38362.49 
EDD 30884.33 28594.82 24827.18 29111.04 
Rule_1 30868.89 28588.07 24813.33 28156.51 

 

TABLE VIII   COMPARING RULE_1 WITH OTHER SINGLE AND 
COMPOSITE RULES 

Rule T-FJSP 
P-FJSP with 
50% 
flexibility 

P-FJSP with 
20% 
flexibility 

FIFO 54055.37 57380.36 60910.08 
SL 48976.73 51284.68 52362.06 
SPT 42476.88 45811.21 49303.42 

MDD 37957.79 41195.78 44823.94 
EDD 28354.34 30586.98 34015.64 
Rule_1 28144.20 30315.18 33264.21 



literature. Table IX shows the proportion of instances that 
the EDD had fared poorer and better than the five 
generated rules. The improvement by using the generated 
rules was significant overall. They obtained better results 
for 74% to 85% of problem instances when compared to 
EDD. In addition, Rule_1 outperformed the other rules in 
terms of the proportion of instances that it solved. It can 
be observed that at least 85% of instances solved by 
Rule_1 fared better than those solved by the most 
effective human-made rule EDD. In this sense, it can be 
concluded that the evolved rules produced by our GP 
framework is very competitive with the human-made 
rules selected from literature. 

 
In order to understand why these evolved rules are 

effective in solving the FJSP to minimize total tardiness, 
we now take a closer look at the combination of their 
parameters. While single rules consider only one 
parameter of the shop, the evolved rules employ almost all 
the important parameters. However, the combination of 
these parameters plays an essential role to the success of 
the rule. For instance, the composite rules SL and MDD 
combine the parameter DD with other parameters CT, PT, 
and RT but they fail to get better results than the EDD 
with just one parameter DD (see Table VIII). The 
parameters aTPT and RD could be important for solving 
the problem. They are present in all the rules and 
contribute mainly to change the priority of one operation 
to be selected in a queue. For example, Rule_2 in Table 
IV was constructed with two terms. The first term 
operates in favor of release date RD and processing time 
PT while the second term runs in favor of average total 
processing time aTPT and remaining time RT. When the 
release date of a job is small, this means that the job is 
released early, the first term produces small results. 
Similarly, when the remaining time of the job is small, the 
second term produces a small result. Both parameters help 
to decrease the value of the ratio and assign a high priority 
to the job. It is well known that the SPT rule is effective in 
minimizing the number of tardy jobs [17]. Two terms of 
this rule also contains PT and aTPT that are in favor of the 
SPT. Therefore, they also contribute to improve the 
efficacy of the rule.  

6 Conclusion and Future Works 

In this paper, a GP-based approach for discovering 
effective composite dispatching rules for solving the FJSP 

has been presented and analyzed. CDRs have been studied 
widely by previous researchers [15]-[17]. However, all of 
them were constructed based on the experience of a 
human scheduler. We employ a GP-framework to 
generate a CDR based on fundamental terminals that can 
effectively solve the FJSP (together with a machine 
assignment rule) to minimize total tardiness. Five 
composite dispatching rules were generated by GP over a 
large training set. These rules are based on the 
combination of parameters such as processing time, 
release date, due date, current time, number of operations, 
and average total processing time of each job using basic 
arithmetical operators. Extensive simulations have been 
carried out to evaluate the performance of the five 
evolved rules over varying degrees of problem 
flexibilities and due date tightness. Five other popular 
rules selected from literature were also evaluated as 
performance benchmarks. It was found that EDD is 
significantly better than the other rules from literature. 
However, all the generated rules found by GP 
outperformed the EDD for 74% to 85% of the problem 
instances. 

Several possible extensions of this study can be 
developed. Similar to other applications of GP where the 
parameters are sensitive, denser terminal sets and more 
varied ADRs should be investigated to improve the 
generated rules. The approach of this study can be applied 
to find the efficient composite dispatching rules for other 
similar problems, such as a flow shop or the classical job 
shop. The rules evolved from this GP framework are still 
quite complex to simplify. Therefore, a simplification 
algebraic simplification tool could be used to make the 
formula more meaningful. Consideration could even be 
given to including the number of parameters used as a 
measure for minimization. Finally, the redundant 
parameters in each evolved rule can be examined further 
to get better results. 
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