
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=nnmr20

Download by: [Simon Fraser University] Date: 29 July 2016, At: 13:21

Journal of New Music Research

ISSN: 0929-8215 (Print) 1744-5027 (Online) Journal homepage: http://www.tandfonline.com/loi/nnmr20

Automatic Synthesizer Preset Generation with
PresetGen

Kıvanç Tatar, Matthieu Macret & Philippe Pasquier

To cite this article: Kıvanç Tatar, Matthieu Macret & Philippe Pasquier (2016) Automatic
Synthesizer Preset Generation with PresetGen, Journal of New Music Research, 45:2, 124-144,
DOI: 10.1080/09298215.2016.1175481

To link to this article: http://dx.doi.org/10.1080/09298215.2016.1175481

Published online: 01 May 2016.

Submit your article to this journal

Article views: 203

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=nnmr20
http://www.tandfonline.com/loi/nnmr20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/09298215.2016.1175481
http://dx.doi.org/10.1080/09298215.2016.1175481
http://www.tandfonline.com/action/authorSubmission?journalCode=nnmr20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=nnmr20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/09298215.2016.1175481
http://www.tandfonline.com/doi/mlt/10.1080/09298215.2016.1175481
http://crossmark.crossref.org/dialog/?doi=10.1080/09298215.2016.1175481&domain=pdf&date_stamp=2016-05-01
http://crossmark.crossref.org/dialog/?doi=10.1080/09298215.2016.1175481&domain=pdf&date_stamp=2016-05-01

Journal of New Music Research, 2016
Vol. 45, No. 2, 124–144, http://dx.doi.org/10.1080/09298215.2016.1175481

Automatic Synthesizer Preset Generation with PresetGen

Kıvanç Tatar, Matthieu Macret and Philippe Pasquier

Simon Fraser University, Vancouver, Canada

(Received 12 September 2015; accepted 24 March 2016)

Abstract

We refer the task of finding preset(s) (i.e. set(s) of synthe-
sizer parameters) that approximates a target sound best, as the
preset generation problem. PresetGen addresses this problem
regarding the real world synthesizer, OP-1. The OP-1 consists
of several synthesis blocks, and it is not fully deterministic. We
propose and evaluate a solution to preset generation using a
multi-objective Non-dominated Sorting-Genetic-Algorithm-
II. PresetGen handles the full problem complexity and returns
a small set of presets that approximate the target sound best
by covering the Pareto front of this multi-objective optimiza-
tion problem. Moreover, we present an empirical evaluation
experiment that compares the performance of three human
sound designers to that of PresetGen. The results show that
PresetGen is human-competitive.

Keywords: sound synthesis, machine learning, audio analy-
sis, instruments

1. Introduction

Exploration of a synthesizer’s sound space requires theoretical
and empirical expert knowledge. Composers have to abandon
making music to concentrate on the task of programming a
synthesizer, i.e. tuning parameters to create the desired sound.
Regarding a complex synthesizer, the size of the parameter
search space can quickly become large and challenging for
users to handle manually. Preset generation to approximate
a target sound, even in a principled fashion, can become a
time-consuming activity.

Synthesizer manufacturers often provide the user with a
large number of parameter settings, also called presets. Presets
are starting points for users to explore the synthesis sound
space. However, even if these presets are meant to convey the
variety of sounds that the engine is capable of generating, they
fail to cover the entire synthesis sound space. In this work, we

Correspondence: Kıvanç Tatar, School of Interactive Arts and Technology, 250 - 13450 - 102nd Avenue, Surrey, British Columbia, V3T 0A3
Canada. E-mail: ktatar@sfu.ca

focus on the problem of synthesizer preset generation which
consists in finding the preset that approximates a target sound
best. We aim to provide an automatic system, PresetGen, to
users so that they can generate their own presets for their target
sounds without dealing with complex parameter settings.

This work examines the use of Evolutionary Computa-
tion (EC) for the preset generation problems of a modern
commercial synthesizer, the OP-1. The OP-1 (developed by
Teenage engineering (n.d.)) is an all-in-one portable synthe-
sizer, sampler and controller. The OP-1 introduces additional
challenges compared to previously studied synthesizers
(Bozkurt & Yüksel, 2011; Horner & Beauchamp, 1996;
Horner, Beauchamp, & Haken, 1993; Lai, Jeng, Liu, & Liu,
2006; Mitchell, 2012; Riionheimo & Välimäki, 2003;
Schatter, Züger, & Nitschke, 2005; Vuori & Välimäki, 1993).
OP-1 contains several synthesis engines, effects (FX) and
Low-Frequency-Oscillators (LFOs), which make the param-
eter search space larger and complex. Furthermore, the OP-1
is not fully deterministic, therefore, the sound generated for a
given preset is slightly different at each generation.

In this study, we base our evaluation design on Johnson’s
(2002) recommendation about the experimental analysis of
algorithms. We focus on ensuring reproducibility and com-
parability. Moreover, we use two types of sound similarity:
computational sound similarity and perceptual sound similar-
ity. PresetGen uses computational sound similarity to generate
presets that approximates a target sound (see Section 5.4).
We focus on perceptual sound similarity in our empirical
evaluation experiment (see Section 7).

Section 2 presents a general background on EC and explains
a variation of the canonical Genetic Algorithms (GA), called
the Non-dominated Sorting Genetic Algorithm- II (NSGA-
II). Section 3 provides a literature review of previous works
on applications of EC to solve the problem of synthesizer
preset generation with various synthesis techniques. Section
4 describes the OP-1 synthesizer and analyses the problem
of generating synthesizer presets that match a given target

© 2016 Informa UK Limited, trading as Taylor & Francis Group

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

http://www.tandfonline.com

Automatic synthesizer preset generation with PresetGen 125

sound. We also emphasize the difficulties that are unique to the
OP-1 synthesizer. We describe PresetGen’s system design in
Section 5. Section 5.1 presents the methodology we designed
to solve the preset generation problem.

Section 6.1 describes the sound collection that we used
to study the performance statistics of PresetGen. We explain
why we chose certain 24 sounds in the two categories of con-
trived and non-contrived sounds. The term contrived sounds
refers to the target sounds generated by the synthesizer itself;
in this case, OP-1. Twelve of these sounds were contrived
sounds, the other 12 were non-contrived sounds. Section 6.2
shows the correlation between PresetGen’s fitness function
and the distance between target preset and the matching preset
for a contrived sound. Section 6.3 presents PresetGen’s per-
formance statistics by running PresetGen 10 times for each
target sound. First, we use contrived target sounds to assess
the ability of PresetGen to retrieve the target synthesizer’s
parameters.We study PresetGen’s performance on Fast Fourier
Transform (FFT), Envelope and Short-Time Fourier Trans-
form (STFT) objectives with the results of the contrived sound
experiments. Second, we present the performance statistics
of PresetGen with non-contrived sounds. Section 7 presents
the empirical evaluation of OP-1 preset generation for non-
contrived sounds. In the empirical evaluation experiment, we
study if PresetGen can improve a preset generation task of
non-contrived sounds regarding the quality and time com-
plexity.

2. Background on evolutionary computation

2.1 Background on genetic algorithms

Inspired by Darwinian evolution, EC is a family of paral-
lel search algorithms that solve computational optimization
problems. EC employs the ideas of survival of the fittest,
individuals and populations, genetic inheritance, crossover,
mutation, reproduction, recombination, elitism selection and
generation. EC uses phenotype and genotype dichotomy to
represent a real-world phenomenon (Sivanandam & Deepa,
2007). Genetic Algorithm (GA) is a branch of EC, introduced
by Holland (1975).

In GA abstractions, an individual (genotype) is a candidate
solution (phenotype) to a given problem. A population is a
set of individuals (solutions). GAs represent an individual as
bitstrings or set of numbers. GAs assign a fitness value to
each individual using a fitness function. These fitness values
indicate the performance of individuals (solutions) for the
problem of interest. Each generation, crossover and mutation
genetic operators create new individuals. Selection and repro-
duction genetic operators ensure that GAs keep individuals
with higher performance of solving the problem. Moreover,
GAs implement elitism to preserve the genotype diversity in
the population (Sivanandam & Deepa, 2007). GAs continue
the search for the optimum solution until the algorithm reaches
a stopping criteria, such as maximum number of generations
or a user defined fitness value.

2.2 Multi-objective genetic algorithms

Multi-objective GAs (MO-GAs) optimize multiple objective
functions simultaneously. Comparing two individuals in an
MO-GA population, an individual dominates another solution
if it is better for one or more fitness objectives without being
worse for the remaining fitness objectives. MO-GAs return
a set of Pareto-optimal solutions. In a set of Pareto-optimal
solutions, a solution cannot dominate another solution. The
Pareto front is the set of solutions that are Pareto-optimal at
a given moment. The cumulative Pareto front includes all the
Pareto-optimal solutions encountered in an MO-GA run1.

In this study, we implement an MO-GA, called NSGA-II
(Deb, Pratap, Agarwal, & Meyarivan, 2002). NSGA-II has
become the standard approach solving multi-objective prob-
lems. In the next subsections, we define the notion of non-
dominated sorting and crowding distance, and describe how
they are used in the main loop of the NSGA-II to converge
toward an optimized Pareto front.

2.2.1 A non-dominated sorting approach

We divide an MO-GA population into non-dominated fronts
(subsets) in which individuals do not dominate each other.
NSGA-II sorts the population in non-dominated fronts for
each generation.

Let’s consider a population of size N and M objectives.
First, the algorithm compares each individual with every other
individual in the population to find if it is dominated. Then, the
non-dominated individuals constitute the first non-dominated
front. We temporarily exclude the individuals in the first non-
dominated front and repeat the above procedure to find the
second non-dominated front. The algorithm uses the same
procedure for finding third and higher levels of non-dominated
fronts. The first non-dominated front is the Pareto front. Each
generation, PresetGen adds the individuals in the Pareto front
to the cumulative Pareto front.

Regarding the computational complexity, the worst case
is when there are N fronts and one solution in each front.
To sort the population in non-dominated fronts, each indi-
vidual is compared with others to find if it is dominated.
This procedure requires O(M N) computations. Then, this
computation is repeated for all individuals in the popula-
tion. This requires O(M N 2) computations. Then, there are N
fronts in the worst case. Hence, the computational complex-
ity is O(M N 3). NSGA-II uses a fast non-dominated sorting
approach. Considering an individual (p) in an MO-GA popu-
lation, this approach assigns a non-domination level (n p) and
a set of dominated individuals (Sp) to each individual in the
population. Using n p and Sp, NSGA-II requires O(M N 2)

computations (Deb et al., 2002).

1The cumulative Pareto front is referred as Pareto front Hall of Fame
in Distributed Evolutionary Algorithms in Python (DEAP) NSGA-II
implementation (Fortin, De Rainville, Gardner, Parizeau, & Gagné,
2012) (see Section 5.7).

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

126 K. Tatar et al.

2.2.2 Diversity preservation

Along with convergence to the Pareto-optimal set, we design
PresetGen to maintain a high spread of diversity in the solution
set. NSGA-II assigns to every individual a crowding distance
(Deb et al., 2002). Crowding distance calculation is as follows:

(1) Sort the population along each fitness objective. We
end up with different rankings of the same population
for each fitness objective. xi j is the j th objective value
of the i th individual in the population sorted along the
j th objective.

(2) Assign an infinite distance value to the boundary
solutions—the individuals with the smallest and the
largest fitness value along that objective.

(3) Calculate the crowding distance of the remaining
individuals. For each fitness objective, d j (x(i−1) j , xi j)

represents the Euclidian distance between the j th
objective fitness values of individuals i − 1 and i .
Calculate the i th individual’s crowding distance along
the j th objective with the formula,

|d j (x(i−1) j , xi j) − d j (xi j , x(i+1) j)|
f j,max − f j,min

, (1)

where f j,max and f j,min refers to the corresponding
objective’s maximum and minimum fitness value in
the population.

(4) Assign a crowding distance to each individual by sum-
ming an individual’s crowding distances along each
fitness objective.

Equation 2 summarizes the crowding distance calculus for
an individual in the population.

d(xi) =
Nobj∑
j=1

|d j (x(i−1) j , xi j) − d j (xi j , x(i+1) j)|
f j,max − f j,min

, (2)

where Nobj is the number of objectives.
The introduction of crowding distance provides that the

boundary solutions are more likely to be kept in the next
generation (see following section for more details).

2.2.3 NSGA-II main loop

We present the NSGA-II procedure in Figure 1 First, a popula-
tion P0 of size n pop is randomly initialized. Then, the fitnesses
of all individuals are evaluated using the fitness function.
NSGA-II sorts the population using non-domination levels
assigned to each individual. Using the algorithm described in
Section 2.2.2, a crowding distance is also calculated for each
individual.

Contrary to the canonical GA, NSGA-II uses a tourna-
ment selection operator based on the dominance between two
individuals. If none of the two individuals dominate the other,
the selection is made based on the crowding distance. NSGA-
II prioritizes individuals with higher crowding distance. The
recombination and mutation operators are used to create an

Fig. 1. NSGA-II procedure (Deb et al., 2002).

offspring population Qt of size n pop. A combined population
of Pt ∪ Qt is considered. This population is sorted according
to non-domination. Since all previous and current population
individuals are included in Pt ∪ Qt , elitism is ensured. Solu-
tions belonging to the best non-dominated set F1 are from the
combined population. F1 is passed to the next generation with
the highest priority. If the size of F1 is smaller than n pop, we
definitely choose all members of the set for the new population
Pt+1. The remaining members of the new population (Pt+1)
are chosen from subsequent non-dominated fronts in the order
of their ranking. This procedure is continued until no more
sets can be completely included. Say that the set Fn is the
last non-dominated set beyond which no other set can be
accommodated. The count of solutions in all sets from F1 to
Fn is larger than the population size n pop. To choose exactly
n pop population members, we sort the solutions of the last
front by crowding distance in decreasing order and choose
the best solutions needed to obtain a population size of n pop.

3. Background on evolutionary computation for
sound synthesis

Regarding the applications of EC in sound synthesis, we start
our literature review with optimization problems of relatively
low complexity to more general problems of higher com-
plexity, involving modern synthesizers that embed multiple
complex synthesis engines.

The complexity of the preset generation problem can vary
tremendously according to the number and nature of the syn-
thesis parameters to search. First efforts focused on optimiz-
ing a limited number of synthesis parameters. Horner and
Beauchamp (1996) studied preset generation with additive
synthesis. They used GA to find how many breakpoints they
needed to match a target sound on their piecewise-linear
approximation of additive synthesis amplitude and frequency
envelopes. The number of oscillators to use and their frequen-
cies were not determined by the GA, but through spectral
analysis.

Chan, Yuen, and Horner (1996) implemented GA with the
discrete summation and hybrid sampling wavetable model
synthesis method to match a musical instrument tone. The
hybrid sampling wavetable method uses sampling for the
attack of a sound, and wavetable synthesis to gradually change

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

Automatic synthesizer preset generation with PresetGen 127

sustain and release. This method can synthesize sounds with
a dynamic spectrum using multiple wavetables. Chan et al.
(1996) used this synthesis method as a spectral interpolation
approach on the problem of preset generation. GA is imple-
mented to determine the basis spectra and the best amplitude
envelope for the spectral interpolation.

Wakefield and Mrozek (1996) used subtractive synthesis
to create artificial reverberation. A GA was used to search
for low-order filter parameters so that the generated impulse
response best matched that of a target room transfer function.

Horner et al. (1993) used a GA to optimize several freq-
uency modulation (FM) synthesis parameters: the modulation
indices, carrier and modulator frequencies. The spectral error
between the original and target spectra served as a fitness
function in guiding the GA’s search for the best FM parameters
to mimic instrumental sounds. In our previous work, we used a
similar technique to optimize modulation indices, carrier and
modulator frequencies for Modified FM (ModFM) synthesis
(Macret, Pasquier, & Smyth, 2012).

Vuori and Välimäki (1993) applied a GAto estimate param-
eters of a non-linear physical flute modelling synthesis. The
genotype of this system presented eight different parameters
of the physical model. The spectral error between the orig-
inal and matched spectra served as the fitness function. The
authors reported that the algorithm converged smoothly and
effectively towards the target sound.

Bozkurt and Yüksel (2011) conducted synthesizer preset
generation experiments with GAs in application to multiple-
modulator FM synthesis. Contrary to the FM synthesis sys-
tems previously presented (Horner et al., 1993; Macret et al.,
2012), their GA implementation included all parameters that
control their FM synthesis method.

Mitchell (2012) compared three algorithms—Multi-
member Evolution Strategy (such as 1+4), Multi-start (1+1)
Evolution Strategy and Clustering Evolutionary Strategy
(CES)—to generate presets for FM synthesizers. CES clus-
ters the population at the beginning of each iteration using
k-means clustering. This parent population re-clustering
ensures that convergences on the same niche merge to form a
single cluster. Mitchell (2012) stated that this was beneficial
in multi-modal search spaces (see Section 4). The synthesis
architecture consists of parallel FM synthesis blocks. The
number of these blocks was also another parameter to be opti-
mized. This implementation used Short-Time Fourier Trans-
form (STFT) in the fitness function. Mitchell (2012) divided
the evaluation of these algorithms into two: non-changing
static tones and time-varying dynamic sounds. Considering
these three algorithms, Mitchell (2012) concluded that CES
performed the best in the experiments.

Yee-King and Roth (2008) used a GA to generate presets
of Virtual Studio Technology instruments (VSTi) to match a
given target sound. This implementation did not include VST
FXs. The system is called SynthBot. Although VSTi include
more complex synthesis architectures than former studies, the
OP-1’s particular synthesis architecture introduces more com-
plexity to the preset generation problem. We explain these new

challenges in Section 4. SynthBot uses single objective of the
sum squared error between the target sound’s and the matching
sound’s Mel Frequency Cepstrum Coefficients (MFCCs) in its
fitness function. Trials show that the single objective approach
gives unsatisfactory results in the case of OP-1. We present
results of our final multi-objective design in Section 5.

EC methods are also implemented to evolve synthesizer
architectures in conjunction with the synthesizer presets
(Garcia, 2001; Macret & Pasquier, 2014; Takala, Hahn, Gritz,
Geigel, & Lee, 1993; Wehn, 1998). These studies implement
GA, Genetic Programming (GP) and Coevolutionary Genetic
Programming. However, the evolution of synthesis architec-
tures is out of the scope of this paper.

4. The OP-1 synthesizer

The OP-1 is an all-in-one portable synthesizer, sampler and
controller developed by Teenage Engineering (TE) (n.d.) (Fig-
ure 2). Figure 3 shows an overview of the OP-1’s synthesis
architecture. TE provided us with a C++ library that embeds
the functionalities of the OP-1. We had access to seven differ-
ent sound synthesis engines (FM, Digital, DrWave, String,
Cluster, Pulse and Phase), four different FX (Delay, Grid,
Punch, Spring) and three different LFOs (Tremolo, Value, El-
ement). In the following, the parameters selecting the engine,
FX and LFO will be referred to as type parameters. Only
one engine, one effect and one LFO can be used at a given
time to produce a sound. An ADSR envelope is also always
applied to the sound. Once chosen, the synthesizer engine,
FX, LFO and ADSR can each be controlled individually by
four parameters, using four colour-coded knobs. We refer
the parameters controlling the knobs as knob parameters.
The knob parameters are mapped to integers ranging from
a minimum of 0 to a maximum of 32,767, corresponding to
the fine-tuning mode of the OP-1. The OP-1 has 24 physical
keys and it is possible to change the octave from −4 to 4.
Therefore, 120 different keyboard keys (8 × 12 + 24) are
available. We refer to a set of OP-1 knob parameters and OP-
1 type parameters as an OP-1 preset. More details about the
OP-1 can be found on the Teenage engineering (n.d.) website.

Equation 3 gives the number of different possible presets.

Neng × NL F O × NF X × N Nknobs×Nt
k × Nkeys, (3)

where Neng is the number of engine types, NL F O is the number
of LFO types, NF X is the number of FX type, Nt is the number
of modules that can be controlled by knobs (engine, LFO, FX
and ADSR), Nk is the number of possible integer values for
each knob and Nkeys is the number of keys. Their numerical
values are given in Table 1 Then, an estimate of the total
number of possible combinations for the OP-1 synthesizer is
1076.

Searching the synthesizer parameters space to generate a
preset that can match a given target sound has all the char-
acteristics of a real-world problem. First, the search is very
large (1076 possible different combinations). By comparison,
the number of atoms in the observable universe is estimated at

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

128 K. Tatar et al.

Fig. 2. The OP-1 synthesizer by Teenage Engineering.

Fig. 3. The OP-1’s modular synthesis architecture.

Table 1. Synthesizer parameters complexity.

Neng NL F O NF X Nk Nknobs Nt Nkeys

7 3 4 32767 4 4 120

1080. Second, the OP-1 synthesizer is not fully deterministic.
The output sound is slightly different each note generation,
which induces noise in the evaluation. This non-determinism
can slow down or even mislead the search. We conducted
two experiments to show the non-determinism of the OP-1
and results are available online (Tatar, Macret, & Pasquier,
2015). Third, the search space is multi-modal. For example,
switching from one engine to another completely changes
the nature of the output sound. As a result, fitness values
substantially change, causing a discontinuity in the fitness
landscape. This multi-modality also modifies the mapping of
the knob parameters. For example, the knob parameters for
the FM engine do not map to the same synthesis parameters
as the knobs parameters for the Digital engine. Trials showed
that there are a large number of local minima (see Section
6.2.1). For instance, it is often possible to get a similar level
of sound approximation using two different engines. Given
these problem characteristics, it is not conceivable to use a
simple optimization technique such as hill climbing or greedy
algorithm to find a good set of parameters to match a given
target sound. These techniques are highly dependent on the
initial conditions and do not scale well to large and difficult
search spaces (Roth, 2011).

5. System design

5.1 Methodology

As described in Section 2.2, GAs are especially well adapted to
the characteristics of our problem. First, GAs scale very well
to the large and complex search space induced by the OP-1.
Contrary to gradient search methods, they are less susceptible
to converge prematurely to a local optimum (Rocha & Neves,
1999).

Second, GAs also perform well in search spaces where the
evaluation is approximative or noisy (Jin & Branke, 2005), as
is the case with the OP-1 and its non-fully deterministic output.
Adjustable selection pressure makes it possible to keep diver-
sity in the population. A large number of individuals are eval-
uated for each generation. Because mutation and crossover
are stochastic operators, it is common for an individual to
be rediscovered several times during the evolution. The fact
that PresetGen re-evaluates and rediscovers an individual,
reduces the effect of the noise in the evaluation due to the
non-determinism of OP-1.

GAs are complex algorithms with a large set of parameters
to tune (population size, stopping criteria, choice of the gen-
etic operators). We explored several options to find the best
configuration for the GA. In the following sections, we refer
to the target sounds generated using the OP-1 as contrived
sounds (Mitchell & Creasey, 2007). Using contrived sounds
as target sounds has two advantages. First, it ensures that
a solution exists. Second, we can measure the performance
of the algorithm by calculating its distance to the optimal
solution.

5.2 Representation of OP-1 presets

PresentGen implements a string of 257 bits as the chromo-
some representing an OP-1 preset. PresetGen uses the Gray
code to encode the OP-1 parameters. Barbulescu, Watson,
and Whitley (2000) show that Gray code representation has
benefits to escape local minima for parameter optimization
problems. In the Gray code representation, two successive
values differ by only one bit. The number of distinctly possible
bit strings is then 2257 = 10257 log10(2) ≈ 1077. In Section

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

Automatic synthesizer preset generation with PresetGen 129

4, we calculated that the number of distinct possible OP-1
presets have an order of magnitude of 1076. The difference
(a factor of 10) between these two orders of magnitude is as
follows. When the number of values to encode is not power of
2, the binary encoding encodes for more values than necessary.
For example, we have to encode 120 different keys in our
chromosome (see Table 1). With 6 bits, it is possible to encode
26 = 64 different keys and with 7 bits, 27 = 128 different
keys. Then, we chose to use 7 bits and applied a scaling
function to keep the decoded integers between 0 and 119.
Hence, this difference of 8 between the number of keys to
encode and the number of possible distinct bit strings (using
7 bits) causes the difference in the orders of magnitude.

5.3 Genetic operators

Losing diversity during the evolution is a normal phenomenon
given that we apply a selection pressure on the population.
However, a lack of diversity can lead to premature conver-
gence because there is not enough genetic material to ex-
plore the fitness landscape. One reason for the loss of diver-
sity is the recombination of identical chromosomes. Indeed,
when a given chromosome is selected twice for crossover,
two offsprings identical to their parents are produced. This
phenomenon causes the diversity to go down. To avoid this
situation, we apply a crossover operator that tests the parent
chromosomes before recombining them. If they are identical,
the first offspring will be a copy of the parents and the second
offspring will be a new randomly generated chromosome. This
simple technique is shown to be efficient in slowing down the
diversity loss and prevent premature convergence (Rocha &
Neves, 1999). PresetGen uses a two-point crossover and a
crossover rate of 60%.2

The mutation operator participates in both exploration and
exploitation (local search). Flipping one bit in a Gray code can
either lead to a small change in the coded parameter (local
search) or a relatively large change in the coded parameter
(exploration, by jumping to another area of the fitness land-
scape). Table 2 shows two examples of mutation. Flipping one
bit in the Gray code can either lead to a single increment in
the integer value (4095 to 4096), or lead to a large change in
the integer value (4095 to 2048). This flip-bit mutation oper-
ator is applied to every individual in the population, whether
crossover is applied or not. In our system, the probability
of flipping k bits in an Nbits long chromosome follows a
binomial law with p = 1/Nbits and n = Nbits (Deb et al.,
2002).

The population’s diversity is critical for the success of the
GA. We explain how NSGA-II preserves the diversity in Sec-
tion 2.2. Furthermore, we use the following approaches to
measure the diversity:

2Crossover rate is the probability of the crossover operator to be
applied on two individuals during recombination (Sivanandam &
Deepa, 2007).

Table 2. Results for the benchmark.

Integer Binary Gray

4095 0111111111111 0100000000000
4096 1000000000000 1100000000000
2048 0100000000000 0110000000000

(a) The proportion of unique individuals for each gen-
eration

(b) The numbers of each module types for each gener-
ation

(c) The knob parameters standard deviation for each
generation

(d) The distance standard deviation for each generation

Our experiments showed that our approach maintains a high
level of diversity. Detailed information about these measures
as well as the diversity statistics of our experiments can be
found online (Tatar et al., 2015).

5.4 Fitness function

PresetGen measures the computational similarity to a target
sound by calculating the Euclidian distance between the
audio features of candidate and target sounds, which is a com-
mon technique used in automatic preset generation systems
(Yee-King, 2011). We focus on perceptual sound similarity in
Section 7. PresetGen’s multi-objective fitness function uses
three objectives: FFT, Envelope and STFT to extract general
spectrum, dynamics and spectral envelope, respectively. We
used the Euclidian distance between the STFT of candidate (t)
and target (c) sound: dST FT . Equation 4 shows the Euclidian
distance between the STFT of t and c. PresetGen uses the
sampling rate of 44,100 Hz, window size Ns of 1024 samples
(23 ms), and an overlap of 512 samples (11.5 ms). Nw is the
total number of windows.

dST FT (t, c) =
Nw∑
i=1

√√√√√
Ns∑
j=1

(ti, j − ci, j)2. (4)

In addition to the STFT objective, PresetGen’s fitness func-
tion includes two more objectives to uncouple the amplitude
envelope from the spectral components as much as possible
to avoid the premature convergence. Thus, we chose to extract
two separate sound features: (1) the FFT(magnitude frequency
spectrum) computed on the entire sound without segmentation
and (2) the amplitude envelope. Computing the FFT on the ent-
ire sound mitigates, to some extent, the effect of the amplitude
envelope on the spectrum. We use magnitude spectrum against
power spectrum to be consistent with STFT. We extracted the
amplitude envelope using the Hilbert transform followed by
a low-pass filter. We normalize each sound before the audio
feature extraction.

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

130 K. Tatar et al.

Contrary to canonical GA, the NSGA-II uses a selection
operator based on non-domination sorting. Using FFT as an
objective in the fitness function, an individual with a good
set of engine knob parameters would be more likely kept in
the population even if it has wrong ADSR knob parameters.
Indeed, this individual would have a high fitness value for the
FFT and a low fitness value for the Envelope. It would be then
kept in the population because it is dominating the population
according to the FFT objective. In the canonical GA, this
individual would likely be discarded because its fitness value
would be affected by a wrong amplitude envelope.

5.5 Selection and stopping criteria

PresetGen uses a population of 500 individuals for each gener-
ation. This number of individuals was empirically determined
as a good trade-off between performance and computational
cost. Moreover, OP-1 is non-deterministic in its design. A
parameter set does not necessarily generate the same sound
each time. We include the following condition in our sys-
tem design to overcome the non-determinism of OP-1. The
optimization process terminates if the weighted change in the
three fitness objectives (given by Equation 5) is less than
10−10 over 200 generations. δn is the weighted change at
generation n, fk is the best fitness objective score at generation
k, N = 200 if n ≥ 200 otherwise N = n. If this condition
is never verified, the optimization process stops after 3000
generations. Our experiments indicated that δn value of 10−10

over 200 generations allows PresetGen to converge when we
use contrived sounds, and yet reach the maximum number of
generations when we use non-contrived sounds that is not in
the OP-1’s sound space.

δn =
N∑

i=1

(1

2

)N−i
(fn+1−i − fn−i). (5)

5.6 Pareto front

The cumulative Pareto front is the set of non-dominated indi-
viduals for the three objectives explained in Section 2.2. We
implement three methods to handle the size of the cumulative
Pareto front in PresetGen. First, we define a similarity rule
that tests whether the chromosome of an individual is already
present before adding it to the cumulative Pareto front. This
rule cuts the size of the cumulative Pareto front by a factor
of more than two. Second, we introduce a similarity rule to
limit duplicate individuals in the cumulative Pareto front. We
state that two individuals are identical if they have the same
engine+LFO+FX types, identical key+octave and the Euclid-
ian distance between the knob parameters is less than 1000
(3% of the knob parameter range). We have determined this
value by making tests on large numbers of cumulative Pareto
fronts. Depending on the target sound, this similarity rule
reduces the size of the cumulative Pareto front to between 10
and 150 individuals while conserving its quality and diversity.

Third, we apply a technique developed by Chaudhari,
Dharaskar, and Thakare (2010) to select the most significant
individuals in the cumulative Pareto front when the cumu-
lative Pareto front’s size is superior to 10 individuals. This
approach consists of the following steps:

(1) Apply a k-means clustering algorithm to cluster the
solutions enclosed in the cumulative Pareto front. We
implement clustering on the OP-1 presets to help the
user to identify the presets with different sound
engines in the cumulative Pareto front.

(2) Determine the optimal number of clusters, k. The sil-
houette (Rousseeuw, 1987) of an individual is a mea-
sure of how closely it is matched to other individuals
within its cluster and how loosely it is matched to
individuals of the neighbouring cluster. A silhouette
s(i) close to 1 implies that the individual i is in an
appropriate cluster, while s(i) close to −1 implies
that i is in the wrong cluster. Thus, the average s(i)
of the entire cumulative Pareto front is a measure
of how appropriately the cumulative Pareto front has
been clustered. A value of the average silhouette is
obtained for several values of k with k < 10. The k that
gives the highest average silhouette value is selected.
Figure 7(a), Section 6.2.3, is an example of a silhouette
plot. Each bar represents the silhouette value, s(i),
of an individual in the cumulative Pareto front. This
experiment has given the highest average silhouette
value with k = 3 (Figure 7(a), Section 6.2.3). Y axis
represents the cluster number.

(3) For each cluster, select a representative solution. For
each cluster, the individual within the cluster that
encodes the OP-1 preset that is the closest to the cluster
centroid preset is selected as the representative solu-
tion.

(4) Analyse the results. At this point, the user can analyse
the k representative solutions of the clusters.

5.7 Implementation

In the implementation of PresetGen, we use the OP-1’s C++
library provided by Teenage Engineering. We utilize DEAP
framework to implement NSGA-II (Fortin et al., 2012). Pre-
setGen uses the Python bindings of theYetAnotherAudio Fea-
ture Extractor (YAAFE) library for audio feature extraction
(Mathieu et al., 2010). We run the Python code on the Bugaboo
computing cluster that is part of Westgrid Compute Canada
(Westgrid - Compute Canada, n.d.). We use MATLAB (2011)
for post-processing with k-means clustering, and webpage
generations of experiment results (Tatar et al., 2015).

6. Experiments and results

6.1 Sound collection

Using contrived sounds (i.e. sounds generated by the OP-1) as
target sounds allows us to validate PresetGen’s system design

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

Automatic synthesizer preset generation with PresetGen 131

by showing that PresetGen can reverse engineer the parameter
setting, i.e. the preset. We chose to limit our evaluation to
12 contrived sounds, given the complexity of the algorithm
and its running time. We abbreviate these contrived sounds as
conf <number>. These selected sounds represent a sample
of spectrums that was diverse and representative of the OP-
1’s possible outputs. We focused on having diversity in spec-
tral variation, noisiness and spectral spread (Peeters, 2004).
The spectral variation Sv(t) (or spectral flux) represents the
amount of variation of the spectrum along time. It is computed
from the normalized cross-correlation between two successive
amplitude spectrums a(t −1) and a(t). We use a window size
of 1024 samples and a hop size of 512 samples with 44,100 Hz
sampling rate to calculate the spectral variation.

Sv(t) =
∑

k(ak(t) − ak(t − 1))2

√∑
k ak(t − 1)2

√∑
k ak(t)2

,

(6)

Sv =
∑

t

Sv(t).

ak(t) is the kth bin of the amplitude spectrum at time t . The
set of non-contrived sounds consists of both the sounds with
a stationary spectrum and the sounds with a dynamic spec-
trum, as measured by their respective spectral variation. This
measure does not include perceptual facts. We utilize spectral
variation to study PresetGen’s fitness function performance
on target sounds with different spectral properties. We used
each engine, LFO and FX at least once to generate this set
of contrived sounds (Table 3). For each of these sounds, we
also give its overall spectral variation Sv . We distinguish two
groups: the sounds with a stationary spectrum (Sv < 10−5)
and the sounds with a dynamic spectrum (Sv ≥ 10−5).

A second evaluation was performed on 12 non-contrived
sounds, including synthetic sounds, instrument sounds, a male
voice and a cat sound. These sounds were also chosen to have
a diversity in spectral variation, noisiness and spectral spread.
As with the contrived sound, we distinguish two groups: the
sounds with a stationary spectrum (Sv < 10−5) and the sounds
with a dynamic spectrum (Sv ≥ 10−5). Both contrived and
non-contrived sounds are available for listening online (Tatar
et al., 2015).

6.2 The detailed statistics of two sounds

In this section, we present the detailed statistics of two runs
with two target sounds, conf4 and cat, exemplifying contrived
and non-contrived sounds respectively. Section 6.3 presents
the global statistics of multiple runs with all target sounds.
The statistics and results for all runs are available online
(Tatar et al., 2015).

6.2.1 Fitness objectives

The goal of the GA is to minimize the three objectives (En-
velope Euclidian distance, FFT Euclidian distance and STFT

Fig. 4. Fitness objective: the minimum FFT Euclidian distance (in
the population) to the target sound.

Euclidian distance). Figure 4 shows the reduction of the FFT
distance over the generations. On both graphs, a viewer can
observe plateaus, also called punctuated equilibriums, that can
be interpreted as periodic improvements in fitness. One can
also distinguish the exploration phase and exploitation phase
on these graphs.

The exploration phase happens at the early stage of the
evolution with a quick and significant improvement in the
fitness. The exploitation phase follows with episodic and small
improvements in the fitness. Exploration also continues during
exploitation. The length of these phases can vary depending on
the nature of the target sound (Lobo, Lima, & Michalewicz,
2007). For example, a viewer can see that the exploration
phase lasts for 50 generations in the contrived sound case
and around 350 generations in the non-contrived sound case.
Moreover, the range of the final objective fitnesses differ for
the contrived sound trials and for the non-contrived sound
trials. For example, the final FFT fitnesses vary between 0
and 500 for the contrived sound trials and between 2000
and 3000 for the non-contrived sounds trials. This difference
illustrates the fact that, as expected, it is more difficult to
approximate non-contrived sounds (which have large final
fitness values) than contrived sounds (which have smaller final
fitness values).

6.2.2 Distance/fitness correlation

Regarding the contrived sounds, another way of tracking the
improvements of the system for the non-contrived sounds is
to look at the parameter distance to the target parameters over
the generations (Jones & Forrest, 1995). We considered two
distances: the Euclidian distance and the Hamming distance.

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

132 K. Tatar et al.

Table 3. Parameters of the contrived sounds.

Conf. Id Engine FX LFO key octave Sv Stationary

conf0 FM Grid No 17 4 1.252 × 10−4 N
conf1 Digital Delay No 1 −1 7.641 × 10−6 Y
conf2 Cluster Delay Value 16 3 6.625 × 10−4 N
conf3 Digital Punch Tremolo 16 3 1.172 × 10−4 N
conf4 Digital Delay No 9 2 9.301 × 10−6 Y
conf5 FM No No 0 2 3.055 × 10−4 N
conf6 FM No No 11 1 7.128 × 10−5 Y
conf7 String No No 20 −3 3.055 × 10−4 N
conf8 Cluster No No 12 0 6.740 × 10−6 Y
conf9 Pulse No No 9 −1 2.279 × 10−4 Y
conf10 Phase No No 9 −4 1.154 × 10−4 N
conf11 Phase Punch Element 16 1 9.4187 × 10−6 Y

We define the Euclidian distance between two individuals
in Equation 7.

de(r, s) =
√√√√ N∑

i=1

(r(i) − s(i))2, (7)

where r and s are two individual sets of parameters, and N
is the total number of parameters. r(i) (resp. s(i)) are the i th
parameter of individual r (resp. s(i)).

The Hamming distance between the two bit strings of chro-
mosomes is defined in Equation 8.

dh(u, v) = c01 + c10

n
, (8)

where ci j is the number of occurrences of u[k] = i and
v[k] = j for k < n, n being the number of bits. We study the
Hamming distance as well because PresetGen uses bitwise
representations of OP-1 parameters to find a contrived sound
target’s preset.

Figure 5 shows the minimum of these distances to the target
individual/chromosome over the generations for the conf4
sound. Contrary to the fitness objectives (Figure 4), the curves
are not monotonic decreasing. The Euclidian distance even
appears to increase over the generations. It is expected that
Euclidian distance varies in a non-monotonic, non-predictable
way. Moreover, it is possible to achieve a good approximation
of the target sound using completely different parameters than
the ones used initially to produce it. For this reason, tracking
Euclidian distance is of limited relevance to evaluate the per-
formance of PresetGen. However, observing the correlation
between fitness and distances presents the difficulty of our
problem.

We study the correlation of the distance—between the target
preset genotype and an individual’s genotype—and the fitness
value to evaluate the difficulty of the problem being solved.We
plot the average FFT distance to the target sound per genera-
tions against the average Euclidian and Hamming distances of
phenotypes (OP-1 presets) to the target preset (Figure 6). One
can see that, on average, the Euclidian and Hamming distances

Fig. 5. The minimum distance (in the population) between the target
preset’s genotype and the individual’s genotype per generation.

are well correlated to the fitness with a correlation coefficient
equal to 0.67 for the Euclidian distance, and 0.70 for the
Hamming distance. These results show that, on average, the
fitness leads the GAto the region in the parameter space where
the target is located. We can also observe, with the cluster of
points around the coordinates [3 × 104, 0] of the Euclidean
distance correlation, that a single large optimal plateau exists.

6.2.3 Pareto front analysis and clustering

Trials show that, most of the time, the cumulative Pareto
front is too big to be easily handled by the final user. The
idea is to give a sample of individuals (less than 10) that is

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

Automatic synthesizer preset generation with PresetGen 133

Fig. 6. Average fitness versus distance, each sample represents one
generation.

a good representation of diversity in the cumulative Pareto
front. As described in Section 5.6, we apply a k-means clus-
tering algorithm to cluster on the solutions enclosed in the
cumulative Pareto front. As the clustering is done on the OP-1
knob parameters, the user can easily retrieve all the individuals
enclosed in the given cluster, starting with the centroid individ-
ual. Indeed, we assume that going from the centroid individual
to any individuals in the cluster, the user would slightly mod-
ify the centroid individual’s parameters. Moreover, we also
assume that individuals in the same cluster sound similar, as
their OP-1 configurations are similar. The k-means clustering
algorithm requires that the number of clusters k to be chosen
before running the algorithm. We use the silhouette method
(described in Section 5.6) to determine the number of clusters.
Figure 7(a) and (b) show the silhouette values of cumulative
Pareto front individuals for the experiments with the conf4
and cat target sounds, respectively. The experiment with conf4
target sound has three clusters in the final cumulative Pareto
front, whereas the experiment with cat target sound has four.
Each bar represents the silhouette value of an individual. One
can observe these bars more easily on Figure 7(a), as the
cumulative Pareto front is small for the conf4 target sound. As
one can see on both Figure 7(a) and (b), the average silhouette
is close to 1 and there is no individual with a small or negative
silhouette.

Figure 8(a) and (b) give a 3D representation of the cumu-
lative Pareto front over the three objectives (FFT, STFT and
Envelope). As described in the previous section, the cluster-
ing is done on the OP-1 parameters and not on the fitness
objectives. However, a viewer can observe that the cumulative
Pareto front is also well clustered over the three objectives. It
makes sense because neighbours in the OP-1 parameter space

Fig. 7. Cumulative Pareto front individuals’ silhouette values: (a)
contrived sound—conf4; (b) non-contrived sound—Cat.

should also be neighbours in the objective space. However,
there are outliers (for example, one individual belonging to the
cluster 3 on Figure 8(a)). It could be because the clustering
is not perfect, but it can also illustrate the inverse correla-
tion between parameter distance and fitness objectives (see
Section 6.2.2).

The individual in each cluster that is the closest to the
centroid is chosen to represent its clusters. Figures 9(a) and
10(a) both show a comparison between the centroid individual
spectrogram and the related target sound spectrogram for the
conf4 and cat sounds, respectively. For the contrived sound
conf4, the two spectrograms look similar. However, the fitness
values for the FFT and STFT on Figure 8(a) are small but not
equal to zero. Hence, the match is not perfect, but it is very
close, as it is not possible to perceive the difference when we
listen to the two sounds. For the non-contrived cat, the two
spectrograms do not look as similar as the contrived sound
case. With a non-contrived sound, it is not possible to know in
advance if we can generate the exact match of a non-contrived
target sound with the OP-1 synthesizer. However, we see
strong similarities in the frequency range in both spectro-
grams and also in the spectral envelope. Figure 9(b) (respec-
tively Figure 10(b)) shows a comparison between the centroid
individual waveform and the related conf4 (respectively cat)
target sound waveform. For both contrived and non-contrived
sounds, we can see that the amplitude envelopes are either
close (cat) or almost identical (conf4).

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

134 K. Tatar et al.

Fig. 8. Visualization of clusters in the cumulative Pareto fronts: (a)
contrived sound—conf4; (b) non-contrived sound—Cat.

Fig. 9. Contrived sound (conf4): centroid individual for the Cluster
1. (a) Spectrograms and (b) waveforms.

6.3 Statistics of multiple runs

6.3.1 Bootstrapping

We ran PresetGen 10 times for each target sound. We used
Bootstrapping to obtain estimates of summary statistics

Fig. 10. Non-contrived sound (cat): centroid individual for the
Cluster 1. (a) Spectrograms and (b) waveforms.

(Johnson, 2002). The bootstrapping procedure repeats and
excludes data from the original data set to create a bootstrap
sample. A bootstrap sample has the same amount of data as
the original data set. However, it is not identical to the original
data set. We repeat the generation of a bootstrap sample a large
number of times (1000 in our case). For each of these bootstrap
samples, we compute the desired statistic that provides an
estimate of the distribution of the descriptive statistics. This
technique makes the information extraction possible when the
sampling size is small, as in the case of PresetGen due to the
time complexity of the problem.

For each of the measures described above, we used boot-
strapping to get an estimate of its minimum, maximum, mean
and standard deviation.We also used the bootstrap shift method
test (Johnson, 2002) to assess the significance of every com-
parison we performed. This test has the advantage of being
distribution-free and of scaling well with small sample sizes.

6.3.2 Measurements of the solution quality

We evaluated the solution quality and the running time in the
descriptive statistics of PresetGen experiments. The solution
quality was measured differently for the contrived sounds and
the non-contrived sounds. Regarding the contrived sounds,
we already know what the target OP-1 presets are. However,

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

Automatic synthesizer preset generation with PresetGen 135

OP-1 is non-deterministic. An OP-1 preset does not generate
the exact same sound each time. Therefore, we generate 10
sounds using a target preset in addition to the target sound,
and compare them to the target sound. With a determinist
synthesizer, their fitness objective values (FFT, envelope and
STFT) would be equal to zero, but this is not the case with the
OP-1. For each objective, we define the best possible fitness
value Fb as the minima of the fitness value over these 10
sounds. For each objective, we calculate the error �r for each
run, subtracting this best possible fitness value Fb to the best
fitness objective value obtained in the particular run fr (see
Equation 9).

�r = fr − Fb. (9)

Regarding the non-contrived sounds, we are only able to
measure the final fitness values for the three objectives at
the end of the evolution. In both cases, the running times
are measured by the number of generations before the GA
reaches the stopping criteria (nbGen). Sections 6.3.3 and 6.3.4
present the solution quality measurements of experiments with
contrived and non-contrived sound, respectively.

6.3.3 Contrived sounds

Figure 11 shows the number of generations before reaching
the stopping criteria for each target configuration. Table 4
describes the statistics of the proportion of module types in the
population over the generations. Prop. choice is the proportion
of runs in which one type was taking over in the population.
Take over gen is the generation from which one type was
taking over. Accuracy is the proportion of runs choosing the
correct type when one type was taking over in the population.
The OP-1 has 24 keys on its keyboard, and it is possible to
change the octave from −4 to 4. There is an overlap of 12 keys
between two consecutive values of an octave. It is possible to
produce the same note using two different combinations of
octaves and keys. The last line of Table 4 takes into account
this particularity and considers the selected note, rather than
the octave and the key taken separately.

The results show that PresetGen performs well at finding
the right engine type (90% prop. choice; 80% accurate) and
the right note (74% prop. choice; 69% accuracy). However,
we have lower accuracy for the LFO (43 prop. choice; 22%
accuracy) and FX type (42% prop. choice; 18% accuracy)
than the engine type. A possible interpretation of these results
is that the engine type and the note have a greater influence on
the output sound than the LFO or FX type. The LFO and FX
type do not change the nature of the output sound, but only
alter it. Thus, it is more challenging to determine the right type
for the FX and LFO.

The correlation between the Euclidian/Hamming distances
of individuals to the optimal solution and the fitness objectives
are a good indicator of the problem difficulty (Jones & Forrest,
1995). We compute the mean and standard deviation of these
distances and the three fitness objectives for each genera-
tion. We calculate a global correlation coefficient between

Table 4. Statistics about modules types. C: Contrived sounds, NC:
Noncontrived sounds.

Prop. choice Take over gen Accuracy

C NC C NC C

Engine 0.90 0.74 139 129 0.80
FX 0.42 0.44 322 270 0.18
LFO 0.43 0.45 240 317 0.22
Key 0.77 0.38 122 265 0.52
Octave 0.91 0.57 109 174 0.62
Note 0.74 0.38 129 273 0.69

Fig. 11. Number of generations before reaching the stopping criteria:
contrived sounds.

Table 5. Mean and SD for the correlation coefficients.

FFT Env STFT

Mean(SD) Mean(SD) Mean(SD)

Euclidian Global 0.35(0.46) 0.37(0.45) 0.34(0.41)
Local 0.04(0.40) 0.09(0.43) 0.09(0.45)

Hamming Global 0.54(0.34) 0.57(0.27) 0.59(0.31)
Local 0.04(0.4) 0.006(0.42) 0.06(0.38)

the average Euclidian/Hamming distances of individuals to
the optimal solution and average of each fitness objectives.
Additionally, we compute a local correlation coefficient be-
tween the average Euclidian/Hamming distances of individ-
uals to the optimal solution and the average of each fitness
objectives. Table 5 shows these correlation coefficients. The
global correlation coefficients are very high for the Euclidian
and Hamming distances. These results explain the tendency
of the GA to converge quickly to a punctuated equilibrium of
low fitness for the three objectives. This tendency is also an
illustration of PresetGen’s ability to converge toward sounds
perceptually similar to the target sound. The low local corre-
lation coefficients show that, once a promising location of the
fitness landscape was identified, it is challenging to fine tune
the input parameters to converge exactly to the target param-
eters. One explanation is that the non-deterministic nature of
the synthesizer (which causes noise in the evaluation) makes
perfect tuning impossible. Some knobs also have different

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

136 K. Tatar et al.

Fig. 12. Error: Envelope—contrived sounds.

sensitivity; therefore, a change in one knob can either cause a
large change in the output or no change at all.

We refer to module combination as an OP-1 preset without
the knob parameters. For example, {FM synthesis engine, FX
delay, LFO element, key 22} is an example of a module combi-
nation. The number of distinct module combinations was very
low in the cumulative Pareto front (μ = 3.0, SD = 0.2 over
10,080 possible combinations). These findings suggest that
the GA successfully identified a limited number of promising
locations in the parameter space that dominate all others.
We also notice that, as wanted, each cluster contains only
one Engine/LFO/FX combination. A cumulative Pareto front
provides flexibility to the user with a set of candidate sounds
rather than a single sound. The user can make the final choice.
Regarding non-contrived sounds, the user can decide what
type of perceptual error is more acceptable as interesting.

Figure 12 shows that PresetGen successfully approximates
the amplitude envelope of the target sound as shown by the
very low errors for the envelope objective (μ = 0.20, SD
= 0.02). Figure 13 shows the error over the best possible
FFT and STFT objective values. As measured by their re-
spective spectral flux, conf0, conf2, conf3, conf5, conf7 and
conf10 are the configurations generating dynamic spectra. The
other configurations generate stationary spectra. We see that
the performances of the GA are not significantly better for
the target sounds with stationary spectra (p = 0.07) than for
the target sounds with dynamic spectra (p = 0.08). However,
we can still observe differences in the GA performances for
different groups of target sounds. The group with conf9 and
conf10 has the lowest FFT and STFT errors. conf10 presents
a STFT under the form of a sawtooth wave over time. This
common shape doesn’t seem to be difficult to approximate for
our system, even if the spectrum is dynamic. The group with
conf0, conf1, conf3 and conf5 contains mostly target sounds
with dynamic spectra with the exception of conf1. The error
for this group is the highest. The spectral energy of conf1 is
mainly concentrated in a narrow frequency band. Our system
seems to fall into a local minima for a non-periodically time-
changing spectrum. These results show that the nature of a
target sound has an impact on the final fitness objective errors
of PresetGen.

6.3.4 Non-contrived sounds

Using non-contrived sounds, we present the distance-fitness
corelation to prove that PresetGen converges to target sounds
(see Section 6.2). Regarding non-contrived sounds, the struc-
ture and complexity of the fitness landscape depend largely on
the chosen target sound. OP-1’s sound space does not cover
the whole digital sound space. Even if PresetGen finds the
optimal solution in the synthesizer’s search space, we can
expect a high error if a non-contrived target sound is not
actually reproducible with the OP-1.

The mean of nbGen—the number of generations before
reaching the stopping criteria (see Section 5.5)—is signifi-
cantly larger for the contrived sounds (μ = 1431, SD = 86)
than for the non-contrived sounds (μ = 1070, SD = 50); p <

0.001. These results may seem surprising, as the resynthesis
problem for a non-contrived sound is more complex than
for a contrived sound. However, we design our algorithm to
stop if the cumulative fitness improvement is almost null for
each objective (see Section 5.5). PresetGen reaches a level
of fitness (where improvements are more difficult to obtain)
faster for the non-contrived sounds than for the contrived
sounds, because the potential improvements are more limited
in the non-contrived case than in the contrived case. Moreover,
observing Figure 4, we can clearly see that contrived sound,
conf4, reaches the lower fitness value faster than the non-
contrived sound, cat, at the beginning of the algorithm. The
convergence is faster but with a long tail.

Table 4 describes statistics of the proportion of module
types in the population through the generations. As with con-
trived sounds, a single engine was quickly taking over. How-
ever, contrary to the trials with contrived sounds, no key was
clearly taking over (Prop. choice 38% versus 77% for con-
trived sounds) because most of the non-contrived sounds do
not have a clearly identified stationary fundamental frequency
(cat, DX-7 and Moog synthesizer sounds with pitch modula-
tion). FX and LFO types were, as with contrived sounds, still
challenging to set for the GA(FX prop. choice 44%, LFO prop
choice 45%).

Figures 14 and 15, respectively, show the errors for the
FFT/STFT and the Envelope. First, we can hear that the
cumulative Pareto front sounds are perceptually similar to
the targets, which is of importance for real world applications.
Regarding the number of type combinations, the cumulative
Pareto fronts of non-contrived sounds are also significantly
more diverse (μ = 4.3, SD = 0.3) than the ones we got using
contrived target sounds (μ = 3.0, SD = 0.2); p < 0.001. The
cumulative Pareto fronts of the non-contrived sounds are also
significantly more populated (μ = 306, SD = 11; μ = 83, SD
= 21); p < 0.001. These differences are caused by the larger
problem complexity with the non-contrived sounds. With the
concept of clustered cumulative Pareto front, the user receives
a set of OP-1 presets that produces sounds perceptually similar
to the target sound. These OP-1 presets do not automatically
involve the use of the same engine, LFO or FX, which gives
users several alternatives of variable quality to approximate a

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

Automatic synthesizer preset generation with PresetGen 137

Fig. 13. Error: FFT and STFT—contrived sounds.

Fig. 14. Fitness objectives: FFT and STFT—non-contrived sounds.

given target sound. The best fitness values for the three objec-
tives, shown in Table 6, are significantly worse for the non-
contrived sounds than for the contrived sounds as expected
(p < 0.001, p < 0.001, p < 0.001).

7. Empirical evaluation with non-contrived
sounds

PresetGen is meant to be used by humans. Hence, comparing
its performance with a human sound designer and looking
at the perceived quality of PresetGen’s results is of interest.
There are only two automatic preset generation studies with an
empirical evaluation experiment. Mitchell (2010) conducted

Fig. 15. Fitness objectives: Envelope—non-contrived sounds.

Table 6. Best fitness objective values. C: Contrived sounds, NC:
Noncontrived sounds.

FFT Env. STFT

Mean SD Mean SD Mean SD

C 130.34 17.15 0.20 0.02 248.92 31.24
NC 3163.5 242.67 8.66 0.78 4299.5 262.62

an empirical evaluation of his FM Modulation Audio Synthe-
sis Parameter Optimization. Mitchell’s evaluation consisted
of two listening tests. In the first listening test, Mitchell con-
ducted an experiment to research the correlation between fit-
ness error ranking and human perception ranking, thus ad-
dressing the—still open—problem of sound similarity. In the
second listening test, Mitchell conducted a qualitative research
with five musical instruments sounds. Participants commented
on matching sounds in terms of pitch, amplitude envelope and
timbre.

Yee-King and Roth (2008) also evaluated their system, Syn-
thbot with expert human users. The application included two
VSTi synthesizers: the mdaDX10, a single module synthe-
sizer with sixteen parameters, and the mdaJX10, a substrative

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

138 K. Tatar et al.

synthesizer with one noise oscillator and 40 parameters. In
the first part of the experiment, 10 expert users implemented
two sounds: one real sound and one synthesized sound for
each of these two synthesizers. They reported the participants’
comments on each matching sound.

We conducted an empirical evaluation experiment to mea-
sure PresetGen’s performance on perceptual sound similarity.
We compare the performance of three (human) sound de-
signers and PresetGen on the task of OP-1 preset generation
with non-contrived target sounds. We compared the preset
generation performances of designers and PresetGen using
PresetGen’s fitness function. PresetGen converges to more
than one preset for a given target sound. For simplicity, we
choose only one PresetGen’s candidate sound to be com-
pared with sound designers’ candidate sounds for each target
sound.

In this experiment, we first compared PresetGen with one
human sound designer on the task of OP-1 preset generation
for non-contrived sounds. We researched the relationship be-
tween PresetGen’s fitness function results and human listener
evaluation. Experiment participants evaluated the similarity
between the target sounds and matching sounds designed by
the (human) designer and PresetGen. Second, we expanded
our experiment to three sound designers to generalize that
PresetGen is human-competitive.

We limited the number of target sounds to eight. The aim
was to have an experiment that lasted no longer than 15 min of
listening evaluation. We covered diversity on three objectives
of PresetGen—STFT, Envelope and FFT—by selecting one
sample of each of the following acoustic sounds; ak47, chicken
clucking, bass guitar, trumpet, gyil,3 construction noise, knife
sharpener and frog (Tatar et al., 2015). These were restricted
to have a stationary fundamental frequency and an applicable
envelope considering the capabilities of OP-1.

7.1 Method of the experiment

7.1.1 Design

We used repeated-measure design, in which every participant
was exposed to all conditions. The dependent variable is par-
ticipant similarity rating, whereas independent variables are

(1) sound designer with two-factor levels (human sound
designer and PresetGen)

(2) target sounds (eight different sound samples)
(3) sound attributes (general, pitch, envelope and timbre)

We also conducted four paired t-test analyses for each sound
attributes of each target sound, 32 paired t-tests in total. In
these tests, the dependent variable is participant similarity
rating, whereas the independent variable is a category includ-
ing two factor levels of the designer and PresetGen.

3A type of Xylophone from Ocenia.

7.1.2 Participants

Fourteen auditors (as opposed to sound designers) were re-
cruited from the IAT 340 Sound Design class in the School of
InteractiveArts and Technology at Simon Fraser University so
that they had basic experience in (and introductory knowledge
of) sound design, sound synthesis and related terms such as
timbre, pitch and envelope.

One participant didn’t provide the demographics and an-
swers to experience-related questions. Of the remaining 13
participants, eight were female and five were male. 71% of
participants had less than 6 months of sound design experi-
ence, whereas 21% of participants had 6 months to 1 year
of experience in sound design. 29% of participants had no
musicianship experience, whereas 21% of participants had
less than 6 months of musicianship experience. 14% of par-
ticipants had 1 to 3 years of musicianship experience. 7%
of participants had 5 to 10 years of musicianship experience
while 14% of participants had 3 to 5 years of musicianship
experience. 7% of participants had more than 10 years of
musicianship experience.

A (human) sound designer, i.e. user, tried to generate the
same target sounds with the OP-1 and the candidate sounds
were recorded. The designer was a 26-year-old male with 5
years of sound design experience and 10 years of musician-
ship experience. He used the OP-1 for a month before the
experiment.

7.1.3 Procedure

The experiment took 10 min at most. It was carried out in
one session, at the beginning of the course’s weekly work-
shop. Participants used full range circumaural monitoring
headphones and the same type of computers with M-Audio
Fast Track Pro interfaces. The experiment was implemented
with an online survey created with fluidsurveys.4 Hence, a
browser, mouse and keyboard were used as the user interface.
The actual interface is pictured in Figure 16.

PresetGen generated the parameters that could approximate
each target sound with OP-1. We present the detailed analysis
of these runs online (Tatar et al., 2015). The design of the
experiment involved participants evaluating one target sound
and one matching sound at a time because we needed par-
ticipants to evaluate how similar a matching sound is to its
target sound. For each target sound, there were two matching
sounds to be evaluated, one generated by the designer and one
generated by PresetGen. The presentation order was random
and balanced within the participant population. Participants
could listen to the sounds as much as they wanted. We did
not provide any information on how the sounds were gen-
erated, to prevent any bias against computational creativity
(Moffat & Kelly, 2006). Participants answered four questions
for each matching sound. The questions asked about general
similarity, similarity in terms of pitch, similarity in terms

4Phttp://fluidsurveys.com/s/syntheval/

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

Phttp://fluidsurveys.com/s/syntheval/

Automatic synthesizer preset generation with PresetGen 139

Fig. 16. User interface used to evaluate each matching sound on different sound attributes in terms of similarity to the target sound.

of timbre and similarity in terms of envelope; respectively.
Participants answered these questions based on a 100-point
scale in which 100 is the most perceptually similar and 0 is
the most perceptually dissimilar. We used a similarity scale
instead of ranking the candidate sounds with their similarity
to the target sound to overcome the disadvantages related to
the ordinal evaluation. First, the ordinal evaluation cannot
show if two candidate sounds have an insignificant differ-
ence in terms of similarity to the target sound. Participants
have to decide that one candidate sound is better than others.
Second, ordinal similarity evaluation cannot provide a metric
of similarity. We can not compare the similarity measure of
candidate sounds that are generated to match different target
sounds. However, analysis of a cardinal evaluation provides
a comparison between matching sounds of different target
sounds.

7.2 Results

7.2.1 Quality comparison

We compared the average participant similarity ratings of
PresetGen’s and the designer’s matching sounds in terms of
general similarity, pitch, envelope, and timbre. We conducted
a repeated-measures ANOVA5 with three independent
variables—audio attributes, user/PresetGen and target
sounds—and one dependent variable—similarity to the target
sound. We analysed tests of within-participant effects for each
independent variable and combinations of two independent
variables.

The analysis shows that participants rated PresetGen’s
matching sounds as more similar to the target sound than
the (human) designer ones with a mean difference of 16.64

5Analysis of Variances

(F(1, 13) = 48.54, p < 0.001, w2 = 0.789).6 Analysing
sound attribute category tests within-participant effects, par-
ticipants rated PresetGen’s matching sounds significantly
higher than the designer’s matching sounds for all sound at-
tribute categories (F(3, 39) = 3.62, p = 0.021, w2 = 0.218)
as shown in Figure 17. Additionally, for this independent
variable, the Mauchly’s test of sphericity7 showed that
sphericity has not been violated (p = 0.630). The error bars
presented in both Figures 17 and 18 show that the standard
deviation from the mean is small. Hence, the participants
agreed on a similarity rating for all matching sounds.

We have expanded the analysis by examining each sound.
Paired t-tests (mentioned in Section 7.1.1) shows that the
difference in the average similarity rating between PresetGen
and the designer is insignificant for matching sounds of target
sounds; gyil, ak47 and bass, for all sound attribute categories.
The common property of these sounds is that they have an
impulse or a short burst, and they have percussive character-
istics. Figure 18 illustrates the average similarity ratings of
each matching sound. Paired t-tests’ significance values are
illustrated online (Tatar et al., 2015).

7.2.2 The time complexity

Although PresetGen’s matching sounds are rated more similar
in quality, the designer was faster than PresetGen. The de-
signer could match three sounds in an hour with OP-1, whereas
PresetGen generated parameters to match a 2 s target sound
in 5 h with an evolving population of 500 individuals over
1000 of generations on the Westgrid’s Bugaboo computing
cluster with 50 cores (Westgrid - Compute Canada, n.d.). We

6w2 is the effect size and represents what percentage of the variance
on the data can be explained by the independent variable variance.
7Sphericity is defined as ‘the homogenity of the covariance between
pairs of conditions’ (Hinton, 2004).

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

140 K. Tatar et al.

1

Fig. 17. PresetGen’s and the designer’s matching sounds’ average
similarity ratings by audio attributes, error bars represent 95%
confidence interval.

1

Fig. 18. PresetGen’s and the designer’s average similarity ratings
for each target sound, error bars represent 95% confidence interval.

presented details of our implementation in Section 5.7. It is
also important to note that in the case of a sound designer, the
designer chooses to stop, whereas PresetGen stops if one of
the stopping criteria is achieved. That being said, PresetGen
can be improved with optimization and advancements in the
computational processing speed. We explain our future work
in Section 8.

7.3 Expansion of empirical evaluation experiment to mul-
tiple sound designers

One can argue that empirical evaluation with non-contrived
sounds included only one (human) sound designer and results
were dependent on the designer’s capabilities. Therefore, we
expanded our empirical evaluation experiment with a fitness
value comparison of three (human) designers’ and Preset-
Gen’s matching sounds. Designer 1 is already mentioned in
Section 7.1.2. We asked two more sound designers to match
the same eight target sounds that we used in our empirical
evaluation experiment, using OP-1. We compared the fitness
values of matching sounds of designers and PresetGen using

Fig. 19. Fitness function objectives comparison of three sound
designers and PresetGen. (a) FFT Euclidian distance between
matching sounds and target sounds. (b) Envelope Euclidian distance
between matching sounds and target sounds. (c) STFT Euclidian
distance between matching sounds and target sounds.

PresetGen’s fitness function. Figure 19 shows comparisons of
fitness values in the three objectives that we used in our multi-
objective implementation; FFT, Envelope and STFT. Figures
19(a) to (c) show that Designer 2 did slightly better than
PresetGen to match the target sound construction in all three
objectives. Also, Designer 3 matched the target sound gyil
better than PresetGen in Envelope and FFT fitness objectives.
Other than these exceptions, PresetGen’s matching sounds
gave lower fitness values than (human) sound designers’ did.
Therefore, PresetGen’s matching sounds were closer to the

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

Automatic synthesizer preset generation with PresetGen 141

target sounds than the (human) sound designers’ were, in all
objectives with the exceptions that we mention above.

8. Conclusions and future works

We focused on the application of EC to automate the task
of tuning the parameters of the OP-1, a complex commercial
synthesizer developed by Teenage Engineering, to replicate
or approximate given target sounds.

8.1 Contributions

This work provides several contributions to the field of the
preset generation for a synthesizer.

• In Section 5, NSGA-II is presented, which we deploy
with a 3-objective fitness function, Gray code encod-
ing and a modified crossover operator to preserve pop-
ulation diversity and enable the user to receive a small
set of distinct solutions rather than a unique solution
as with previous systems.

• In Section 5.4, a 3-objectives fitness function includ-
ing FFT, Envelope and STFT is developed, which
addresses some of the difficulties associated with the
exploration of a multi-modal search space such as the
OP-1 parameters space.

• In Section 5.6, a clustering method has been dev-
eloped to better analyse and explore the set of final
solutions. This method is based on k-mean clustering
and the silhouette methodology to set the clustering
size.

• In Section 6.3, an evaluation is proposed using con-
trived and non-contrived sounds. Trials revealed the
capabilities of PresetGen to optimize the parameters
of the OP-1 synthesizer to approximate contrived and
non-contrived target sounds.

• In Section 7, we provide an empirical perceptual study
that also validates the human-competitive nature of
PresetGen. Instead of ordinal similarity, we use cardi-
nal similarity in the experiment design.

This applied work contributes to the field of sound synthesis
using an evolutionary system to find OP-1 synthesizer presets
to reproduce given target sounds. Our evaluation, especially
the one using contrived target sounds, will make it possible to
easily compare the performances of PresetGen to the perfor-
mances of future systems developed only for the OP-1. In the
evaluation with contrived target sounds in Section 6.3, we de-
fine the notion of global fitness/distance correlation and local
fitness/distance correlation. The high global fitness/distance
correlation shows that our algorithm converges, on average,
to the region in the preset space where the target preset is
located and the low local fitness/distance correlation explains
why PresetGen is not able to converge exactly to the target
preset at the end of the optimization.

The GA system described in this work also contributes
to the field of synthesizer preset generation applications of
EC. PresetGen is based on the NSGA-II, a multi-objective
genetic algorithm. This multi-objective approach (one that
is not common in the field of synthesizer preset generation)
has been shown to produce particularly robust results when
used to find OP-1 presets to match given target sounds.
Using three objectives (FFT, Envelope and STFT) instead
of only one as in previous works, made it possible to solve
the complex, multimodal and multidimensional optimization
problem raised by real world synthesizers such as OP-1. These
three objectives, combined with the intrinsic mechanisms of
the NSGA-II (Non-domination sorting, diversity preserva-
tion and elitism) preserve multiple solutions located in
diverse regions of the search space, therefore, to avoid a
premature convergence. A modified crossover operator that
prevents the recombination of two individuals with the same
genotype has also been introduced to preserve diversity. This
multi-objective approach also enables users to receive a set
of solutions (that can use different synthesis engines, LFO
or FX) rather than a unique solution, as with previous
systems.

PresetGen can be used with other complex commercial syn-
thesizers without any changes except, of course, the genotype
encoding of the parameters and the synthesizer simulator.

8.2 Improvements to the system

The current system conducts the search in the parameter space
of OP-1. In our implementation, we showed that certain pa-
rameter changes create sounds that are not noticeably different
regarding human hearing. One could argue that parameter
space can be pre-processed to create a sound search space.
This sound search space would have all possible OP-1 sounds
that have a noticeable difference to human hearing. Then,
PresetGen can conduct the search in this space. However,
this pre-processing creates new issues. The computational
complexity of the system would increase because the OP-
1’s parameter space has 1076 possible combinations to be
compared with each other.

At present, the evolution needs a large amount of computa-
tional power to determine good presets to match a given target
sound. We provided the number of generations to show the
computational complexity of PresetGen throughout this paper
because we ran our experiments on a variety of computers
and computer clusters. We currently evolve a population of
500 individuals over thousands of generations. A single run
requires approximately 5 h on the Westgrid Bugaboo cluster
with our algorithm distributed on 50 cores. However, as exe-
cution time was not a priority in this work, there are numerous
optimizations of the system. For example, the population size
and other GAparameters such as mutation and crossover prob-
abilities or the stopping criteria could be adjusted. Another
idea is to reduce the time complexity of extracting the three
fitness objective values for every individual of the popula-
tion. For instance, an optimized temporal segmentation of

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

142 K. Tatar et al.

the STFT could reduce the time computation, but also give
a more suitable measure for this objective. Furthermore, we
can decrease the computational complexity by researching a
single objective fitness function that adapts itself depending
on the nature of target sounds.

FX and LFO module types were also challenging to identify
for PresetGen. Studying an additional objective is a good idea
to take the nature of these modules into account. It would
also be interesting to separate the optimization of the knob
parameters from the type parameters. In this perspective,
using a co-evolution genetic algorithm; where one population
representing the types is co-evolved with another population
representing the knob parameters—seems promising.

Results of empirical evaluation with non-contrived sounds
pointed out that PresetGen does not perform better than
humans on the task of matching a non-contrived sound with
impulse characteristics. We also plan to improve PresetGen
to achieve human-competitiveness with non-contrived sounds
with impulse characteristics by updating the system’s fitness
function and experimenting on different objectives.

8.3 Improvements to the evaluation

Our evaluation identified discrepancies in performances using
target sounds of different natures.Amore in-depth study might
explain these differences and would allow us to improve Pre-
setGen. For example, target sounds with a dynamic spectrum
are more difficult to match than a stationary spectrum. Adding
an objective related to this characteristic of the sound could
improve the overall system performance. Our target sounds
were limited to a 2 s duration. It would be interesting to study
the performance of PresetGen for longer sounds.

It was also challenging to compare the performances of
PresetGen to other systems in the literature. Indeed, different
target sounds and performance indicators are used in the dif-
ferent previous works. Developing a benchmark that includes
target sounds of different natures and performance indicators
could make it possible to easily compare similar systems, as
well as build on previous works.

Even though our experimentations during the designing
phase of our system led us to switch from the canonical GA
to a multi-objective GA (NSGA-II), it has not been proved
formally that the NSGA-II outperforms the canonical GA. In
this perspective, it would be interesting to do a direct compar-
ison experiment to compare formally the performance of our
NSGA-II system to a canonical GA.

As a future work, we also plan to expand our empirical
evaluation experiment to multiple sound designers. Our initial
fitness value comparisons with multiple sound designers in
Section 7.3 gave encouraging results showing that PresetGen
matched the target sounds better than (human) sound design-
ers, generally speaking.

The sound designer 1 commented that the synthesizer’s user
interface provided convenience to match target sounds. For
example, to generate a plucked instrument sound, the sound
designer searched the parameters starting from the presets that

had names involving plucked instruments. For this reason,
we plan to research the relationship between the designer’s
performance and the synthesizer’s user interface as a future
work.

8.4 Applications

A practical application of PresetGen would be an online plat-
form in which a user could upload target sounds. The presets
search would be evolved offline using PresetGen and the
resulting OP-1 presets would be sent back to the user by email.

An adapted version of our GA system could also be inte-
grated into an online OP-1 patch randomizer.8 The idea here
would be to use an interactive GA instead of an NSGA-II.
The user would be asked to rank by preference the individuals
in the population. These rankings would be used to select
the individuals for mutation and crossover. It would also be
possible to use our NSGA-II system for background evolu-
tion (McDermott, Griffith, & O’Neill, 2007). Here, a target
sound would be loaded before any user interaction takes place.
Our NSGA-II algorithm would then run in the background,
attempting to match the target sound. Meanwhile, the user
would interact with the system using a GUI in the foreground.
For each generation, the individuals in the cumulative Pareto
front would migrate from background evolution to foreground
evolution.

PresetGen can also be useful as an educational tool in sound
design. The system can point out alternative ways to match a
given target sound on the synthesizer.

Working on the OP-1 optimization problem gave us numer-
ous insights on how to solve the harder synthesizer generation
problem (Macret & Pasquier, 2014). Although this problem
presents a lot of similarities to the OP-1 problem, it is more
complicated in the sense that PD’s audio synthesis architecture
is non-linear and modular. A limited number of synthesis
engines, LFO and FX are accessible with the OP-1. On the
other hand, PD’s building blocks are fundamental synthesis
components, such as oscillators or filters. It is possible to
generate any synthesis engines, LFO and FX using PD. It
makes the search space for the synthesis architecture sub-
sequently more complex for PD than the OP-1. The num-
ber of input parameters is fixed in the OP-1 case, but it can
vary in the PD case, making the search even more complex.
Given the complexity difference, using the same optimization
system for PD than for the OP-1 does not look promising.
Instead, we implemented the idea of using co-evolution to
separate the optimization of the synthesis architecture from
the synthesis parameters with our Automatic PureData patch
generation system. Limiting the number of input parameters
for PD makes sense from a usability perspective. It also scales
well with new promising Evolutionary techniques (such as
Cartesian Genetic Programming) that can evolve graphs, the
natural representation for PD patches.

8http://op-rand1.appspot.com/welcome.jsf

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

http://op-rand1.appspot.com/welcome.jsf

Automatic synthesizer preset generation with PresetGen 143

This work brings us closer to making synthesizers more
accessible to novice practitioners and helping free the musi-
cian or composer from tedious calibrations so that they can
focus on the aesthetics of an artwork without losing the con-
text.

Acknowledgements

We would like to thank Teenage Engineering, the makers of
OP-1 synthesizer, for their collaboration and support. Special
thanks goes to Laurent Droguet from Institut de Recherche et
Coordination Acoustique/Musique (IRCAM) and Dr. Corey
Kereliuk from Technical University of Denmark. We also want
to thank Pr. Bernhard Riecke for his help with methodology
and the statistics of the empirical evaluation experiment.

Funding

This research was funded the Natural Sciences and Engineering
Research Council of Canada, and Social Sciences and Humanities
Research Council of Canada.

References
Barbulescu, L., Watson, J.-P., & Whitley, L. (2000). Dynamic

representations and escaping local optima: Improving genetic
algorithms and local search. In Proceedings of the National
Conference on Artificial Intelligence (pp. 879–884). Palo Alto,
CA: AAAI Press.

Bozkurt, B., & Yüksel, K. (2011). Parallel evolutionary
optimization of digital sound synthesis parameters. In
Proceedings of the Conference on Applications of Evolutionary
Computation (Lecture Notes in Computer Science, Vol. 6625,
pp. 194–203). Berlin: Springer.

Chan, S., Yuen, J., & Horner, A. (1996). Discrete summation
synthesis and hybrid sampling-wavetable synthesis of acoustic
instruments with genetic algorithms. In Proceedings of the
International Computer Music Conference (ICMC) (pp. 49–
51). International Journal of Advanced Computer Science and
Applications (IJACSA).

Chaudhari, M., Dharaskar, R. V., & Thakare, V. (2010).
Computing the most significant solution from Pareto front
obtained in multi-objective evolutionary. In International
Journal of Advanced Computer Science and Applications, 1(4),
63–68.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Evolutionary Computation, 6(2), 182–197.

Fortin, F., De Rainville, F., Gardner, M., Parizeau, M., & Gagné,
C. (2012). DEAP: Evolutionary algorithms made easy. Journal
of Machine Learning Research, 13, 2171–2175.

Garcia, R.A. (2001). Automatic generation of sound synthesis
techniques (PhD thesis). MIT, Cambridge, MA, USA.

Hinton, P.R. (2004). SPSS explained. London: Routledge.
Holland, J.H. (1975). Adaptation in natural and artificial

systems: An introductory analysis with applications to biology,

control, and artificial intelligence. Ann Arbor: University of
Michigan Press.

Horner, A., & Beauchamp, J. (1996). Piecewise-linear
approximation of additive synthesis envelopes: A comparison
of various methods. Computer Music Journal, 20(2), 72–95.

Horner,A., Beauchamp, J., & Haken, L. (1993). Machine tongues
XVI: Genetic algorithms and their application to FM matching
synthesis. Computer Music Journal, 17(4), 17–29.

Jin, Y., & Branke, J. (2005). Evolutionary optimization in
uncertain environments-A survey. Journal on Evolutionary
Computation, 9(3), 303–317.

Johnson, D. (2002). A theoretician’s guide to the experimental
analysis of algorithms. Data Structures, Near Neighbor
Searches, and Methodology: 5th and 6th Dimacs Implemen-
tation Challenges, 59, 215–250.

Jones, T., & Forrest, S. (1995). Fitness distance correlation
as a measure of problem difficulty for genetic algorithms.
In Proceedings of the International Conference on Genetic
Algorithms (pp. 184–192). San Francisco, CA: Morgan
Kaufmann.

Lai, Y., Jeng, S., Liu, D., & Liu, Y. (2006). Automated
optimization of parameters for FM sound synthesis with genetic
algorithms. In International Workshop on Computer Music and
Audio Technology,

Lobo, F., Lima, C., & Michalewicz, Z. (2007). Parameter setting
in evolutionary algorithms (Vol. 54). Berlin: Springer Verlag.

Macret, M., & Pasquier, P. (2014). Automatic design of sound
synthesizers as pure data patches using coevolutionary mixed-
typed Cartesian genetic programming. In Proceedings of the
2014 Conference on Genetic and Evolutionary Computation
(pp. 309–316). New York: ACM.

Macret, M., Pasquier, P., & Smyth, T. (2012). Automatic
calibration of modified FM synthesis to harmonic sounds
using genetic algorithms. In Proceedings of Sound and
Music Computing Conference (pp. 387–394). Barcelona:
SMCNetwork.

Mathieu, B., Essid, S., Fillon, T., Prado, J. & Richard, G. (2010).
Yaafe, an easy to use and efficient audio feature extraction
software. In Proceedings of the International Society for Music
Information Retrieval (6pp). Canada: International Society for
Music Information Retrieval.

MATLAB, (2011). MATLAB version 7.12.0 (R2011a). Natick,
MA: The MathWorks Inc.

McDermott, J., Griffith, N., & O’Neill, M. (2007). Evolutionary
GUIs for sound synthesis. In International Conference on
Applications of Evolutionary Computing (Lecture Notes in
Computer Science, Vol. 4448, pp. 547–556). Berlin: Springer.

Mitchell, T. (2010). An exploration of evolutionary computation
applied to frequency modulation audio synthesis parameter
optimisation, (PhD thesis, University of the West of England,
Bristol, UK). Retrieved from http://www.teamaxe.co.uk.

Mitchell, T. (2012). Automated evolutionary synthesis matching.
Journal on Soft Computing, 16(12), 2057–2070.

Mitchell, T., & Creasey, D. (2007). Evolutionary sound matching:
A test methodology and comparative study. In International
Conference on Machine Learning and Applications (pp. 229–
234). Piscataway, NJ: IEEE.

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

http://www.teamaxe.co.uk

144 K. Tatar et al.

Moffat, D., & Kelly, M. (2006). An investigation into people’s
bias against computational creativity in music composition. In
The Third Joint Workshop on Computational Creativity (6pp).
Trento, Italy: Universita di Trento.

Peeters, G. (2004). A large set of audio features for sound
description (similarity and classification) in the CUIDADO
project (Technical report). Paris: IRCAM.

Riionheimo, J., & Välimäki, V. (2003). Parameter estimation of a
plucked string synthesis model using a genetic algorithm with
perceptual fitness calculation. EURASIP Journal on Advances
in Signal Processing, 2003(8), 791–805.

Rocha, M., & Neves, J. (1999). Preventing premature
convergence to local optima in genetic algorithms via random
offspring generation. Multiple approaches to intelligent
systems (Lecture Notes in Computer Science, Vol. 1611, pp.
127–136). Berlin: Springer.

Roth, M. (2011). A comparison of parametric optimization
techniques for musical instrument tone matching. Proceedings
of the Audio Engineering Society Convention (pp. 972–980).
New York: Audio Engineering Society (AES).

Rousseeuw, P. (1987). Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. Journal of
Computational and Applied Mathematics, 20, 53–65.

Schatter, G., Züger, E., & Nitschke, C. (2005). A synaesthetic
approach for a synthesizer interface based on genetic
algorithms and fuzzy sets. In Proceedings of the International
Computer Music Conference (pp. 664–667)

Sivanandam, S.N., & Deepa, S.N. (2007). Introduction to genetic
algorithms. New York: Springer.

Takala, T., Hahn, J., Gritz, L., Geigel, J., & Lee, J. (1993).
Using physically based models and genetic algorithms
for functional composition of sound signals, synchronized
to animated motion. In Proceedings of the International
Computer MusicConference (pp. 180–185).

Tatar, K., Macret, M., & Pasquier, P. (2015). Experiment results.
Retrieved from http://metacreation.net/PresetGen/index.html.

Teenage engineering, (n.d.) Retrieved from http://www.
teenageengineering.com/

Vuori, J., & Välimäki, V. (1993). Parameter estimation of non-
linear physical models by simulated evolution-application to
the flute model. In Proceedings of the International Computer
Music Conference (pp. 402–402). The International Computer
Music Association.

Wakefield, G., & Mrozek, E. (1996). Perceptual matching of low-
order models to room transfer functions. In Proceedings of the
International Computer Music Conference, Barcelona, 1998
(pp. 111–113).

Wehn, K. (1998). Using ideas from natural selection to evolve
synthesized sounds. In Proceedings of the Digital Audio Effects
DAFX98 Workshop (pp. 159–167).

Westgrid - Compute Canada. (n.d.). Retrieved from http://www.
westgrid.ca/ (last accessed January 2016).

Yee-King, M., & Roth, M. (2008). Synthbot: An unsupervised
software synthesizer programmer. Proceedings of Interna-
tional Computer Music Conference (ICMC-08) (pp. 184–187).
University of Sussex.

Yee-King, M.J. (2011). Automatic sound synthesizer program-
ming: techniques and applications, (PhD thesis, University
of Sussex, Brighton, UK). Retrieved from http://core.ac.uk/
download/pdf/2710683.pdf

D
ow

nl
oa

de
d

by
 [

Si
m

on
 F

ra
se

r
U

ni
ve

rs
ity

]
at

 1
3:

21
 2

9
Ju

ly
 2

01
6

http://metacreation.net/PresetGen/index.html
http://www.teenageengineering.com/
http://www.teenageengineering.com/
http://www.westgrid.ca/
http://www.westgrid.ca/
http://core.ac.uk/download/pdf/2710683.pdf
http://core.ac.uk/download/pdf/2710683.pdf

	Abstract
	1. Introduction
	2. Background on evolutionary computation
	2.1 Background on genetic algorithms
	2.2 Multi-objective genetic algorithms
	2.2.1 A non-dominated sorting approach
	2.2.2 Diversity preservation
	2.2.3 NSGA-II main loop

	3. Background on evolutionary computation for sound synthesis
	4. The OP-1 synthesizer
	5. System design
	5.1 Methodology
	5.2 Representation of OP-1 presets
	5.3 Genetic operators
	5.4 Fitness function
	5.5 Selection and stopping criteria
	5.6 Pareto front
	5.7 Implementation

	6. Experiments and results
	6.1 Sound collection
	6.2 The detailed statistics of two sounds
	6.2.1 Fitness objectives
	6.2.2 Distance/fitness correlation
	6.2.3 Pareto front analysis and clustering

	6.3 Statistics of multiple runs
	6.3.1 Bootstrapping
	6.3.2 Measurements of the solution quality
	6.3.3 Contrived sounds
	6.3.4 Non-contrived sounds

	7. Empirical evaluation with non-contrived sounds
	7.1 Method of the experiment
	7.1.1 Design
	7.1.2 Participants
	7.1.3 Procedure

	7.2 Results
	7.2.1 Quality comparison
	7.2.2 The time complexity

	7.3 Expansion of empirical evaluation experiment to multiple sound designers

	8. Conclusions and future works
	8.1 Contributions
	8.2 Improvements to the system
	8.3 Improvements to the evaluation
	8.4 Applications

	Funding
	References

