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a b s t r a c t 

This work presents a genetic programming control design methodology that extends the 

traditional behavior–based control strategy towards a synthetic-analytic perspective. The 

proposed approach considers the internal and external dynamics of the system, providing 

solutions to a general structure, and including analytic functions, which can be studied 

within the Control Theory framework. The method is illustrated for the tracking control 

problem under bounded velocity restrictions of a nonholonomic wheeled mobile robot. A 

classic Control Theory (CT) based controller that solves the tracking problem (but not the 

velocity constraint requirement) is chosen from the literature; based on its stability prop- 

erties, a modified structure where the search of suitable analytic basis behaviors, fulfilling 

both control objectives simultaneously, can be introduced. The proposed framework takes 

the form of a learning process based on Genetic Programming (GP) which generates a set 

of nonlinear tracking controllers satisfying pre-specified velocity bounds. A collection of 

9113 suitable nonlinear solutions were obtained to augment the ground controller. Sim- 

ulations and real–time experiments are performed to illustrate the effectiveness of the 

methodology through the testing of the models with the best performance, as well as 

those with lower structural complexity. 

© 2019 Published by Elsevier Inc. 

 

 

 

 

 

 

1. Introduction 

The synthesis of nonlinear controllers where multiple objectives are pursued constitutes a significant challenge to the

control research community. Here, the aim is to make a system meet additional constraints without compromising the

achievement of a desired motion or behavior. While most state-of-the-art proposals addressing control problems can be

classified in two main broad approaches (Control Theory and Soft Computing techniques), there are successful results where

these are combined to take advantage of the strengths of each method, [7,14,26,27,31] . In this work, a methodology for

the automated synthesis of nonlinear controllers through an evolutionary process is proposed. The objective is to solve the

tracking control problem in nonholonomic wheeled mobile robots while fulfilling a bounded velocity policy. 
∗ Corresponding author. 

E-mail addresses: eclemente@ite.edu.mx (E. Clemente), mcrodriguez@conacyt.mx (M.C. Rodríguez-Liñán), olague@cicese.mx (G. Olague). 

https://doi.org/10.1016/j.ins.2019.06.025 

0020-0255/© 2019 Published by Elsevier Inc. 

https://doi.org/10.1016/j.ins.2019.06.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2019.06.025&domain=pdf
mailto:eclemente@ite.edu.mx
mailto:mcrodriguez@conacyt.mx
mailto:olague@cicese.mx
https://doi.org/10.1016/j.ins.2019.06.025


M. Meza-Sánchez, E. Clemente and M.C. Rodríguez-Liñán et al. / Information Sciences 501 (2019) 436–459 437 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Control of nonholonomic wheeled mobile robots is challenging since these mechanisms possess more degrees of free-

dom than available control variables. By definition, they have motion constraints related to their wheels configuration. In

other words, this kind of robots is unable to move simultaneously and independently in any arbitrary direction in the hor-

izontal plane and to instantaneously change their orientation (i.e., translational and rotational motion). Therefore control

of nonholonomic mobile robots has gathered the attention from various research groups, as evidenced by the literature,

[5,9–11,13,15,20,21,25,28,29] . 

From a practical point of view, kinematic control laws are the most common way to develop motion controllers for

wheeled mobile robots. While many proposals from the state-of-the-art provide designs using torque or voltage as the con-

trol signal, most commercial and academic prototypes use velocity inputs instead. Such velocity inputs are either specified as

velocities for each of the robot’s wheels, or as linear and angular velocities in the kinematic model. However, independently

of which speeds are considered in the design, for safety purposes, it is necessary to comply with predefined boundaries in

the velocities to avoid skidding and slipping effects in the robot’s motion [24] . 

To assume that the robot actuators can supply any demanded torque, voltage, or velocity simplifies the design stage

of the controllers but, in practice, this supposition is not true. When the signal demanded by the controller exceeds the

physical capacities of the actuators, they operate in saturated mode. Keeping the actuators working at the saturation limit

decreases their lifespan since they work at their maximum capacity. To preserve the actuators’ integrity, the saturation mode

should be avoided whenever it is possible. Then, it follows that, in general, it is necessary to derive controllers such that

actuator constraints are considered in the design. 

Saturation of the reachable velocities can be addressed by the specific use of saturation functions (such as the hyperbolic

tangent or the sign) in combination with CT or soft computing methods to design the controllers. For example, from a CT

approach, many works have been proposed to solve one or various of the control problems related to nonholonomic mobile

robots (tracking, path following, stabilization, flocking, or formation [5] ), take for example, [5,10,11,20,21,28] . In [5] , the track-

ing control problem subject to bounded velocity and torque is addressed using two first-order filters. The filters ensure that

the torque and velocity constraints are satisfied producing uniformly continuous feedback signals. A backstepping method is

used in [10] to solve the path following problem when the actuator velocities are limited. Notably, this strategy is directed

at high-speed applications. Jiang et al. [11] present an adaptive controller, based on passivity and normalization, to achieve

global stabilization and tracking for a mobile robot subject to input velocity constraints. Nonlinear Model Predictive Con-

trol (NMPC) is employed in [20] for trajectory tracking in nonholonomic mobile wheeled robots. NMPC can naturally deal

with restrictions; then, the proposal achieves the tracking objective while restricting input velocities. Serrano et al. [28] pro-

pose a tracking controller for a wheeled mobile robot subject to saturation in the angular and linear speeds. The approach

uses nonlinear programming methods to calculate the controller parameters. A generalized framework for several types of

wheeled mobile robots to satisfy the path following requirement while keeping the velocities within acceptable bounds is

presented in [21] . The authors use explicit expressions for the input velocities to meet the tracking objective. 

Alternatively, Soft Computing techniques can be used to achieve an adequate performance of the robot while enforcing

limits in the velocity signals. In [29] , formation control is dealt with using adaptive Radial Based Function Neural Networks

(RBFNN) to approximate the actuator’s saturation, where the saturated input is the torque. Additionally, the estimation and

tracking errors are bounded by saturation functions. It should be noted that the saturation bounds are explicitly incorporated

in the controller design. A Takagi–Sugeno fuzzy controller is proposed in [25] to solve the trajectory tracking problem of a

unicycle mobile robot which is subject to velocity and actuator saturation. In their work, the saturation nonlinearity is

approximated through a set of fuzzy rules, rather than by specific saturation functions. The authors demonstrate the stability

of the closed-loop system employing Lyapunov functions. They present three experiments to demonstrate the approach: one

positioning challenge, and two tracking experiments following a line and an eight shape curve. 

In all of the works mentioned above, it is assumed that the control signal is either the angular or the linear velocity

of the robot, with its corresponding boundary. This restriction means that this boundary must be calculated for the wheel

configuration and the physical parameters of the actuators. This work, in particular, focuses on solving the control problem

where constraints in the velocity of each of the robot’s wheels are considered. 

Under the requirements stated above (kinematic restrictions and input velocity bounds), it becomes clear that a hybrid

framework will be best to exploit the advantages of different approaches to solve such a complex task. Specifically, the

tracking control problem can greatly benefit from the neural network framework of Evolutionary Robotics [8] , where the

aim is to endow the robot with natural language processing or deductive reasoning to generate behaviors that can solve

complex tasks. A behavior can be defined as an independent action resulting from the direct interaction of the system with

its environment. This concept was introduced to represent intelligence in artificial systems [3] . Furthermore, a system can

exhibit complex behaviors when such activity producers are intertwined and executed in parallel. The works of Matari ́c

et al. [17,18] and the developments proposed by Arkin [1] , led to the evolution of the concept of behaviors into an approach

called Behavior–based control. This approach aims to solve control problems within the robotics field; it proposes the de-

velopment of a process where a set of actions, or modules, named basis behaviors, are combined to achieve desired features

of the system. This method was originally developed for situated robots that need to adapt to the dynamics of real-world

environments without considering (a) the internal dynamics of the system, or (b) abstract representations of knowledge and

reality [19] . 

Recently, an analytic behavior–based framework was proposed by Clemente et. al [6] for obstacle avoidance with bounded

velocity for the position control problem in omnidirectional mobile robots. The proposed methodology takes advantage of
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Fig. 1. Conceptual framework of the learning process of a nonholonomic mobile robot towards the development of analytic nonlinear tracking controllers 

with constrained velocities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the Potential Fields approach to derive a forced behavior and an evolutionary search for adaptive behaviors as the attractive

and the repulsion functions. In [22] , this methodology was extended to solve the tracking problem in a double integrator

system; and in [23] for second-order dynamical systems. A traditional PD with inverse dynamics is proposed to generate

the forced behavior, while the learned responses are searched by an evolutionary approach for a bounded flow variable. The

present work extends and develops the ideas introduced by the authors in [6,22,23] . It aims to control a nonholonomic

wheeled mobile robot under velocity constraints using a PI-type controller. 

The analytic behavior–based framework has three significant features that distinguish it from traditional Behavior–based

control. First, it defines the basic behaviors as analytic functions, which can also be nonlinear; second, it uses of a model of

the system to include the internal dynamics; and third, it integrates a CT-based controller with a learning process applying

GP to generate the learned behaviors. Moreover, the advantage of employing a CT-based controller is that it can be analyzed

in terms of the control theory framework, thus guaranteeing the performance of the system; this is possible through the

concept of stability of the equilibrium points. An equilibrium point is a coordinate of the state space such that, whenever

the mobile robot starts at it, it will remain at that point for all future time. The stability of a system is proven through a

qualitative analysis of the trajectories, or solution curves of the system. The most critical stability criterion within the CT

approach is the Lyapunov stability theorem. 

The integration of the CT method with the GP approach allows the implementation of a learning stage seeking fulfillment

of additional features in the behavior of the robot. The GP technique allows for the construction of a syntactical tree to

represent a solution given in the form of nonlinear controllers; such solutions are composed of mathematical operators and

analytic functions derived from the CT approach. 

In this work, we extend the application of the analytic behavior-based framework by addressing the tracking problem

in nonholonomic mobile robots. Constrained velocities in the robot’s wheels are also considered. In contrast to previous

works using this framework, this proposal takes advantage of the Lyapunov stability conditions to derive the learning stage

in the mobile robot. A modified structure of a classical state-of-the-art tracking controller is introduced to seek behavior

modifiers. Such modifiers simultaneously fulfill the convergence to the desired trajectory while keeping the velocities within

some constant boundary value. Moreover, the GP approach guarantees that the speeds in each wheel will never reach the

saturation bounds for several given scenarios. Its strength lies in the automation of the synthesis of nonlinear controllers,

giving rise to a big set of solutions that can be studied by the CT approach. 

The methodology presented in this work permits the automatic design of nonlinear controllers, which are in general

hard to derive. This approach could be easily extended to the design of controllers for plants with multiple constraints.

The intrinsic characteristics of the method allow the user to explore alternative solutions to the task at hand. The solutions

found by the proposed method can be more effective than those found by traditional means by optimizing variables like



M. Meza-Sánchez, E. Clemente and M.C. Rodríguez-Liñán et al. / Information Sciences 501 (2019) 436–459 439 

Fig. 2. Motion problem setup for the tracking control problem of the desired trajectory in a nonholonomic mobile robot within a normalized workspace 

in the XOY plane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

total energy, settling time, convergence time, etc. These characteristics can be advantageous in a variety of systems, such as

in robotics, mechanics, electronics, and in general, in multi-parametric plants, to mention a few. 

The rest of the paper is organized as follows. Section 2 contains the problem statement. Section 3 describes the synthesis

of the nonlinear controllers for the basic behaviors, the parameters for the GP, and the statistical analysis of the attained

solutions. Section 4 describes the discovered nonlinear controllers together with numerical results. Section 5 presents an

application example. Finally, the conclusions are given in Section 6 . 

1.1. Contributions 

This paper introduces the development of nonlinear control laws based on an analytic behavior-based framework which

integrates Control Theory with the Genetic Programming approach. The aim is to solve the tracking control problem in

nonholonomic mobile robots operating with bounded velocity. In contrast with other works found in the literature, this

paper seeks the satisfaction of the velocity bounds, individually, for each of the mobile robot’s wheels. The proposed method

relies on the Genetic Programming approach to keep the velocity inputs within the saturation bounds by creating control

laws that implicitly enforce this behavior. 

The contributions of this work can be summarized as follows. 

1. The present work proposes a novel approach that combines Control Theory and Genetic Programming concepts to de-

liver a controller design methodology. The proposed strategy generates analytic solutions, in contrast with those ob-

tained from other soft computing techniques, like neural network or fuzzy control systems, such as Mamdami models.

The advantage of dealing with analytic solutions is that, on the one hand, the cost associated to the implementation

of an analytic solution is lower than that of nonanalytic ones, this means that the solutions obtained using the pro-

posed methodology can be implemented in real-time. On the other hand, the proposal in this paper makes it possible

to utilize existent analysis techniques developed within the Control Theory framework, by its analytic properties. 

2. A set of 9113 solutions were found by the proposed algorithm, thus automating the design process. The automation

of such a process implies a reduction in manual design time. 

3. The methodology in this work produces several solutions of different complexity. The user can choose among them,

according to specific requirements of the controlled system, or the computational and implementation cost associated

with each application. Also, the automation of the learning process aiming to discover suitable nonlinear controllers

reveals insights for the synthesis of new controllers. 

4. In this paper, the proposed scheme is demonstrated for a nonholonomic wheeled mobile robot. However, it can be

generalized to other applications and control problems. 
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Table 1 

Terminals used in the evolutionary process to find the learned robot behaviors satisfying the bounded velocity condition. 

ID Term Description ID Term Description 

1 x ( t ) Robot position in X -axis 10 ˙ x d (t) Linear velocity of the robot in X -axis 

2 y ( t ) Robot position in Y -axis 11 ˙ y d (t) Linear velocity of the robot in Y -axis 

3 x d ( t ) Desired robot position in X -axis 12 v Rd ( t ) Desired velocity in the right wheel 

4 y d ( t ) Desired robot position in the Y -axis 13 v Ld ( t ) Desired velocity in the left wheel 

5 θ ( t ) Robot orientation 14 x d (t) − x (t) Negative error position in x 

6 θ d ( t ) Desired robot orientation 15 y d (t) − y (t) Negative error position in y 

7 v d ( t ) Desired linear velocity for the robot 16 x e Error position in X -axis on the inertial frame 

8 ω d ( t ) Desired angular velocity for the robot 17 y e Error position in Y -axis on the inertial frame 

9 θ e ( t ) Error in orientation on the inertial frame 

Table 2 

Functions used in the evolutionary process to find the learned robot behaviors that achieve bounded velocity. 

ID Expression Definition ID Expression Definition 

1 + Addition 18 ct h ( · ) Hyperbolic cotangent 

2 − Subtraction 19 sgn( · ) Signum function 

3 / Division 20 t hi ( · ) Inverse hyperbolic tangent 

4 ∗ Multiplication 21 s hi ( · ) Inverse hyperbolic sine 

5 ( · ) ( · ) Exponentiation 22 erf( · ) Gauss error function of the real part of the argument 

6 max( · , · ) Maximum 23 c ( · ) Cosine 

7 min( · , · ) Minimum 24 s ( · ) Sine 

8 atan2r( · , · ) Inverse tangent of the real part of each argument 25 t ( · ) Tangent 

9 
√ · Square root 26 cs ( · ) Cosecant 

10 ( · ) 2 Square 27 sc ( · ) Secant 

11 ln( · ) Natural logarithm 28 ct ( · ) Cotangent 

12 e ( · ) Exponential 29 s i Inverse sine 

13 s h ( · ) Hyperbolic sine 30 c i Inverse cosine 

14 c h ( · ) Hyperbolic cosine 31 || · || Euclidean norm 

15 t h ( · ) Hyperbolic tangent 32 | · | Absolute value 

16 cs h ( · ) Hyperbolic cosecant 33 Re( · ) Real part of the argument 

17 sc h ( · ) Hyperbolic secant 34 atanr( · ) Inverse tangent of the real part of the argument 

 

 

 

 

 

 

 

 

 

 

 

 

5. The learning process was performed in simulation using only one desired trajectory, and a given set of parameters

and initial conditions for the robot. In practice, the controllers were tested on a robot with different settings and

paths, which demonstrates the applicability of the proposed strategy. 

2. Behaviors in tracking control for nonholonomic mobile robots 

An overview of the critical aspects of the applied analytic behavior-based framework for this specific control problem is

shown in Fig. 1 . Let us define the unforced behavior of the nonholonomic mobile robot as its kinematic model, given some

initial position at time t 0 , and without considering the action of the controller. The kinematic model, described by a vector

of generalized coordinates as shown in Fig. 2 , is given as [4,32] 

˙ ξ(t) = 

[ 

cos (θ (t)) 0 

sin (θ (t)) 0 

0 1 

] 

u (t) , (1) 

where ξ(t) = [ x (t ) , y (t ) , θ (t )] T refers to its position coordinates of a point of contact with the ground in a fixed coordinate

frame XOY , and its orientation angle with respect to the X axis; the vector of control inputs u (t) = [ v (t ) , ω(t )] T corresponds

with its linear velocity and with the angular velocity about its instantaneous rotational axis. This model describes cars, carts,

and mobile robots with parallel driven wheels, such as those with differential drive locomotion type, and some four-wheeled

robots. This class of mobile robots cannot move sideways since they cannot roll in such direction unless they turn around

first. In mobile robots with parallel driven wheels, such as the one portrayed in Fig. 2 , the motion is only allowed in the

normal direction to its wheels axis. 

Assuming that the condition of pure rolling and non-slipping is fulfilled, the nonholonomic constraint for the model (1) is

given as 
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Fig. 3. Recombination operators applied to the proposed representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙ y (t) cos (θ (t)) − ˙ x (t) sin (θ (t)) − ω(t) = 0 . (2)

The pure rolling condition supposes that the rolling motion of the mobile robot is the sum of pure rotation of the wheel

and pure translation ahead. The non-slipping requirement means that the net instantaneous velocity of the wheel on the

contact surface is zero, i.e., the point of contact of the wheels with the plane does not move. 

Since the unforced behavior is characterized by the kinematic model (1) subject to the restriction (2) , where u (t) =
[0 , 0] T . The forced and the learned behaviors arise from closing the control loop. Let us redefine the vector of control inputs

as 

u (t) = u F + u L , (3)

where u F is the control law which generates the forced behavior, and u L is the controller that produces the learned behaviors

in the mobile robot. Let the forced behavior be imposed using a selected CT-based tracking controller. This induced behavior

guarantees a consistent response of the system under certain conditions, applying the Lyapunov stability criterion. The sec-

ond part of the controller denoted as u L in (3) is discovered through the implementation of an automatic search of behavior

modifiers. Such behavior modifiers must lead the system to exhibit additional desired features without compromising the

achievement of the forced behaviors. For the control problem as mentioned earlier, the GP approach is used to discover the

set of nonlinear controllers aiming to constraint the velocities of each wheel in the nonholonomic mobile robot. 

3. Synthesis of nonlinear tracking controllers enhancing bounded velocity motion 

The objective of this work is to synthesize nonlinear controllers addressing the autonomous navigation problem in non-

holonomic mobile robots. Besides, the convergence to the desired motion must be constrained to exhibit bounded velocities

chosen accordingly to meet safe operation values of a real wheeled mobile robot. 

Consider the locomotion problem of the differential drives mobile robot shown in Fig. 2 . The control input u ( t ) is defined

in terms of the linear and angular velocities, v ( t ) and ω( t ), respectively; in practice, both speeds are related to the velocities

of each wheel. Since the distance between both wheels (denoted as l ) is constant, the velocities of the right and left wheels

of the mobile robot can be computed as 

v R (t) = v (t ) + 

lω(t ) 

2 

, v L (t ) = v (t ) − lω(t ) 

2 

. (4)

Assuming perfect velocity tracking of the wheels (i.e., the wheels of the mobile robot display the demanded velocities

v R ( t ) and v L ( t )) according to relation (4) , and that there is a smooth desired trajectory ξd (t) = [ x d , y d , θd ] 
T to be tracked, for

the system (1) –(2) , the following control objectives must be ensured 

1. To solve the autonomous navigation problem, such that the nonholonomic mobile robot reaches a desired behavior in

the predefined workspace; this is defined as 

lim ξ(t) = ξ (t) . (5)

t→∞ 

d 



442 M. Meza-Sánchez, E. Clemente and M.C. Rodríguez-Liñán et al. / Information Sciences 501 (2019) 436–459 

Table 3 

Settings for the parameters used by the evo- 

lutionary process. 

Parameter Value 

Number of Generations 100 

Population size 400 

Crossover rate 80% 

Mutation rate 20% 

Maximum tree depth 11 

Sampling Lexicographic 

Elitism Keep best 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. The linear velocity of both wheels, v R ( t ) and v L ( t ), are kept within a constant boundary interval; this is, 

| v R (t) | ≤ v R max 
, | v L (t) | ≤ v L max 

∀ t > 0 , (6)

where v R max 
, v L max 

are positive constants corresponding to the maximum value on the wheels’ velocities. This limits can

be freely set to meet specific physical constraints. Notice that if the mobile robot wheels have identical specifications,

then the values v R max 
and v L max 

can be the same. 

3.1. The forced behavior: CT-based tracking controller 

The forced behavior proposed for the mobile robot is the fulfilling of the control objective given in (5) ; that is, it must

guarantee the convergence of the robot to the desired reference ξd ( t ). Let us define the tracking errors for the mobile robot

modeled by (1) –(2) with respect to the desired trajectory ξd ( t ), as 

˜ ξ(t) = T ( ξ(t) − ξd (t)) , (7) 

where ˜ ξ(t) = [ x e , y e , θe ] 
T is the error vector for each position in the coordinated workspace, and 

T = 

[ 

cos (θ ) sin (θ ) 0 

− sin (θ ) cos (θ ) 0 

0 0 1 

] 

, (8) 

since the position error is not given in the global coordinate frame but rather as an error in the local coordinate frame of

the robot, denoted as X R OY R . 

Let us choose a state-of-the-art controller, presented in [12] , as the CT-based controller, which is given by the following

expression 

u F = u ct = 

[
v d cos (θe ) 

ω d + k θ sin (θe ) 

]
+ K 

[
x e 

v d y e 

]
(9) 

where u ct = [ v ct ω ct ] 
T is the control input which generates the forced behavior, and the matrix K = diag { k x , k y } and vari-

able k θ are the constant gains of the controller. Notice that the subindex ct in (9) denotes the application of the Control

Theory approach in the first part of the controller, as defined in (3) . The closed-loop dynamics obtained after applying con-

troller (9) to the kinematic model (1) are uniformly asymptotically stable around 

˜ ξ = 0 . The gain tuning process requires

that k x � = T −1 
s , where T s is the sampling time, and the fulfillment of the relation 4 k y ≥ k 2 

θ
. For further details, refer to the

Lyapunov stability proof in [12] . The selection of controller u ct given in [12] is arbitrary. The only requirement is that the

chosen controller converges to solve the tracking control problem for this class of wheeled mobile robots. We aim to derive

a learning process for the nonholonomic mobile robot to simultaneously fulfill a bounded velocity condition, as stated in

the control objective given in (6) . 

3.2. The learned behaviors for bounded velocity: a GP-based set of nonlinear controllers 

The Genetic Programming paradigm is now applied to derive a scheme for the construction of analytic solutions. The

implemented evolutionary process automates the synthesis of nonlinear controllers, causing the mobile robot to simultane-

ously fulfill the control objectives stated in (5) and (6) . Let us define 

u L = −K u gp 

[
x e 

v d y e 

]
, (10) 

where K ∈ R 

2 × 2 is the same gain matrix as in the CT-based controller (9) and u gp = diag { v gp , ω gp } is the control input,

obtained by an evolutionary process which produces the learned behaviors in the mobile robot. Recall that the full nonlinear

controller u that is applied is given as the summation of the selected CT-based controller u ct in (9) , and the proposed GP-

based control input u in (10) . 
L 
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Fig. 4. Evolutionary process for the synthesis of nonlinear tracking controllers subject to velocity constraints. 

 

 

 

 

 

 

 

 

 

 

 

The proposed approach applies an evolutionary process for the optimization of two different functions v gp and ω gp .

Notice that v gp and ω gp are meant to modify the forced behavior induced by (9) . Specifically, v gp modifies the linear velocity

along the X -axis, since it is multiplied by the error x e ; similarly, ω gp modifies the motion along the Y -axis. A set of functions

and terminals are selected for each behavior modifier focusing in its own specific sought behavior. Thus, each expression

has it own set of functions and terminals. 

3.2.1. Functions and terminals 

The functions and terminals are defined according to the most used mathematical expressions in Control Theory. These

expressions represent the search space where the learned behaviors will be discovered. Tables 1 and 2 show the set of

functions and terminals that can be used to build the v gp and ω gp operators. Given the common domain, and the dependence

between v gp and ω gp , the set of functions and terminals are similarly defined; nevertheless, each feature is independent, and

is associated with a specific performance. 

The terminal set is defined in terms of the robot’s state variables, given as position, orientation and velocity, and in terms

of the error between the desired value and the system behavior. The function set is proposed by arithmetic, trigonometric,

hyperbolic, and some special functions. Thus, operators frequently used in the state-of-art, such as signum and hyperbolic
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Fig. 5. Statistics of the evolutionary GP process showing the average fitness and complexity of learned behaviors. 

 

 

 

 

 

 

 

 

 

 

tangent functions, are included. Additional operations, such as exponential, natural logarithm, maximum, and minimum, are

also considered in the search space. 

3.2.2. Genotype and evolutionary operators 

The genotype is defined as the representation of a possible solution. In Genetic Programming it is commonly codified

by a syntactic tree, encoding a single function or program. Two different operators are used in the present approach. Each

operation is represented as a syntactic tree array as shown in Fig. 3 . The first syntactic tree codifies v gp , while the second

tree typifies the ω gp function. This atypical representation is inspired by [6] . It implies genetic recombination taking into

account the syntactic array, and the elements that compose them. Hence, the genetic operators are defined in two levels.

In a higher level, the syntactic tree level (called chromosome), involves similar genetic operators as defined in single point

crossover , and common mutation in Genetic Algorithms. In a lower level, the recombination operators are defined over each

element of the chromosome. Thus, the crossover and mutation operators are implemented using a typical setting, as in the

classical Genetic Programming approach. Fig. 3 depicts an example of these operators, where the user defines the probability

selection of each genetic operator. 
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Fig. 6. Frequency of use of functions and terminals for v gp and w gp . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, the phenotype is the behavior showed by the robot. Note, that this performance is given by the forced and

learned behavior interaction. Thus, the genotype only codifies an intrinsic part of the robot behavior. 

3.2.3. Fitness function 

The fitness function is a metric that describes the performance of a given design solution. The goal is to guide a search

for a suitable solution where the mobile robot follows the desired path while keeping its linear velocity v ( t ) within defined

safe operation bounds. This score is given in terms of the mean squared error in each direction, and a set of weighted

metrics, defined for each of the robot’s wheels, as follows 

F ∝ M SE x + M SE y + γR + γL + φR + φL , (11)

where MSE k is the mean squared error between the desired position, and the robot position over each axis, k = { x, y } . Thus,

MSE x is expressed as 

MSE x = 

1 

t f 

t f ∑ 

t=0 

(x (t) − x d (t)) 2 , (12)

and similarly for MSE y . The term γ R represents a weighted metric between v R max 
and the maximum velocity max (| v R ( t )|)

reached by the right wheel of the robot as 

γR = e max (| v R (t) | ) −v R max , (13)

in the same way, γL = e max (| v L (t) | ) −v L max is defined in terms of the velocity of the left robot wheel. Finally, φR , also a weighted

metric, is defined for the robot’s right wheel in terms of the time t outside during which the robot’s velocity is outside of the

chosen boundaries as 

φR = e t outside , (14)

where t outside is given in milliseconds. The corresponding metric φL for the left wheel is defined accordingly. 

The performance p of a given trajectory is then computed applying the metrics described above, as follows 

p = M SE x + M SE y + γR + γL + φR + φL . (15)

Given a desired trajectory, the robot performance is evaluated for different initial conditions, resulting in a set of p i
performances; the average value over such p i , defines the fitness of the solution. This is 

F = 

1 

N ic 

N ic ∑ 

i =1 

p i , (16)
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Table 4 

A set of the learned behavior modifiers u gp i , i = 1 , . . . , 15 , with the best perfor- 

mance is shown alongside their fitness value, computed according to (11) with 

t f = 100 [ s ] , T s = 1 × 10 −3 [ s ] . Each behavior modifier is applied to the mobile 

robot in the form of a nonlinear controller as u (t) = u ct + u L . 

Sol v gp ω gp F 

u gp 1 erf (e erf ( erf ( erf (s (v Ld )))) ) ln 

( √ 

y e 

c(v Rd ) 

)
0.869 

u gp 2 erf (e erf ( erf ( erf (s (v Ld )))) ) ln 

( √ 

y e 

c 2 (v Rd ) 

)
0.866 

u gp 3 erf (e erf ( erf ( erf (v Ld ))) ) ln 

( √ 

y e 

c(v Rd ) 

)
0.863 

u gp 4 erf( cs (erf(erf( s ( y d ))))) s hi (s hi 

(
s hi 

(
Re 

(
t h ( ln (v Rd )) 
ln (s hi (v Rd )) 

)))
) 0.790 

u gp 5 erf( cs (erf(erf( sc ( y d ))))) s hi 

(
s hi 

(
s hi 

(
t h ( ln (s hi (v Rd ))) 

ln (s hi (v Rd )) 

)))
0.789 

u gp 6 erf( cs (erf(erf( sc ( y d ))))) s hi (s hi (s hi 

(
t h ( ln (s hi (s hi (v Rd )))) 

ln (s hi (v Rd )) 

)
)) 0.789 

u gp 7 erf (c h ( erf ( 
√ 

c h (v d )))) 
√ √ 

˙ y d 0.780 

u gp 8 th ( ct h ( t h ( t h ( t h ( ct h ( t h ( t h ( s ( θ d ) 0.772 

ct h ( ct h ( ch ( x ))))))))))) 

u gp 9 

√ 

cs h (sc h (t(v Ld ))) sc h ( c ( v Ld )) 0.767 

u gp 10 
erf( c h (erf( c h ( v Ld )))) erf(erf( c i ( c ( c ( x e ))))) 0.766 

u gp 11 
erf( cs (erf(erf( sc ( y d ))))) 

t h ( ln (v Rd )) 

ln (s hi (v Rd )) 
0.760 

u gp 12 

√ 

cs h (sc(t (t (v Ld )))) sc h ( c ( v Ld )) 0.758 

u gp 13 
erf (c h ( erf (c h ( erf ( 

√ v d )))) t h ( 

√ √ 

˙ y d ) 0.730 

u gp 14 
s (sgn( v Rd )) s h (s h ( min (s i (y d − y ) , ̇ y d ))) 0.573 

u gp 15 

√ 

cs h (cs h ( 
√ 

cs h (sc h (v Ld ) ))) sc h ( c ( x e )) 0.411 

Table 5 

The fuzzy controller, u fuzzy [25] , the CT–based controller, u ct [12] , and its 

saturated version, u ct−sat , are listed along with their corresponding fitness 

values. These can be compared with the fitness of the u gp i controllers in 

Table 4 . 

Control Expression F 

u fuzzy 
v f uzzy = c(θ ) z 1 + s (θ ) z 2 , 

ω f uzzy = −d −1 s (θ ) z 1 + d c(θ ) z 2 ; 0.053 

where z 1 = ˙ x d + ν( ̇ x d , ̃  x ) ̃ x , and z 2 = ˙ y d + ν( ̇ y d , ̃  y ) ̃ y . 

u ct 

[
v ct 

ω ct 

]
= 

[
v d cos (θe ) 

ω d + k θ sin (θe ) 

]
+ K 

[
x e 

v d y e 

]
0.033 

u ct−sat v ct−sat = 

⎧ ⎨ 

⎩ 

v max if v ct ≥ v max 

v ct if v min ≤ v ct ≤ v max 

v min if v ct ≤ v min 

0.21 

ω ct−sat = 

⎧ ⎨ 

⎩ 

ω max if ω ct ≥ ω max 

ω ct if ω min ≤ ω ct ≤ ω max 

ω min if ω ct ≤ ω min 

 

 

 

 

where N ic is the number of initial conditions used. 

3.2.4. The Genetic Programming setup 

The proposed computational process employed to discover and test the arising learned behaviors is depicted in Fig. 4 .

The desired trajectory to test the performance of the mobile robot is generated by a lemniscate of Huygens, Gerono, or

figure-eight curve; its parametric equations are given by 

x d (t) = a sin (ωt) , (17) 

y d (t) = b sin (ωt) cos (ωt) , (18) 

where a and b define the length and width of the lemniscate’s lobes, and ω = 2 π/s t . 

The lemniscate of Gerono is the antihyperbolism of a circle with respect to its center and a tangent. This trajectory has

vertical tangents at ( ± a , 0) and horizontal tangents at 

(
± 1 

2 

√ 

2 a, ± 1 

2 
a 

)
. Let us redefine the parameterized reference given

in (17), (18) , into an equivalent structure 

˙ ξd (t) = 

[ 

cos (θd (t)) 0 

sin (θd (t)) 0 

0 1 

] [
v d (t) 
ω d (t) 

]
, (19) 
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Fig. 7. Position tracking performance comparison between the proposed solutions u GP 1 (dashed blue line), u GP 15 (dashed-dotted red line), and the u ct 

(leftmost column, solid yellow line), u ct−sat (center column, solid yellow line), and u fuzzy (rightmost column, solid yellow line) controllers. Three initial 

conditions are presented, in quadrants I, II and IV. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

where ˙ ξd (t) = [ ̇ x d (t ) , ˙ y d (t ) , ˙ θd (t )] T , corresponds to the velocity vector of each axis of the Cartesian plane, and to the ori-

entation angle. The linear and angular velocities of the desired trajectory (denoted as v d ( t ) and ω d ( t ), respectively) are

computed as in [2] 

v d (t) = 

√ 

x 2 
d 
(t) + y 2 

d 
(t) , ω d (t) = 

˙ x (t) ̈y d (t) − ˙ y d (t) ̈x d (t) 

˙ x 2 
d 
(t)+ ̇ y 2 

d 
(t) 

, 

θd (t) = atan2 

(
˙ y d (t) 
˙ x d (t) 

)
, (20)

where ẍ d (t) , ÿ d (t) represent the second temporal derivatives of (17) and (18) , respectively. In addition, the required velocity

of the wheels for the desired trajectory is given by 

v Rd (t) = v d (t) + 

l ω d (t) 
, v Ld (t) = v d (t) − l ω d (t) 

. (21)

2 2 
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Fig. 8. Linear velocity tracking performance comparison obtained by the proposed solutions u GP 1 (dashed blue line), u GP 15 (dashed-dotted red line), and 

the u ct (solid yellow line), u ct−sat (solid purple line), and u fuzzy (solid green line) controllers. The velocities obtained from the found GP controllers fully 

respect the saturation bounds, in contrast with the CT and fuzzy controllers. The last row illustrates the linear velocity errors for each control law. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

The initial conditions x d (0) = , y d (0) = 0 [ m ] , and θd (0) = 0 [ rad] are chosen for the reference system (19), (20) . The pa-

rameters of the Lemniscate of Gerono are set as a = 2 , ω = π/ 30 [ rad / s ] . 

The performance evaluation is applied to the differential equations of the nonholonomic mobile robot in (1) , subject to

the control input u ( t ) as defined in (3) , where u F and u L are given as in (9) and (10) , respectively. A fourth-order Runge–

Kutta method with a fixed-step size T s = 1 × 10 −3 [ s ] is used for a total simulation time t f = 100 [ s ] . 

The unforced behavior of the nonholonomic mobile robot is given solely by its initial conditions, without control

input (i.e., u (t) = 0 ). The selected set of initial conditions is defined as ξi (0) = [ x (0) , y (0) , θ (0)] T = {[2.6, 2.6, 3 π /2] T ,

[ −2 . 6 , 2 . 6 , 0] T , [ −2 . 6 , 2 . 6 , 3 π/ 2] T , [2 . 6 , −2 . 6 , π ] T , [2 . 6 , −2 . 6 , π/ 2] T , [2.6, 2.6, 0] T }[ m , m , rad ] T , for i = 1 , . . . , 6 . Notice that

initial conditions in all quadrants of the inertial frame have been chosen. Some elements of the set of initial conditions

are selected taking into account those values where the linear velocities of each wheel exceed the defined maximum val-

ues of v R and v L when applying the CT-based controller u ct solely. The maximum allowable velocities for each wheel

max max 
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Fig. 9. Angular velocity tracking performance comparison ( Fig. 9 a–c) obtained by the proposed solutions u GP 1 (dashed blue line), u GP 15 (dashed-dotted red 

line), and the u ct (solid yellow line), u ct−sat (solid purple line), and u fuzzy (solid green line) controllers. For each initial condition, the errors with respect 

to the desired angular velocity ω d are shown in Fig. 9 d–f; the errors in the x and y coordinates are, respectively, shown in Fig. 9 g–i and 9 j–l. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

are set as v R max 
= v L max 

= 0 . 35 [ m / s ] . Let us remark that a trade-off between the number of selected scenarios against the

computational load must be considered. 

The gain values for the forced behavior induced by the CT-based controller (9) are selected as K = diag { 1 , 1 } and k θ = 1 .

These values are chosen such that they fulfill the Lyapunov stability criterion that guarantees convergence to the desired

trajectory. The generation of the learned behaviors is induced by each pair of individuals proposed in the evolutionary pro-

cess (denoted as v gp and ω gp ). They are embedded as part of the controller u L , and ranked according to their performance

by applying the fitness function described by (11) . 

The tuning of the evolutionary process is empirical, that is, it is a trial-and-error process based on the designer’s exper-

tise, then the best parameters are chosen according to each application. In this case, the parameters for the evolutionary

process are chosen as indicated in Table 3 . Hence, the process is executed with 100 generations and a population size of

400 individuals for 30 runs. The ramped half-and-half method is applied, as proposed by [16] . The roulette wheel selection

method is employed for the selection of the individuals. Besides, the crossover operator is applied with a higher probability
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Fig. 10. Fig. (a) shows the position tracking performance comparison between the proposed solution u GP 15 (dashed red line), the u ct (dashed-dotted blue 

line), and u ct−sat (solid magenta line) controllers under Daisy-like trajectory. Fig. (b) depicts the linear velocities demanded by each controller. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Experimental platform Pioneer 2-AT mobile robot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

than that of the mutation operator. A lexicographic parsimony pressure, seeking for smaller syntactical trees, is used and an

elitism method is applied to select the best individual of each generation. 

3.2.5. Statistics 

In this section, a statistical analysis of the evolutionary process is presented. The aim is to show the convergence rate of

the proposed algorithm. A solution is considered suitable when its fitness is higher than 0.21, which is the score given by

the fitness function to the saturated version of the CT controller u ct−sat described in Table 5 . 

The best and average fitness over the 30 runs, together with their standard deviation, are shown in Fig. 5 a. Note that,

suitable solutions are discovered as early as in the 1st generation, moreover, from the 3rd generation the average population

performance is similar to that of the saturated u ct solution. The maximum fitness is achieved around the 45th generation,

and the average fitness converges to 0.4 from the 14th generation. 

Fig. 5 b depicts the average variety of solutions along with the generations. One can observe that from iteration 15 the

diversity converges to around 40%, which is congruent with the data in Fig. 5 a. 

The structural complexity of the solutions is determined by the number of levels and nodes in their syntactical tree.

Fig. 5 c to f show the average structural complexity for the first and the second syntactical trees. In Fig. 5 c and e one can

observe that the average number of levels, in both syntactical trees, converge to 4. Also, the number of nodes in both cases

converges to 5; convergence in the first tree is achieved around the 15th generation, while in the case of the second tree, it

is attained near the 34th generation. 

Fig. 6 illustrates the usage rate of the terminals and functions, defined in Tables 1 and 2 , to construct the proposed

solutions. Fig. 6 a and b show the usage percentage of functions and terminals for the v gp function, while Fig. 6 c and d do

the same for w gp . The x-axis shows the index of the terminals or functions, according to Tables 1 and 2 . For instance, in
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Fig. 12. Experimental results of position tracking performance comparison between the proposed solution, u gp 15 
(dashed-dotted red line), and the u ct (solid 

blue line) controller. Four initial conditions are presented, in quadrants I, III and IV. The proposed controller shows a smoother response than u ct−sat , in 

both cases convergence to the reference (solid black line) is achieved. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 a, one can appreciate that the most used function to generate v gp is function number 22, which corresponds to the

error function ( erf ( · )); the most used terminal, in this case, is terminal number 12 which is the desired velocity in the right

wheel v Rd , see Fig. 6 b. It is interesting to note that the GP found erf ( · ) as an alternative to tanh ( · ), which is commonly used

in CT schemes to approximate a saturation nonlinearity. As mentioned above, the most used terminal for v gp is v Rd , and this

could be because the velocity of both left and right wheels is related to one another, thus, restricting one of them would

necessarily limit the other. A similar analysis can be made for w gp ; the most used function, in this case, is sinh ( · ) and the

most used terminal is θ , the angular position of the robot. The sinh ( · ) function is passive, which in the CT approach can

be used to describe a stability condition. Notice as well that θ was the GP’s first choice for controlling the angular velocity,

which is a natural result. 

4. Simulation and comparison of discovered behaviors 

Let u gp be defined as a set of N learned fittest behavior modifiers discovered through the evolutionary process. This set

of behavior modifiers are part of the nonlinear controllers’ u L defined in (10) . They aim to fulfill simultaneously the desired

motion ξd ( t ) in the nonholonomic mobile robot and the boundedness of the velocity of its wheels to a suitable value within

its physical specifications. 

Table 4 lists fifteen solutions that were selected for performance comparison. They were chosen according to the follow-

ing criteria: first, all solutions are ordered according to their fitness value, from highest to lowest; then, thirteen solutions

are selected from this set. The first seven solutions ( u gp 1 – u gp 7 ) are those with the upmost fitness among all; the next six

( u gp 8 – u gp 13 
), are selected to show the diversity of the partial controllers obtained in the learning process. Additionally, so-

lutions u gp 14 
and u gp 15 

are chosen because of their low structural complexity; note that they are composed of functions that

are different from those in the first thirteen solutions. Also, none of the controllers in Table 4 reach the limits established

by the velocity bound. 

Controllers u fuzzy and u ct are presented in Table 5 , together with their corresponding fitness. Here, u fuzzy represents the

fuzzy controller from [25] and u ct is the CT–based controller from [12] . These are chosen to make a performance comparison
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Fig. 13. Experimental results of linear velocity tracking performance comparison obtained by the proposed solution u gp 15 
(dashed-dotted red line), and the 

u ct (solid blue line) controller. The velocities obtained by the found GP controller remain close to the desired velocity v d (solid black line), whereas the 

CT controller reaches the saturation bounds during the transient time for all tested initial conditions. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the proposed approach against a soft computing and a CT–based controller. The last function in the table, u ct−sat , is the

saturated u ct controller. This saturated version of the CT controller is also evaluated since the actuators are implicitly limited

in practice. 

The velocity constrained fuzzy controller u fuzzy used in the comparison is taken from [25] . This controller depends on two

so-called “Fuzzy Velocity Compensators” (FVC), denoted by ν( ̇ x d , ̃  x ) and ν( ̇ y d , ̃  y ) . The FVCs limit the magnitude of the linear

velocities ( ̇ x and ˙ y ) in the mobile robot. Each compensator is composed of six rules and six gain values. Same configuration,

scenarios, and initial conditions are used to evaluate its fitness. 

Next, the numerical simulations that were realized to illustrate the performance of two found GP controllers are pre-

sented. These are compared against two controllers taken from the literature. In particular, the selected GP controllers u gp 1 

and u gp 15 
are compared against the u ct controller [12] , its saturated version, u ct−sat , and Resende’s fuzzy controller u fuzzy 

[25] . The above controllers are given in Tables 4 and 5 . 

The performance of these controllers was evaluated for three different initial conditions, each located in one quadrant

of the Cartesian plane. These conditions were selected from the bank of initial conditions that were given to the GP during

the learning process. The simulation results show the tracking performance, the linear and angular velocities for the robot

aand for each wheel, and the position and velocity errors, obtained for each initial condition. The initial conditions (defined

previously) are ξ3 (0) = [ −2 . 6 , 2 . 6 , 3 π/ 2] T , ξ5 (0) = [2 . 6 , −2 . 6 , π/ 2] T , ξ6 (0) = [2 . 6 , 2 . 6 , 0] T . 

Fig. 7 presents the tracking results for all of the considered controllers, and each selected initial condition. In this

example, the trajectory to be followed is a Gerono lemniscate, given by Eqs. (17) and (18) , with parameters a = b = 2 ,

ω = π/ 30 [ rad / s ] . The dashed, blue trajectory represents the results obtained with controller u gp 1 , and the dashed-dotted,

red line shows the behavior under u gp 15 
. The solid, yellow line represents either u ct (leftmost column), u ct−sat (center col-

umn), or u fuzzy (rightmost column). It should be noted that while the CT or fuzzy controllers attain the reference earlier

than the GP-based controllers, they do so by demanding harsh turns on the robot. This behavior can be more clearly appre-

ciated for condition ξ6 (0) , ( Fig. 7 c). The GP-based controllers, on the other hand, generate smooth trajectories, that reach the

reference, while avoiding turns that are too sharp. It is true that the GP controllers take longer to bring the robot’s position

to the reference, however, the reason for this, is that the velocities demanded by the GP controllers are much lower than
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Fig. 14. Experimental results of the tracking errors in the x -coordinate are illustrated for the found solution u gp 15 
(dashed red line), and for the CT controller 

u ct−sat (solid blue line). In both cases, the errors converge asymptotically to zero. In accordance with the demanded velocities, the settling time is longer 

for the GP controller than the CT controller. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

those demanded by the CT or the fuzzy-based controllers. This can be observed in the graphs in Fig. 8 (for the linear ve-

locities), and in Fig. 9 a–c (for the angular velocity). Notice that the velocities obtained from the GP approach lie well below

the saturation constraints of the robot and that they reach the desired velocity faster than their counterparts, for all three

conditions. Finally, Fig. 9 g-l show the position tracking error in the x and y coordinates. 

A new trajectory is proposed to evaluate the performance of the found solutions. This trajectory is defined by the para-

metric equation of a Daisy-like shape, as follows [30] 

x d (t) = x 0 + ab cos (ωt) − br cos (mω t) cos (ω t) , (22)

y d (t) = y 0 + ab sin (ωt) − br cos (mω t) sin (ω t) . (23)

The trajectory of reference is centered at the coordinates ( α, β) [m] in the Cartesian space with an external radius of

b t (a t + r t ) . The number of petals for the trajectory is given by the parameter m , and ω = 

2 π
t t 

, where t t equals the time in

seconds that it takes to make a whole turn. As in the Lemniscate of Gerono from the evolutionary process, the computation

of a reference system in the form (19) and (20) for this trajectory is also used. 

Given the behavior shown by the u gp 15 
solution in the previous simulations, it is chosen as an example to show the per-

formance of the found solutions against the CT and the saturated CT controllers. Fig. 10 shows a comparison of the position

tracking capabilities of the controllers. It can be observed that the GP controller provides a smooth path, while the CT-based

controllers generate sharp turns due to the high velocities that the controllers demand to the actuators, see Fig. 10 b. In this

case, the GP controller accomplishes a linear velocity that is always within the imposed limits. This simulation demonstrates

that, even when the Daisy-like shape trajectory was not considered as a reference during training, the found solutions are

still capable of achieving the performance requirements of tracking and velocity boundedness. 
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Fig. 15. Experimental results of the tracking errors in the y -coordinate are illustrated for the found solution u gp 15 
(dashed red line), and for the CT controller 

u ct−sat (solid blue line). In both cases, the errors converge asymptotically to zero. In accordance with the demanded velocities, the settling time is longer 

for the GP controller than the CT controller. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Application of discovered behaviors in a pioneer 2-AT mobile robot 

Real-time experiments are performed in a Pioneer 2-AT Mobile Robot for tracking control with constrained velocity. The

Pioneer 2-AT is a four-wheel-drive mobile robot, shown in Fig. 11 , manufactured by Adept Mobile Robots . This prototype

can be modeled as a nonholonomic mobile robot with an internal band coupling each pair of wheels, which are located

on either side of the robot. The values of its physical parameters and characteristics are extracted from the user manual.

The radius of each wheel is r = 0 . 105 [m], and the distance between both wheels, which defines the center of the mobile

robot, is l = 0 . 48 [m]. The measurement of the displacement of each wheel is done with encoder sensors with a resolution

of 36,0 0 0 pulses per revolution [ppr]. Odometry is used to compute the relative position of the robot in the inertial frame

XOY . 

For the application in the Pioneer 2-AT mobile robot, the tracking problem is addressed using the reference system with

different parameters to generate the desired trajectories, and changing initial conditions of the mobile robot. Hence, the

robustness, scalability, and generality of the discovered behaviors are also illustrated experimentally. 

The selected parameter values for the desired trajectory must consider that the velocities required to track it must be

physically reachable by the mobile robot. Additionally, special attention is put in the width of the curve for the desired

lemniscate of Gerono trajectory. The presence of skid-slip effects was not considered in this work, and the size of the

mobile robot must be taken into account given the sharp curves of the trajectories. 

The experiments compare the performance of the saturated version of the original CT-based controller u ct [12] , and

a selected discovered learned behavior induced by a control law u b = u ct + u L . The description of the compared tracking

controllers is summarized below. 

• Case 1. The CT-based controller u ct is defined as in (9) , subject to the velocity constraints set by the robot’s physical

limits. This model is the arbitrarily selected state-of-the-art nonlinear controller, used individually for solving the tracking

control problem in the nonholonomic mobile robot. This controller only induces the forced behavior of the system, where

convergence to the desired trajectory is guaranteed. Tuning considerations are taken into account according to [12] .
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Fig. 16. Experimental results of the angular velocity demanded by the u ct−sat controller (solid blue line) is higher than the velocity required by the GP 

solution, u gp 15 
, for all tested initial conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that this control input will be saturated as in u ct−sat by the Pioneer 2-AT Mobile Robot according to its datasheet.

Hence, the maximum operational values for its velocities are v max = ±0 . 75 [m/s] and ω max = ±1 . 72 [rad/s], and u ct−sat

will be implemented for safety reasons. 

• Case 2. The synthetic-analytic behavior-based nonlinear tracking controller applies one discovered solution from the evo-

lutionary process. It is implemented in the form of (3) as u b ( t ), where u ct and u L are defined by (9) and (10) , respectively.

The controller u L uses solution u gp 15 
from Table 4 . This discovered behavior modifier is selected due to its balance in fit-

ness and structural simplicity. 

5.1. Experiments 

The controllers are implemented in the MobileRobots’ Advanced Robot Interface for Applications (ARIA), which is a C

library specially designed for the Pioneer 2-AT robot. Both the u ct−sat and the u L solutions are represented as analytic ex-

pressions, making them feasible to be implemented in a real robot. Note, that the computation time of the implementation

depends on the number of operations in each controller; for example, for the u ct−sat , the system performs at most ten op-

erations, while for the selected u L controller, it performs 8 operations in total. These values mean that both controllers are

feasible and have a constant running time. 

The implementation in the Pioneer robot was realized using a sampling time T s = 1 × 10 −2 [s]. The system should follow

the reference trajectory defined by Gerono’s lemniscate, given in equations (17) –(18) , with parameters a = 5 , b = 3 , and

s t = 100 . Then, the maximum values required by the reference linear and angular velocities are v d (t) = [0 . 1795 , 0 . 3664] T 

[m/s], ω d (t) = ±0 . 1442 [rad/s], with [ v Rd (t) , v Ld (t)] = [0 . 1457 , 0 . 3667] [m/s], for the respective wheel. 

The control gains for u ct−sat are chosen as K = diag { 1 , 1 } and k θ= 0.5 considering the robot’s specifications. Note that

these gains were also used for u ct in u b . 

The selected set of initial conditions is defined as { ξ1 (0) = [0 . 2 , −2 . 4 , 0] T , ξ2 (0) = [ −2 , −2 , 0] T , ξ3 (0) = [2 . 4 , 0 . 2 , 0] T ,

ξ4 (0) = [0 , 2 . 4 , 0] T } . The experimental results obtained are shown in Figs. 12–18 . 
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Fig. 17. Experimental results of the left wheel velocities for the proposed solution u gp 15 
(dashed-dotted red line), and the u ct−sat (solid blue line) controller 

are shown; the desired velocity v L d is shown by a solid line black. The CT controller is saturated and demands much higher velocities than the GP controller 

during transient time for all tested initial conditions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that both controllers converge to the desired trajectory defined by the reference system, see Fig. 12 . The controller

augmented by the GP solution shows a smoother response when it is compared to the CT controller. This is desirable in

practice since it can help reduce the effects of nonlinear phenomena, unmodeled dynamics, parameter uncertainties, and

unwanted behaviors, like those caused by backlash and friction in the wheels’ actuators. 

Regarding its performance, the evolved nonlinear controller u b prevents the robot from operating in saturated mode.

This occurs even when the initial conditions and the lemniscate of Gerono’s parameters differ from those used during the

training stage. This behavior can be observed in Fig. 13 , where the linear velocities for both the GP and the saturated

CT-based controllers are shown. The velocity generated by u b never reaches the saturation limits. In contrast, when the CT-

based controller is used, the linear velocity saturates, specifically during the transient time. Another undesired phenomenon

observed when using the saturated CT-based controller is chattering around the set point, notice that this is avoided when

the GP controller is used. Moreover, for initial condition ξ3 (0) (see Fig. 13 c), the velocity demanded by the CT controller

shows a commutation between its lowest and highest allowable values. For the position tracking task, this implies a sharp

change of direction (see Fig. 12 c). In contrast, when the GP controller is active, the highest linear velocity is obtained for

the second initial condition, ξ2 (0), with v (t) = 0 . 386 [m/s]. 

As expected, when using u b , it takes the system more time to settle and achieve the desired trajectory since it produces

velocities which are lower than that of the CT controller, u ct−sat , see Figs. 14 and 15 . However, u ct−sat needs higher velocities

to achieve tracking, while u b satisfies the tracking objective while keeping the velocities close to their desired values. This

behavior allows for smoother performance in comparison with the trajectories obtained by u ct−sat . More specifically, for

u b , the highest angular velocity (in each direction) is obtained for the first initial condition as ω(t) = 0 . 3078 [rad/s] (and

ω(t) = −0 . 2298 [rad/s], for the negative direction), see Fig. 16 . Similarly, the highest velocity in the left wheel is obtained

for initial condition ξ 1 (0) as v L (t) = 0 . 3725 [m/s], and the highest right wheel velocity is obtained for the second initial

condition, ξ2 (0), with v R (t) = 0 . 4262 [m/s], see Figs. 17 and 18 . Note that all of these values are well under the defined

saturation level. In contrast, the implementation of u ct−sat always initiates at saturated mode, that is, for all of the initial

tested conditions. 
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Fig. 18. Experimental results of the right wheel velocities for the proposed solution u gp 15 
(dashed-dotted red line), and the u ct−sat (solid blue line) controller 

are shown; the desired velocity v R d is shown by a solid line black. The CT controller operates in saturation mode and demands much higher velocities than 

the GP controller during transient time for all tested initial conditions. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusions 

This work proposed the design of nonlinear controllers for tracking in nonholonomic wheeled mobile robots subject to

velocity constraints, using the novel synthetic-analytic behavior-based control framework. This methodology uses Genetic

Programming tools and the Control Theory approach to generate analytic solutions, in contrast with those obtained by other

Soft Computing techniques. One advantage of the proposed framework is that it allows the evaluation of the solutions’

performance, as their stability, using analytic CT tools, not available to the majority of the soft computing techniques. 

The proposed strategy automates the controller design task. The most important stages are the definition of the policies

for the evolutionary process, and the selection of the function to evaluate the fitness of each proposed solution; this strategy

is straightforward. In this work, the CT approach is used to state such policies taking advantage of its analytic nature,

which is its greatest strength. Then, the training scenarios are selected, and the GP algorithm is defined according to sought

performance and computational load. The selection of the implemented solution among the best is left to the practitioner

in terms of task requirements and physical specifications. 

Regarding the tracking control problem at hand, and as a result of applying this methodology, 9113 solutions were ob-

tained that better the performance of state–of–the–art controllers. The best fifteen solutions were selected, giving priority

to those with the highest fitness, the lower structural complexity, and the variety of the functions that integrate them. This

last criterion was considered to show the diversity of the found solutions. In this case, the search for the results was guided

such that the linear and angular velocities remained within the desired velocity bounds for each wheel of the robot. 

The selected controller, denoted as u b , which uses solutions u gp 1 and u gp 15 
, was compared in simulation against a CT-

based controller, a saturated version of the CT-based controller, and a fuzzy controller. For the experimental setup, the

comparison was performed using the saturated CT controller. In both cases, the controllers were evaluated using several

initial conditions, which were different from the ones used in the learning process. In all cases, only the proposed GP

solutions accomplished the tracking task under the defined velocity restrictions. Moreover, the u b performance with u gp 15 

was compared in simulation assuming a trajectory different than the training stage reference. This was done to show how

some solutions could be generalized to other scenarios. The stability analysis of the selected solutions using the CT approach

is left as future work, as this would demonstrate the generality of the solutions. 
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The reach of the methodology proposed in this paper goes further than the particular problem presented here. This

method can give insight into the development of new control structures, that differ from those commonly reported in the

literature according to the variety of the functions in the discovered solutions. 
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