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Abstract. As the pervasiveness of social networks increases, new NP-
hard related problems become interesting for the optimization commu-
nity. The objective of influence maximization is to contact the largest
possible number of nodes in a network, starting from a small set of seed
nodes, and assuming a model for information propagation. This problem
is of utmost practical importance for applications ranging from social
studies to marketing. The influence maximization problem is typically
formulated assuming that the number of the seed nodes is a parameter.
Differently, in this paper, we choose to formulate it in a multi-objective
fashion, considering the minimization of the number of seed nodes among
the goals, and we tackle it with an evolutionary approach. As a result,
we are able to identify sets of seed nodes of different size that spread
influence the best, providing factual data to trade-off costs with quality
of the result. The methodology is tested on two real-world case studies,
using two different influence propagation models, and compared against
state-of-the-art heuristic algorithms. The results show that the proposed
approach is almost always able to outperform the heuristics.

Keywords: influence maximization, social network, multi-objective evo-
lutionary algorithms

1 Introduction

Social networks (SNs) are graphs modeling a society, where edges represent the
channels through which information, news, ideas, trends, or advertising flow
dynamically in time. Nowadays SNs can effectively model the dynamic of an



important part of people’s digital lives: from interactions in established giants of
the field such as Facebook andGoogle+, or newcomers as Twitter andMinds.com;
to contacts in specialized hubs dedicated to a specific target audience, such as
Academia.edu and ResearchGate. As the number of users of such systems grows,
so does the amount of behavioral data, and all classical network-related problems
become computationally harder.

Interesting social phenomena can be studied by analyzing the underlying
graph of the social network. A graph edge a → b could signify a likelihood that
b will be exposed to a’s opinions, or that a will support b in the election for the
purpose of work-related promotions; given the initial set of network participants
who broadcast information or cast a vote, the long-term opinions or the eventual
outcome of the promotions may be easily foreseen. More in general, given an
initial set of nodes in a SN, one can estimate the extent of their influence over
the rest of the network. The dynamics by which the graph structure enables
new information to spread varies with the nature of the SN: an edge a → b may
model a fixed probability or a probability that varies according to other features
of node b, such as its number of direct relationships with other nodes. Social
sciences have studied a number of such probabilistic propagation models [13].

A common problem in SNs is the influence maximization: given the graph G,
a discrete-time propagation model M , and a “budget” k ≥ 1 of network nodes to
be the initial “seeds”, calculate the set of k nodes that will eventually produce the
largest influence I upon the whole network. The problem was initially formulated
in [19], and has been shown NP-hard for most propagation models [13].

Evolutionary algorithms (EAs) were found able to explore effectively the vast
search space of all possible subsets of nodes [2], but the choice of the number
of seeds was left to the user. In the present work, we instead propose to tackle
the influence maximization problem using a Multi-Objective Evolutionary Algo-
rithm (MOEA), trying to maximize the influence I and minimize the budget k
concurrently. Including k as an explicit goal of the optimization provides users
the necessary data to trade off between effort (the number of nodes that need
to be influenced) and effect (the final influence over the whole network).

The proposed approach is then applied to two real-world case studies: the ego-
Facebook network, which describes social circles from Facebook, and ca-GrQc,
which covers scientific collaborations between authors. The networks are taken
from the Stanford large network dataset [15], a popular source of benchmarks for
influence maximization algorithms, and have been tested against state-of-the-art
heuristics using two different influence propagation models.

The rest of the paper is organized as follows: Section 2 formalizes the prob-
lem, discusses existing heuristics and approximation algorithms for this problem,
and briefly presents the MOEAs related work; Section 3 describes our MOEA
method; and Section 4 presents the experimental results on two case studies.
Finally, Section 5 concludes this work.



2 Background and Related Work

To introduce the scope of the current work, the basics of influence propagation
and influence maximization in a SN are briefly recalled, followed by a short
review on the state of the art for both heuristics and EAs applied to this problem,
and a brief introduction to MOEAs.

2.1 Models for influence propagation and problem formulation

Concrete models for message forwarding in a SN are the basic building blocks to
be able to evaluate the effectiveness of a set of seed nodes, i.e., how much global
influence a set of nodes will have, indirectly, over the network via peer-to-peer
message propagation.

Since the propagation of a message from a network user to another is a dis-
crete event, the propagation models are also time-discrete. As the receptiveness
of users to incoming messages from the network differs, we experiment with two
previously studied models from the “Cascade” family of propagation models [13],
which views influence as being transmitted through the network in a tree-like
fashion, where the seed nodes are the roots.

The pseudo-code common to the two Cascade models: Independent Cascade
(IC) and Weighted Cascade (WC) is given in Algorithm 1. IC was first studied in
the marketing domain, modeling the effects that word-of-mouth communication
has upon macro-level marketing [11]. Each newly “activated” node n will succeed
in activating each inactive neighbor m with a fixed probability p, which is a
global property of the system, equal for all edges n → m in G. WC, on the
other hand, assigns non-uniform probabilities: an edge n → m has probability
p(n → m) = 1

in-degree(m)
of activatingm when n is active. In both models, when

node n has more than one neighbor, activation is sequenced in an arbitrary order.
In the classical problem of influence maximization, the goal is to optimize

the seed set S given a budget k = |S| so that its eventual influence over the
whole network is maximal. The influence of a seed set S is measured as the size
of the set A of active nodes, E[|A|], obtained by the propagation model.

For both propagation models, the problem is NP-hard [13]. Furthermore, an
approximation hardness result is known: approximating the optimal solution by
a factor better than 1− 1

e (with e the base of the natural logarithm, which means
roughly 63% approximation) is also NP-hard [13].

Further complication stems from the propagation models being stochastic:
the evaluation of the expected influence of a seed set S in polynomial time will not
be exact; the problem of computing this for any S over Independent Cascade was
proven #P-complete in [22]. Instead, an approximate estimation can be obtained
empirically, by simulating the propagation process a given number of times.

2.2 Prior heuristics and EAs for influence maximization

We compare the proposed approach against two state-of-art heuristics: High de-
gree (HIGHDEG), and Single discount (SDISC), briefly described in the follow-
ing. In general, the heuristics in literature fall into two categories: (a) heuristics



Algorithm 1 The Cascade family of propagation models. G is the network graph,
S the set of “seed” nodes, and p(n → m) the probability that information will reach
across a graph edge n→ m.

1: procedure Cascade(G,S, p)

2: A← S ▷ A: the set of active nodes after the propagation ended
3: B ← S ▷ B: the set of nodes activated in the last time slot
4: while B not empty do
5: C ← ∅
6: for each n ∈ B do
7: for each direct neighbor m of n, where m ̸∈ A, do
8: with probability p(n→ m), add m to C
9: end for
10: end for
11: B ← C
12: A← A ∪B
13: end while
14: return the size of A

15: end procedure

which provably obey the approximation guarantee but are too time-intensive,
and (b) heuristics of much better time complexity, but with either no approxima-
tion guarantees or much weaker ones. From the latter category, the High-degree
(or degree centrality) greedy heuristic simply adds nodes n to A in order of de-
creasing out-degree [13]. Chen et al. [5] refine greedy “degree-discount” heuristics
based on High-degree, using the idea that if a node n is already active and also
there exists an edge m → n, then, when considering whether to add node m to
A, this edge should not be counted towards the out-degree of m. This heuristic
(known as Single discount) is applicable to all cascade models.

Many other heuristics are known. Among those without optimality guaran-
tees, Jiang et al. [12] test Simulated Annealing under Independent Cascade, and
find that it has a complexity advantage over greedy heuristics, and can also find
narrowly better solutions. In [2], a first attempt to tackle the influence maxi-
mization problem by a classic (single-objective) Genetic Algorithm is made, with
promising results obtained in comparison with existing heuristics.

Various studies [13, 5, 12] evaluated the previously described heuristics com-
paratively on a small number of large SNs, and generally find empirically that
the two degree-based, inexpensive greedy heuristics High-degree and Single dis-
count may not reach the approximation guarantee of 63% known to be possible,
but in some cases they are only a few percentage points away from the target.

2.3 Multi-Objective Evolutionary Algorithms

In many optimization problems, the quality of a solution is defined by its perfor-
mance in relation to several, conflicting objectives. Such conflicting goals cannot
be sensibly reduced to a single value using a weighted sum or another aggregate



function, but rather they must be considered independently from each other.
Multi-Objective Evolutionary Algorithms (MOEAs) are a natural flavour of Evo-
lutionary Algorithms specifically designed for tackling this kind of problems. As
a result, differently from single-objective optimization where the output of an
evolutionary algorithm is a unique optimal solution, the output of a MOEA is a
Pareto front, that is, a set of non-dominated solutions, to choose from. In other
words, a Pareto front contains a set of optimal trade-off solutions that are better
than any other solution in the multi-dimensional objective space at hand.

MOEAs have been used with great success in a number of real-world appli-
cations, as surveyed for instance in [4, 6, 8]. In the SNs domain, so far MOEAs
have been used mostly for community detection [16, 18, 23] and network cluster-
ing [14]. On the other hand, to the best of out knowledge no prior work exists
on the application of MOEAs on the influence maximization problem, which is
the main contribution of the present work.

3 Proposed approach

In order to tackle influence maximization as a multi-objective problem, we pro-
pose to use a MOEA to optimize the conflicting goals of maximizing how much
the network has been influenced by the seed nodes (i.e., the effect of the influence
campaign), and of minimizing the number of such seed nodes (i.e., the cost of
the campaign). As a result, the different solutions on the Pareto front provide
users the necessary data to trade off between cost and effect. In what follows we
present briefly the details of the MOEA used in our experimentation.

3.1 MOEA engine

µGP (also called MicroGP) is a generic evolutionary algorithm, able to manage
individuals encoded as multigraphs. Its original application was the creation of
complex assembly-language programs for testing different microprocessors [20].
Afterward, it has been used on a wider range of problems, such as the creation
of test programs for pre- and post-silicon validation; the design of Bayesian
networks [21]; the analysis of the impact of network topology on routing proto-
cols [3]; automatic software testing in mobile phones [10]; real-value parameter
optimization; and even creation of corewar warriors [7]. µGP is freely available
on SourceForge5.

While handling complex and structured genomes is not needed for this case
study, µGP is also able to self-adapt the activation probability of genetic oper-
ators, manage a genome of variable length, and perform multi-objective fitness
evaluation, with a crowding distance assessment on the Pareto front similar to
the state-of-the-art algorithm NSGA-II [9].

5 http://ugp3.sourceforge.net/



3.2 Representation and fitness of a candidate solution

For the problem at hand, a candidate solution is a set of nodes, of variable
size, which is a subset of the set of nodes in the original network. Individuals
are thus unordered sequences of integer node identifiers, representing the seeds
of influence in the network. A visual representation of the problem encoding is
reported in Figure 1.

534 
1,028 
3 
22 
987 
… 

Individual genotype 
(list of seed nodes) 

Seed nodes in  
the target network 

Nodes reached using an 
influence propagation model 

Fig. 1. Schema of the proposed encoding. Seed nodes are internally represented as a
list of integers. The fitness value is the average number of other nodes that are reached,
following a given model of probabilistic influence propagation. In the example, the only
node not influenced by the set of seeds is the white one, in the top left corner of the
rightmost frame.

The fitness value of a candidate solution is a probabilistic metric of the
number of nodes that are likely to be reached, starting from a given set of seeds
of influence — according to a given model of influence propagation (Independent
Cascade or Weighted Cascade, described in Section 2). Given the stochastic
nature of both propagation models, the fitness estimation is empirical, and itself
a stochastic process: repeated simulations of the network propagation model
yield an extent to which the network is reached, and the final fitness value is the
average among these fitness samples.

4 Experimental evaluation

In the experimental evaluation of the algorithm, µGP uses a (µ + λ) MOEA,
with both µ (population size) = 100 and λ (number of operators applied at each
generation) = 100, and the following genetic operators:

– Recombination operators: standard one- and two-point crossover.
– Three mutation operators, that add, remove, or change one node from a

candidate seed set.

The activation probabilities of the operators are self-adapted during the evolu-
tionary run, resorting to an improved dynamic multi-armed bandit selection [1].



All nodes in a target network can be added to a solution, and µGP is used
with two different configurations, generating candidate seed sets of sizes between
1 and max nodes. As the algorithm used to estimate influence propagation (ei-
ther IC or WC) is stochastic, in order to get a reliable average each individual
evaluation is repeated 100 times. The resulting fitness value is the average of the
100 repetitions.

The proposed approach is tested on two real-world case studies, taken from
the Stanford large network dataset [15]. The first network, labeled ego-Facebook,
describes social circles from Facebook; the second network, labeled ca-GrQc,
covers scientific collaborations between authors from papers submitted to Gen-
eral Relativity and Quantum Cosmology category, from the e-print arXiv6. Their
notable features are reported in Table 1.

Table 1. Main features of the case studies considered for the experimental evaluation
of the proposed MOEA approach.

Name ego-Facebook ca-GrQc

Nodes 4,039 5,242
Edges 88,234 14,496
Type of graph undirected undirected
Nodes in largest WCC 4,039 4,158
Nodes in largest SCC 4,039 4,158
Average clustering coefficient 0.6055 0.5296
Diameter (longest shortest path) 8 17

4.1 ego-Facebook

The MOEA algorithm is compared with the High degree (HIGHDEG) and Single
discount (SDISC) heuristics on the ego-Facebook case study, over both the IC
propagation model, using two different probabilities of influence propagation, p =
0.01 or p = 0.05, and the WC model. The evolutionary algorithm’s termination
condition is set to 10,000 generations, and for each influence propagation model
considered (IC with p = 0.01, IC with p = 0.05, WC), two different experiments
are carried out, one with max nodes = 200 and one with max nodes = 400.

ego-Facebook/IC Results of the evaluation for the considered case study, using
the IC model of influence propagation are reported in Figure 2 (for p = 0.01)
and Figure 3 (for p = 0.05). In the figures, the y axis shows k, the number of
seed nodes in the solution, while the x axis shows the average number of nodes
reached by the seeds. The final Pareto front found by the MOEA (in red, with
early candidate evaluations in blue) outperforms the heuristics when the number
of nodes in the candidate solutions exceeds 25; the MOEA is able to find solutions

6 https://arxiv.org/



that are more effective, fitness-wise, than the ones created by the heuristics for
the same number of nodes in the seed set. For solutions featuring a number
of nodes close to the upper bound (200 or 400, depending on the experiment),
it is however noticeable how the evolutionary algorithm has issues populating
the Pareto front. Remarkably, some of the candidate solutions explored are still
better than those provided by the heuristics (see for example Figure 2), even
if they are Pareto-dominated by others. This might be due to our choice of
maintaining a relatively small population (µ = 100) and give the algorithm
more generations to evolve.

Intuitively, when p = 0.05, the number of influenced nodes is higher: however,
the difference in performance between the heuristics and the MOEA also grows,
as even some of the initial randomly generated individuals for high k behave
better than the solutions found by HIGHDEG and SDISC, see Figure 3. It is
noticeable that the MOEA has again issues populating the higher part of the
Pareto front, especially when the maximum allowed number of seed nodes is 400.

Fig. 2. Results obtained by the MOEA approach and the High Degree (HIGHDEG)
and Single Discount (SDISC) heuristics on the ego-Facebook case study, using the
Independent Cascade model for influence propagation, with p = 0.01 and an upper
bound of 200 nodes (left) and 400 nodes (right) per candidate solution.

ego-Facebook/WC Results of the evaluation for the considered case study,
using the WC model of influence propagation, are reported in Figure 4 (the WC
model does not use probability values p). The MOEA’s results are very similar to
the IC case, and while the evolutionary algorithm outperforms the heuristics on
most values of k, it clearly has issues finding good solutions with a high number
of nodes, especially when compared to the results of SDISC, which in this case
study behaves particularly effectively.



Fig. 3. Results obtained by the MOEA approach and the High Degree (HIGHDEG)
and Single Discount (SDISC) heuristics on the ego-Facebook case study, using the
Independent Cascade model for influence propagation, with p = 0.05 and an upper
bound of 200 nodes (left) and 400 nodes (right) per candidate solution.

Fig. 4. Results obtained by the MOEA approach and the High Degree (HIGHDEG)
and Single Discount (SDISC) heuristics on the ego-Facebook case study, using the
Weighted Cascade model for influence propagation, and an upper bound of 200 nodes
(left) and 400 nodes (right) per candidate solution.

4.2 ca-GrQc

As ca-GrQc is a simpler case study, featuring less arcs than ego-Facebook,
we choose to evolve solutions with an upper bound of 400 candidate nodes, only
(max nodes = 400), and set a termination condition after 1,000 generations.

ca-GrQc/IC Figure 5 shows results for the IC influence propagation model,
using p = 0.01 and p = 0.05. Final outcomes for the two probability values are
similar, even though the differences are more visible for p = 0.05; probably the
lower value of p makes it harder for influence to spread on such a sparse network,
and as a result the fitness landscape is harder to climb, both for the heuristics
and the evolutionary algorithm.



The HIGHDEG heuristic clearly lags behind both SDISC and the MOEA,
being outperformed even by individuals produced in the first generations. The
MOEA is able to best SDISC for the majority of values of k, with issues similar to
the ego-Facebook case study: the multi-objective algorithm is unable to properly
populate the highest part of the front (k > 360) , and for small values of k,
SDISC’s solutions are better.

Fig. 5. Results obtained by the MOEA approach and the High Degree (HIGHDEG)
and Single Discount (SDISC) heuristics on the ca-GrQc case study, using the Indepen-
dent Cascade model for influence propagation, with an upper bound of 400 nodes per
candidate solution, p = 0.01 (left) and p = 0.05 (right).

ca-GrQc/WC Figure 6 shows results for the ca-GrQc case study using the
WC influence model. This time, problems usually faced by the MOEA become
more evident: the higher part of the Pareto front lags behind solutions found by
the heuristics, already for k > 150; and while the MOEA clearly outperforms
HIGHDEG, it cannot match the quality of seed sets found by SDISC. The gen-
eral impression from this case study is that the termination condition came too
early, and given more evaluations, the MOEA might have been able to populate
other parts of the Pareto front: this is however counter-intuitive, as the same
termination condition provided good results for the IC influence propagation
model. Further analyses are required, in order to properly assess the source of
these issues.

5 Conclusions

In this paper, we proposed a novel multi-objective evolutionary approach to
influence maximization in social networks. A MOEA is tasked with finding the
set of k seed nodes that, given a model of influence propagation, maximize the
nodes reached in a target network. As minimizing the value of k is also given as an



Fig. 6. Results obtained by the MOEA approach and the High Degree (HIGHDEG)
and Single Discount (SDISC) heuristics on the ca-GrQc case study, using the Weighted
Cascade model for influence propagation, with an upper bound of 400 nodes per can-
didate solution.

optimization objective, the MOEA is able to find a Pareto front of compromises
between number of seed nodes in the set and global influence in the graph. The
presented methodology is then tested on two real-world case studies, using two
different influence propagation models. The MOEA is proven able to reliably
outperform two state-of-the-art heuristics for intermediate values of k, facing
mixed success for extremely high and low values of k.

While the results obtained are still preliminary, they nevertheless show promis-
ing outcomes. In particular, MOEAs prove to be able to overcome established
heuristics for influence maximization for two real-world case studies. On the other
hand, the heuristics are in general more efficient time-wise (although depending
on the dataset and on the size of the seed nodes, as was shown in [2]), and still
get a better performance on some corner cases. Further experimental evalua-
tions on a wide range of social networks with different features are necessary,
in order to assess the effective potential of the proposed approach; furthermore,
the influence of the population size on the MOEA’s performance is going to be
studied. Future works will also focus on hybrid techniques, developing memetic
algorithms [17] for influence maximization, which may be able to extract —and
combine— the best qualities of EAs and heuristics.
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