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Abstract—A way of minimizing the opportunity of cheating in
exams is to assign different tests to students. The likelihood of
cheating then depends on the proximity of the students’ desks,
and the similarity of the tests. The test-assignment problem is to
find an assignment of tests to desks that minimizes that total
likelihood of cheating. The problem is a variant of a graph
coloring problem and is NP-hard.

We propose a new heuristic solution for this problem. Our
approach differs from the usual way of designing heuristics in
two ways. First, we reduce test-assignment to the more general
unconstrained binary quadratic programming. Second, we search
for a good heuristic using an automatic algorithm configuration
tool that evolves heuristics in a space of algorithms built from
known components for binary quadratic programming. The
best hybrid heuristics found repeatedly recombine elements of
a population of elite solutions and improve them by a tabu
search. Computational tests suggest that the resulting algorithms
are competitive with existing heuristics that have been designed
manually.

Index Terms—test-assignment, binary quadratic programming,
automatic algorithm configuration, metaheuristics

I. INTRODUCTION

Given a set of desks in a classroom and a set of test variants,
the test-assignment problem consists in assigning tests to
desks, in order to minimize the likelihood of cheating. Each
pair of desks has a known (physical) proximity, and each pair
of test variants has a known similarity, and the likelihood of
cheating is defined as the product of proximity and similarity.
Therefore, desks that are close-by should receive less similar
tests. If there are fewer students than desks in a classroom,
one may additionally select a subset of free desks that remain
without a test. The goal is to assign tests to desks minimizing
the overall likelihood of cheating, defined as the sum of the
likelihoods for each pair of desks.

The problem can be modeled as an undirected graph, whose
vertices are the desks, and where pairs of desks (below a
certain distance) are connected by an edge, which is weighted
by the proximity of the incident desks. Each pair of test
variants has an associated weight that defines their similarity.
In this model it is easy to see that test-assignment generalizes
the vertex coloring problem, where vertices represent the desks
and each color represents a test variant. Indeed, for a given
undirected graph G = (V,E) we can set the proximity of all
edges to 1, define k tests corresponding to k colors and set

the similarity for identical tests to 1 and for different tests
to 0. Then G admits a k-coloring if and only if there is an
assignment of tests to desks of total likelihood 0. This implies
that test-assignment is strongly NP-Hard, since vertex coloring
is [1].

The test-assignment problem was introduced by Duives et
al. [2] to improve the assignment of tests at the Engineering
Faculty of the University of Bologna. The authors also have
shown NP-hardness of the problem by the reduction mentioned
above. To the best of our knowledge, this currently is the
only published paper on the test-assignment problem. Duives
et al. [2] formulate the problem as a non-convex binary
quadratic program. Three different convex reformulations of
that program are then solved with the commercial solver
CPLEX: a standard reformulation, and two reformulations
with stronger lower bounds obtained by solving an auxiliary
semi-definite problem to partially and to optimality.

Duives et al. [2] further propose a tabu search that explores
the space of complete colorings in a neighborhood that selects
a vertex and changes its color greedily to the one that reduces
the total likelihood of cheating most. The initial solution is a
random feasible coloring. After changing the color of a vertex
it cannot be changed again during the tabu tenure, to avoid
visiting the same solution again. Different from a standard tabu
search, the neighborhood is greedy and randomized: in each
iteration a random vertex is chosen to change its color from
a fixed percentage of the non-tabu vertices with the highest
score, i.e. their contribution to the objective function. Unoc-
cupied desks are taken into account by a greedy algorithm, that
frees the desks of the highest score. The tabu search shows
a good performance in experiments with instances up to 122
desks.

In this paper, we propose a new heuristic solution for the
test-assignment problem. We reduce it to unconstrained binary
quadratic programming (UBQP), and then apply the auto-
matic algorithm configuration techniques used in our previous
work [6] to search for good hybrid heuristics. The algorithmic
components for the UBQP are specified by a grammar and
have been extracted from the existing algorithms of literature.
This approach aims at reducing human effort in the time-
consuming task of searching for promising heuristics, as well
as reducing the bias in manually testing algorithm components
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and their combinations. Automatic algorithm configuration for
designing heuristics has been applied previously with success
to several other combinatorial optimization problems, includ-
ing permutation flow-shop scheduling [3], the bi-objective
knapsack problem [4], boolean satisfiability problems [5], and
binary quadratic programming [6].

The rest of this paper is organized as follows. Section II
formalizes the test-assignment problem and gives details about
the reduction to the UBQP. Section III discusses the automatic
algorithm configuration task and the approach we follow to
search for a good heuristic for the test-assignment. Section IV
presents the algorithms produced by automatic algorithm con-
figuration, and details the computational experiments, compar-
ing their performance on benchmark instances to the literature.
Finally, Section V presents the conclusions and outlines some
future work.

II. THE TEST-ASSIGNMENT PROBLEM

Let D be the set of desks, T the set of test variants, and
γtu the similarity between tests t, u ∈ T . We assume that
only a subset E ⊆ {{d, e} | d, e ∈ D} of desks are close
enough, and have a defined proximity pde, {d, e} ∈ E. We
further assume that s ≤ |D| students will take the exam, and
therefore F = |D| − s desks remain free. Let T+ = T ∪
{0} be an extended set of tests, where test “0” represents a
“nonexistent” test which will be assigned to free desks. Then
the test-assignment problem can be formulated as a linearly-
constrained binary quadratic program as follows [2]:

minimize
∑
{d,e}∈E

pde
∑
t∈T

∑
u∈T

γtuxdtxeu, (1)

subject to
∑
t∈T

xdt = 1, d ∈ D, (2)∑
d∈D

xd0 = F, (3)

xdt ∈ {0, 1}, d ∈ D, t ∈ T. (4)

In this model the binary variable xdt = 1, if test t ∈ T is
assigned to desk d ∈ D, and xdt = 0, otherwise. The model
has a quadratic objective function (1), which multiplies the
proximity of each pair of desks with the similarity between the
assigned tests and represents the total likelihood of cheating
that is to be minimized. Constraint (2) makes sure that exactly
one test is assigned to each desk. Constraint (3) ensures that
the “nonexistent” test is assigned to exactly F free desks.

Model (1)–(4) is clearly a linearly-constrained binary
quadratic program of the form

minimize xtQx,

subject to Ax = b,

x ∈ {0, 1}nm,

by setting Q = (qij) ∈ Rnm×nm with qij = pdeγtu, n = |D|,
m = |T |, and a corresponding choice of A ∈ R(n+1)×nm and
b ∈ Rn+1.

Such a linearly-constrained binary quadratic program can
be transformed to an equivalent unconstrained binary quadratic

program by penalty methods (see e.g. Kochenberger et al. [7]).
We relax Ax = b and penalize the deviation from the equality
in the objective function. For a large enough penalty P ∈ R the
optimal solutions of the original and the transformed program
(if any) will be the same. The penalty is given by

P (Ax− b)t(Ax− b) = P (xtAtAx− xtAtb− btAx+ btb)

= Pxt(AtA− 2diag(Atb))x+ Pbtb.

Given this penalty, we can define a new coefficient matrix

Q̂ = Q+ P (AtA− 2diag(Atb)),

and finally rewrite the binary quadratic problem as

minimize xtQ̂x+ Pbtb,

subject to x ∈ {0, 1}nm.

When optimizing, the constant term Pbtb can be omitted.
To apply this transformation to the test-assignment problem,
we can choose P =

∑
i,j|qij>0 qij . In this way, we make

sure that the best solution which violates a constraint has a
larger objective value than the worst feasible solution. This
reduction allows us to solve the test-assignment problem using
algorithms for the UBQP.

III. AUTOMATIC DESIGN OF HEURISTIC ALGORITHMS
FOR THE UBQP

In this section we explain an approach for the automatic
design of heuristic algorithms for the UBQP obtained by the
reduction of the test-assignment described in the previous
section. To this end, we apply the automatic algorithm config-
uration approach of our previous work on the UBQP [6]. We
have defined a grammar of meta-heuristic strategies that com-
bines elementary components such as constructive heuristics,
local searches, and solution recombination. The elementary
components have been extracted from the best algorithms
for the UBQP in the literature. The grammar also contains
the parameters of these components, i.e. a valid derivation
describes a complete heuristic algorithm.

Representing the search space of algorithmic components
and parameters by grammars is a common strategy for auto-
matic algorithm configuration. The components, their param-
eter values, and their combination into a heuristic are then
defined by a derivation in the grammar, i.e. the decisions
made in each rule. A search method can then be used to
find good heuristic algorithms. A good option is to use
parameter configurators for this task. Hutter et al. [8] propose
a configurator called ParamILS, which applies an iterated local
search to tune parameters. Ansótegui et al. [9] propose GGA,
a gender-based genetic algorithm for parameter tuning. Hutter
et al. [10] propose the use of models to guide the search for
good parameter values. The same idea is used by Ansótegui
et al. [11], applying models to guide the search of the GGA.
Finally, López-Ibáñez et al. [12] propose irace, an iterated
racing procedure for algorithm configuration. Iterated racing
repeatedly samples configurations from distributions on the
parameters, selects the best configurations, and adjusts the
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distributions towards the best configurations. Selection is done
by racing, which evaluates the configurations on a number of
instances, and then applies a statistical test to eliminate the
configurations that are significantly worse.

The next section details the algorithms extracted from the
literature of UBQP and our approach to apply automatic algo-
rithm configuration techniques for solving the test-assignment
problem.

A. State-of-the-art algorithms for UBQP

Palubeckis [13] proposes an iterated tabu search for solving
the UBQP. Given a random initial solution, it iteratively
applies a tabu search as an improvement step, followed by
a perturbation step to escape from local optima. The author
proposes using a constant tabu tenure, and the least-loss
perturbation procedure. Least-loss perturbation ranks variables
according to the loss when flipping their value. Then, it
randomly flips variables from the b variables of least loss. The
size of the perturbation is selected uniformly at random from
the interval [d1, n/d2], where n is the size of the instance,
and d1 and d2 are input parameters. The iterated tabu search
of Palubeckis [13] presents good performance on instances up
to 7000 variables.

Glover et al. [14] propose an iterated tabu search algorithm
using an elite set as a diversification mechanism. The elite set
stores the best solutions found so far, which are used as initial
solutions for a perturbation and a search step. They compute
the tabu tenure according to n/td+ c ∈ [0, tc], where c and tc
are input parameters. The diversity-based perturbation ranks
variables based on the frequency they are set to 1 in the elite
solutions, and the flipping rate. The perturbation size is given
by n/g, where g is an input parameter.

Wang et al. [15] propose a repeated elite recombination
algorithm based on path relinking. The algorithm uses an elite
set to store the best found solutions. Initially, it generates
random solutions for the elite set and applies a tabu search
procedure to improve them. Iteratively, each pair of solutions
from the elite set is recombined by path relinking. The
resulting solution is improved by tabu search and then replaces
the worst solution of the elite set, if its quality is better. The
authors propose two path relinking strategies, PR1 and PR2.
PR1 uses best improvement strategy for moving to the next
neighbor. If no improving neighbor is found, the exploration
selects the best neighbor. On the other hand, PR2 always
selects a random neighbor. Moreover, PR1 and PR2 define
a minimum and maximum distance from the endpoints in the
path relinking as dmin = γ × H and dmax = H − dmin,
where H is the Hamming distance between both solutions.
If no such solution is found, the path relinking returns the
starting solution s. Wang et al. [15] present good results for
the instances of Palubeckis, as well as for instances of the
MaxCut problem.

B. Proposed grammar of heuristic and parameters

Given the algorithms from the state of the art of UBQP,
we propose a grammar that models all their components

and possible combinations. We also include several heuristic
components frequently found in literature, as presented in
Fig. 1. To derive a complete algorithm, we start at the rule
<START> and choose some algorithmic strategy: searching a
neighborhood, constructing a complete solution, or evolving a
population of solutions through recombination.

The search-based heuristics iteratively explore the neigh-
borhood of the current solution, moving from one solution to
another, in order to improve its quality. A simple local search
(<LS>) always selects an improving neighbor according to
some strategy (<IMPROVEMENT>). As a solution is represented
by a binary vector of variables, the exploration of neighbors is
performed in the order of the variables. The first improvement
(FI) strategy selects the first improving neighbor, and the
some improvement (SI) strategy selects a random improving
neighbor. The last strategy can be restricted to explore only a
subset of the variables (SI-PARTIAL). A round-robin strategy
(-RR) can be applied to FI or SI-PARTIAL, starting the
exploration from the position where the previous one has
finished. Finally, the best improvement (BI) strategy selects
the neighbor that improves the solution most.

In order to escape from local optima, the non-monotone
local search (NMLS) allows moving to a random neighbor with
probability p, and to an improving neighbor with probability
1 − p. The tabu search (<TS>) iteratively applies a best
improvement strategy (simple tabu search – STS), but keeps a
list of prohibited solutions in order to avoid the search coming
back to previous visited solutions in a short-term period,
called the tabu tenure (see [16]). A variant, called randomized
tabu search (RTS), allows a random move with probability p.
Finally, the iterated local search (ILS) component performs a
local search on the current solution, followed by a perturbation
to escape the local optimum. The same idea is implemented
in the elite iterated local search (ILSE), which adds an elite
set to provide initial solutions, as proposed by Glover et al.
[14].

The <PERT> rule defines the available perturbation methods.
The RANDOM strategy randomly selects variables and flips them.
The other methods rank the variables according to the least
loss (LEAST-LOSS) or frequency in the elite set solutions and
flip rate (DIVERSITY), and then select variables to flip from
the b best candidates. The size of the perturbation is defined
by the <STEP> rule. The UNIFORM strategy has been pro-
posed by Palubeckis [13]. The GAUSSIAN and EXPONENTIAL
strategies replace the uniform distribution by a Gaussian and
exponential distributions, respectively. The GAMMAM strategy
defines the perturbation size as n/g, as proposed by Glover et
al. [14].

The constructive heuristics are based on the work of Merz
and Freisleben [17]. These methods start with an empty
solution and iteratively assign values to the variables. The
variables are randomly selected from the α% best variables,
and then set to zero or one. The GRA heuristic constructs m
solutions and returns the best one. The GRASP does the same,
but additionally applies a search procedure to each constructed
solution to improve it. There are also two constructive strate-
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1 <START> ::= <SEARCH> | <CONSTRUCTION> | <RECOMBINATION>

2 <SEARCH> ::= LS(<IMPROVEMENT>) | NMLS(<IMPROVEMENT>) | <TS>

3 | ILS(<SEARCH>, <PERT>) | ILSE(<SEARCH>, <PERT>)

4 <IMPROVEMENT> ::= FI | FI-RR | BI | SI | SI-PARTIAL | SI-PARTIAL-RR

5 <TS> ::= STS | RTS

6 <PERT> ::= RANDOM(<STEP>) | LEAST-LOSS(<STEP>) | DIVERSITY(<STEP>)

7 <STEP> ::= UNIFORM | GAUSSIAN | EXPONENTIAL | GAMMAM

8 <CONSTRUCTION> ::= GRA(<CONSTRUCTOR>) | GRASP(<CONSTRUCTOR>, <SEARCH>)

9 <CONSTRUCTOR> ::= ZERO | HALF

10 <RECOMBINATION> ::= RER(<IMPROVEMENT>, <SEARCH>)

Fig. 1. A grammar describing the space of heuristic algorithms.

gies (<CONSTRUCTOR>). The first is called ZERO and starts with
all variables set to zero, and then sets some of them to one.
The second (HALF) starts with all variables set to 0.5, and then
sets each variable to zero or one. Finally, the recombination
algorithm defined by the grammar is the repeated elite recom-
bination proposed by Wang et al. [15]. However, the grammar
allows the use of any of the improvement strategies in the
recombination step, as well as any of the search procedures in
the improvement step.

We can see that the grammar allows a flexible combination
of its components into hybrid metaheuristics, many of which
probably have never been explored before. For example, we
can derive a repeated elite recombination with an iterated local
search in the search step, which can use an internal non-
monotone local search procedure. Moreover, we can derive
the methods extracted from the literature presented above. For
example, the algorithm of Palubeckis [13] can be obtained se-
lecting the ILS algorithm with a STS improvement procedure,
and a LEAST-LOSS perturbation with UNIFORM step. We can
also combine the components of state-of-the-art methods with
other components in order to improve their performance, as
well as combine components from different methods from the
literature.

Besides the algorithmic components, the automatic algo-
rithm configurator must tune the parameters of the algorithmic
components. All parameters can be found in Table I along
with their type, the related method from the grammar, a short
description, and the possible values. Parameter t chooses a
strategy for the tabu tenure. Strategies t1 to t4 are explained
in the table, strategy t5 was proposed by Palubeckis [13]. It
consists in selecting the tabu tenure according to the instance
size. If an instance has more than 5000 variables, the tabu
tenure is 15000. If it has between 3000 and 5000 variables,
the tabu tenure is 12000, and 10000 for instances up to 3000
variables. The parameters s and i define strategies for the
maximum iterations and maximum iterations in stagnation for
tabu searches. Strategies s3 and i3 set these values to ∞. All
other elements are input parameters of the grammar compo-

nents. More details can be found in our previous work [6]
and the related papers. For more details about the heuristic
components, we refer to Zäpfel et al. [18].

C. Solution representation

As detailed in the previous sections, a solution is composed
by the selected components from the grammar, and the values
of the related parameters. We follow the fully parametric
representation of Mascia et al. [19], in which the decisions
made in the grammar are defined by parameters to be tuned
by the configurator. For example, the <START> non-terminal
in line 1 of the grammar (Fig. 1) has three options: <SEARCH>,
<CONSTRUCTION>, and <RECOMBINATION>. Therefore, we de-
fine a corresponding categorical parameter with the three
possible options. When defining a parameter for each non-
terminal, we avoid the problems of locality and redundancy of
token-based approaches (for more details about these problems
we refer to Mascia et al. [19], Rothlauf and Oetzel [20], and
Lourenço et al. [21]).

We also limit the number of recursions of the <SEARCH>
rule, by not allowing an iterated local search being the internal
search procedure of another iterated local search. This is a
characteristic of the fully parametric representation, because
we need a finite number of parameters. In this case, we need
two parameters for the <SEARCH> rule, because when selecting
one of the iterated local searches, we need to define the internal
search. However, the second parameter of this rule does not
have the option to select an iterated local search. Nevertheless,
the proposed grammar is quite flexible and can generate a
wide range of hybrid metaheuristics, because it can flexibly
combine its components. In fact, the grammar can generate
3152 different algorithms. Each of them has many different
possible values for its parameters, even infinite options in the
case of real parameters.

Finally, we define conditions between parameters, in order
to reduce the search space of components and avoid redun-
dancy. For example, a value to the parameter that chooses
a perturbation method (<PERT>) is only needed if an iterated
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TABLE I
PARAMETERS OF THE DIFFERENT COMPONENTS USED THE GRAMMAR OF HEURISTIC ALGORITHMS.

Parameter Type Method Description Possible values

t cat <TS> Strategy for tabu tenure {t1, t2, t3, t4, t5}
tv int <TS> (t1) Constant for tabu tenure [1, 50]

tp int <TS> (t2) Tabu tenure is (tp × n)/100 [10, 80]

td int <TS> (t3 and t4) Tabu tenure is n/td [1, 500]

tc int <TS> (t4) Tabu tenure is n/td + c ∈ [0, tc] [1, 100]

s cat <TS> Strategy for maximum stagnation {s1, s2, s3}
sv int <TS> (s1) Constant for maximum stagnation [500, 100000]

sm int <TS> (s2) Maximum stagnation is sm × n [1, 100]

i cat <TS> Strategy for maximum iterations {i1, i2, i3}
iv int <TS> (i1) Constant for maximum iterations [1000, 50000]

p real NMLS; RTS Probability of a random move [0.0, 1.0]

f int SI-PARTIAL[-RR] Size of the partial exploration [5, 50]

d1 int <PERT> Minimum perturbation size [1, 100]

d2 int <PERT> Maximum perturbation size is n/d2 [1, 100]

g int GAMMAM Perturbation size is n/g [2, 100]

b int LEAST-LOSS Number of candidate variables for perturbation [1, 20]

β real DIVERSITY Frequency contribution [0.1, 0.9]

λ real DIVERSITY Selection importance factor [1.0, 3.0]

r int ILSE Elite set size for ILSE [1, 30]

e int RER Elite set size for RER [1, 20]

γ real RER Distance scale [0.1, 0.5]

α real <CONSTRUCTION> Greediness of the construction [0.0, 1.0]

m int <CONSTRUCTION> Number of repetitions [10, 100]

local search was selected (ILS or ILSE) in the rule <SEARCH>.
All other components do not use perturbation steps. The
same idea is applied to the input parameters, e.g., a value to
parameter p is only set if a randomized heuristic was selected
(NMLS or RTS).

IV. COMPUTATIONAL EXPERIMENTS

In this section we report the results of computational experi-
ments with the proposed methods. In the first part we describe
the results of the automatic algorithm configuration process,
present the best found algorithm in detail, and discuss the
robustness of the configuration process. In the second part we
report the results of computational experiments which compare
our best algorithm to existing approaches. All algorithmic
components were implemented in C++ and compiled using the
GNU C compiler version 5.3.1 with maximum optimization.
The experiments were conducted on a PC with an 8-core
AMD FX-8150 processor running at 3.6GHz and 32GB main
memory, under Ubuntu Linux, using only one core for each
execution.

In the experiments we have used the set of real-world in-
stances proposed by Duives et al. [2]. It contains 36 instances
based on four different classrooms ranging from 20 to 79
desks, of which between 0 and 20 were unoccupied, 50 to
250 proximity relations between neighboring desks, and two
to four different tests per exam. (Duives et al. [2] also report
results for instances with 122 desks, which were not available.)

A. Results of the Automatic Algorithm Configuration
For the automatic algorithm configuration we have ran-

domly selected 12 instances from the complete instance set.

These selected instances are marked with an asterisk in Ta-
ble III. The configuration has been done using irace version
2.4.1844 with a budget of 10000 candidate runs, and a time
limit of 40 seconds per run.

The tuning has been repeated two times, and the configura-
tor found two very similar hybrid heuristic algorithms ER1 and
ER2 with slightly different strategies and different parameters.
Algorithm 1 shows the algorithmic structure of both heuristics.
Repeatedly, they create an elite set with e solutions. While
there are novel solutions in the elite set, a recombination by
path relinking followed by a tabu search is performed for each
pair of elite solutions. The path relinking process is shown in
lines 5 to 19. It applies a first improvement search restricted
to flipping variables that approximate the current solution s
to the guiding solution t (line 5). While the solutions are
different, the algorithm selects the first variable that leads to
a better neighbor, flips it, and removes it from the variables
to be explored. If no improving variable is found, a random
variable which leads to the smallest increase of the objective
function value is chosen. If the best solution found during path
relinking solution is better than the incumbent solution and
the number of different variables is between a minimum value
dmin and a maximum value dmax, the incumbent solution is
replaced by the current solution. Bounds dmin and dmax are
computed based on the distance factor γ, according to lines 6
and 7. The tabu search is applied in lines 20 to 23 and uses a
best improvement strategy to select non-tabu variables to flip.
Finally, if the resulting solution is better than any solution
of the elite population, it replaces the worst elite solution
(lines 25 and 26). This algorithm could also be classified as
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Algorithm 1: Hybrid heuristics ER1 and ER2.

1 while stopping criterion not satisfied do
2 E ← create an elite set of size e
3 while E has any novel solution do
4 foreach (s, t) ∈ E × E | s 6= t do
5 V ← variables v | s[v] 6= t[v]
6 dmin ← γ × |V |
7 dmax ← |V | − dmin

8 d← 0
9 s∗ ← s

10 while V 6= ∅ do
11 Select the first improving variable v ∈ V in a

round-robin manner
12 Flip s[v] and remove v from V
13 d← d+ 1
14 if s is better than s∗ then
15 if dmin ≤ d ≤ dmax then
16 s∗ ← s
17 end
18 end
19 end
20 while max. iterations/stagnation not reached do
21 Select the best improving non-tabu variable v
22 Update tabu list
23 Flip s[v] and set v tabu
24 end
25 if s is better than any solution of E then
26 Replace the worst solution of E by s
27 end
28 end
29 end
30 end
31 return best solution of E

a steady-state memetic algorithm with a path-relinking-based
recombination operator and no mutation. It maintains diversity
in the pool of elite solutions by requiring the recombined
solutions to have at least γ|V | different variables.

Table II shows the best parameter settings for ER1 and ER2

found in the two configuration runs. Besides the parameter
values, the only difference between the two algorithms lies in
the choice of the improving variable during the recombination
of two solutions in line 11 of Algorithm 1: ER1 chooses the
first improving variable in a round-robin manner, i.e. it starts
from the variable chosen in the previous iteration, while ER2

chooses the first improving variable in the input variable order,
always starting from the first variable. These small differences
suggest that the repeated recombination followed by a tabu
search is a good strategy and the configurator can reliably
identify it.

B. Evaluation on the complete instance set

In this section we evaluate algorithms ER1 and ER2 on the
complete set of instances and compare it to the tabu search

TABLE II
BEST PARAMETER SETTINGS FOR HEURISTIC ALGORITHMS ER1 AND

ER2 .

Parameter Value ER1 Value ER2

t t3 t5
td 1 -
s s2 s2
sm 81 1
i i1 i2
iv 4204 -
e 20 20
γ 0.32 0.22

proposed by Duives et al. [2]. The results of Duives et al. [2]
have been obtained with a time limit of 100 s on a PC with
a Pentium IV at 3.4 GHz and 2 GB main memory running
Linux. For a fair comparison, we run algorithms ER1 and
ER2 with a time limit of 40 s, to compensate for the relative
performance of the two machines. The results are presented
in Table III. Each instance is identified by the total number
of desks, the number of unoccupied desks, and the number
of different tests in the exam. For each instance we report
the average absolute deviation (AD) and the relative deviation
(RD) from the best known value b (defined as v/b− 1 for an
objective function value v) for the tabu search of Duives et al.
[2] (TS) and algorithms ER1 and ER2 over 20 replications
with different seeds. The best relative deviations for each
instance are highlighted in bold. Negative relative deviations
indicate improvements over the current best known values.
As mentioned above, the instances which have been used for
algorithm configuration are marked with an asterisk.

We can see that ER2 leads to the best overall results, with
an average relative deviation of 1.09%, followed by ER1 with
1.33% and the tabu search with 2.90%. The newly found
algorithms have a similar performance, and are significantly
better than the existing tabu search, in particular on the large
instances where the previous best solutions can be improved.
The new best solutions found are presented in Tables IV and V.
In these large instances ER1 and ER2 show a complementary
performance, suggesting that different strategies for a small
or a large number of unoccupied desks may be helpful. Both
heuristics are consistently better than the tabu search on the
majority of the instances, with ER1 finding a worse solution
in only 6 and ER2 in 3 cases. In two instances TS found the
best solutions.

The few instances where the tabu search has a slight
advantage over ER1 or ER2 have 20 unoccupied desks (with
the exception of the instance with 47 desks, 10 of them
unoccupied, and 4 tests). This can be explained by the problem
specific representation used by Duives et al. [2] which ignores
unoccupied desks, and greedily removes exams from desks
on evaluation, which simplifies the search space and the
algorithm. Since we reduce the test-assignment to the UBQP,
we cannot use problem-specific components. The fact that
we penalize violated constraints in the objective function
generates a more irregular search space, with new local optima.
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TABLE III
AVERAGE ABSOLUTE AND RELATIVE GAPS ON ALL INSTANCES FOR ALGORITHMS TS, ER1 , AND ER2 .

Instance TS ER1 ER2

Desks

Total Empty Tests Best known AD RD [%] AD RD [%] AD RD [%]

20 0 2 20.90 0.00 0.00 0.00 0.00 0.00 0.00
20 5 2 * 7.95 0.00 0.00 0.00 0.00 0.00 0.00
20 10 2 1.85 0.00 0.00 0.00 0.00 0.00 0.00
20 0 3 15.15 0.20 1.32 0.00 0.00 0.00 0.00
20 5 3 5.58 0.01 0.18 0.00 0.00 0.00 0.01
20 10 3 * 1.22 0.00 0.00 0.00 0.00 0.00 0.00
20 0 4 11.95 0.15 1.26 0.00 0.00 0.00 0.00
20 5 4 3.98 0.07 1.76 0.00 0.13 0.00 0.00
20 10 4 * 0.93 0.00 0.00 0.00 0.00 0.00 0.00
47 0 2 72.60 1.10 1.52 0.00 0.00 0.00 0.00
47 10 2 35.45 0.15 0.42 0.00 0.00 0.00 0.00
47 20 2 * 12.65 0.15 1.19 0.55 4.35 0.15 1.19
47 0 3 53.72 1.73 3.22 0.00 0.00 0.00 0.00
47 10 3 * 24.84 0.45 1.81 0.23 0.94 0.20 0.80
47 20 3 * 8.52 0.16 1.88 0.43 5.05 0.10 1.17
47 0 4 43.88 0.72 1.64 -0.05 -0.11 0.20 0.46
47 10 4 19.05 0.15 0.79 0.20 1.07 0.06 0.32
47 20 4 6.38 0.02 0.31 0.26 4.14 0.47 7.30
60 0 2 * 74.05 2.25 3.04 0.00 0.00 0.05 0.07
60 10 2 43.00 1.70 3.95 0.20 0.47 0.20 0.47
60 20 2 * 20.35 1.85 9.09 0.55 2.70 0.55 2.70
60 0 3 * 54.03 1.11 2.05 0.00 0.00 0.00 0.00
60 10 3 29.95 1.36 4.54 0.84 2.79 0.56 1.88
60 20 3 14.11 0.82 5.81 0.56 3.97 0.98 6.93
60 0 4 42.93 1.52 3.54 0.67 1.56 0.79 1.84
60 10 4 23.18 1.15 4.96 0.05 0.22 0.25 1.08
60 20 4 10.70 0.53 4.95 1.12 10.46 0.82 7.62
79 0 2 * 109.20 2.43 2.23 0.00 0.00 0.10 0.09
79 10 2 71.35 0.73 1.02 0.56 0.78 0.30 0.42
79 20 2 43.33 0.77 1.78 0.77 1.78 0.60 1.38
79 0 3 80.83 3.37 4.17 -0.71 -0.88 -0.68 -0.84
79 10 3 * 50.26 2.24 4.46 0.53 1.05 -0.26 -0.51
79 20 3 29.87 1.07 3.58 0.81 2.71 -0.04 -0.13
79 0 4 64.40 2.93 4.55 -0.19 -0.29 -0.04 -0.06
79 10 4 38.65 1.78 4.61 -0.22 -0.56 -0.07 -0.17
79 20 4 * 21.94 1.19 5.42 1.25 5.71 1.14 5.19

Averages 32.46 0.94 2.90 0.23 1.33 0.18 1.09

TABLE IV
NEW BEST KNOWN VALUES FOUND BY ALGORITHM ER1 .

Instance Solution values

Desks

Total Empty Tests Previous value New value

47 10 3 24.84 24.64
47 0 4 43.88 43.83
47 10 4 19.05 19.03
79 0 3 80.83 80.12
79 10 3 50.26 50.01
79 0 4 64.40 64.10
79 10 4 38.65 38.00

For example, to go from a feasible solution to another, a
constraint must be violated and, consequently, the quality of
the intermediate solutions will be worse. The algorithm must
handle this new search space topology.

Finally, we have evaluated the contribution of the effec-

TABLE V
NEW BEST KNOWN VALUES FOUND BY ALGORITHM ER2 .

Instance Solution values

Desks

Total Empty Tests Previous value New value

47 10 4 19.05 18.93
79 0 3 80.83 80.03
79 10 3 50.26 49.71
79 20 3 29.87 29.83
79 0 4 64.40 64.33
79 10 4 38.65 38.15

tiveness of the configuration tool for finding good heuristic
algorithms. To this end, we generated ten random hybrid
heuristics from the grammar and evaluated them on the
complete instance set under the same conditions. We found
that the random heuristics have an average relative deviation
of 46.5% with a standard deviation of 31.1%. This shows that
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the search space of algorithms contains heuristics of strongly
varying quality and that the automatic algorithm configuration
is effective in finding heuristics that perform well.

V. CONCLUSIONS

In this paper we have proposed a new metaheuristic to solve
the test-assignment problem. We reduce test-assignment to
unconstrained binary quadratic programming, which in turn is
solved by hybrid heuristics based on algorithmic components
which have proven to work well in the literature. Instead of a
manually, laborious and often biased search for the best heuris-
tic methods, we apply automatic algorithm configuration to
perform this task. We have extracted algorithmic components
and parameters from state-of-the-art approaches and represent
them in a grammar. Then, we apply the automatic configurator
irace to explore this search space and find good combinations
of components and parameter values. The obtained algorithms
ER1 and ER2 perform well on the existing benchmark in-
stances, improve the state-of-the-art method and are able to
find new best solutions on the more difficult instances with a
large number of desks.

This study contributes to the evidence that automatic al-
gorithm configuration techniques can reduce the effort of
researchers compared to a manual configuration, allowing
them to focus on other tasks, such as the design of new
algorithmic components. We also show that heuristics for
the UBQP can be successfully applied to quadratic binary
optimization with linear constraints. This makes the proposed
grammar and the automatic methods a promising tool for
solving a large class of problems that can be modeled in this
way. In future work we intend to include problem-specific
components in the grammar, e.g. a specialized neighborhood,
in order to improve the results for instances with large number
of unoccupied desks.
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[19] F. Mascia, M. López-Ibáñez, J. Dubois-Lacoste, and T.
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