
Solver-Based Fitness Function for the Data-Driven
Evolutionary Discovery of Partial Differential

Equations
Mikhail Maslyaev

Nature Systems Simulation Laboratory
ITMO University

Saint-Petersburg, 197101, Russia
mikemaslyaev@itmo.ru

Alexander Hvatov
Nature Systems Simulation Laboratory

ITMO University
Saint-Petersburg, 197101, Russia

alex hvatov@itmo.ru

Abstract—Partial differential equations provide accurate mod-
els for many physical processes, although their derivation can
be challenging, requiring a fundamental understanding of the
modeled system. This challenge can be circumvented with the
data-driven algorithms that obtain the governing equation only
using observational data. One of the tools commonly used in
search of the differential equation is the evolutionary optimization
algorithm. In this paper, we seek to improve the existing
evolutionary approach to data-driven partial differential equation
discovery by introducing a more reliable method of evaluating
the quality of proposed structures, based on the inclusion of the
automated algorithm of partial differential equations solving. In
terms of evolutionary algorithms, we want to check whether the
more computationally challenging fitness function represented by
the equation solver gives the sufficient resulting solution quality
increase with respect to the more simple one. The approach
includes a computationally expensive equation solver compared
with the baseline method, which utilized equation discrepancy to
define the fitness function for a candidate structure in terms of
algorithm convergence and required computational resources on
the synthetic data obtained from the solution of the Korteweg-de
Vries equation.

Index Terms—equation discovery, partial differential equation,
fitness function selection, data-driven modelling

I. INTRODUCTION

Differential equations are commonly used as mathematical
models for continuous physical processes. They describe the
interdependence of various derivatives of a studied multivariate
function. In addition, differential equations can be used for
system state predictions. By integrating the governing partial
differential equation with specific initial and correctly stated
boundary conditions, the state of the modeled process in the
future can be obtained.

The task of partial differential equation derivation for a
specific problem in the past involved examining conservation
laws that can be applied to the system and using analysis and
variational principles to extract the equation from the known
properties of the system. While these methods are widely used
to derive the equations, they demand significant preliminary
study of the process, which in some cases can not be held due
to low comprehension of the system. Occasionally, regardless

of the dynamical system understanding, the researchers must
collect measurements as a preliminary part of the analysis.
Thus, the data-driven equation derivation can be introduced
as an alternative. Data-driven algorithms can develop a model
for a process using measurements data and a few assumptions
about the constructed model structure (i.e., the model will take
the form of a partial differential equation).

One of the contemporary approaches to data-driven PDE
discovery is based on evolutionary algorithms (EA). Here, the
objective of EA is the construction of a model in the form of a
partial differential equation from a selected set of elementary
constituents and with specific conditions that have the best
performance on the input data. One of the issues linked with
applying evolutionary operators to such ambiguously stated
tasks is selecting an objective (fitness) function that shall be
optimized during the problem solution.

The computation complexity of the fitness function is a
classical problem that is considered for classical optimization
benchmark problems [1]. However, in the equation discovery
case, the function landscape cannot be known a priori. Thus,
only empirical conclusions on the influence of the hardness
of computational complexity of a fitness function may be
obtained. In this paper, two possible approaches to compute
fitness functions for equation discovery evolutionary algorithm
are considered. First is the computationally hard complete
equation solution. Equation solution should be a more noise-
resistant approach to evaluating the quality of evolutionary
algorithm candidates due to the independence of a noisy
data differentiation error. The ability to handle noisy data
is crucial for modeling real-world physical systems since
instrumental observational data gathering is usually imposed
by various disturbances. Moreover, the solver approach allows
considering boundary values, which are not in the scope of
previously used computationally more straightforward fitness
calculation technique. It involved evaluating differential oper-
ator discrepancy from zero and performing poorly on noisy
data.

The paper is structured as follows: Section II is dedicated to
the analysis of existing approaches of data-driven discovery of

partial differential equations for purposes of modeling dynam-
ical systems; Section III gives a brief formal overview of the
solved problem and states the tasks for the research; Section IV
provides a description for the evolutionary algorithm of partial
differential equation discovery and compares the possible
ways of the case-specific fitness function definition; Section
V is dedicated to the analysis of algorithm performance on
synthetic data, and Section VI outlines the paper and also
describes the possible future work directions.

II. RELATED WORK

The earliest advances in the data-driven algorithmic deriva-
tion of partial differential equations were made with symbolic
regression [2]. The main idea of symbolic regression is con-
structing an expression that describes dependencies in data
using a computational graph. The leaves of the computational
graph are used for modeled function and its derivatives, while
internal nodes are reserved for algebraic operations. Then, the
graph is optimized to represent the input data. While symbolic
regression can construct an arbitrary form of expression for the
final model, it has some disadvantages, such as its tendency to
overtrain and vast search space, leading to poor performance
of the optimization algorithm. Symbolic regression - based
approach has proved to be rather successful in problems of
ordinary differential equation discovery. The examples of such
algorithm applications are numerous and include [3] and [4].
The former article involves application of numerical tools of
differential equations solution to evaluate the quality of a
candidate, while the latter is notable for use of multiobjective
optimization, considering not only the solution fitting to the
problem, but also its complexity.

The next class of data-driven methods of PDE discovery is
based on sparse regression, trained over a defined beforehand
library of candidate terms. Examples of works involving
sparse regression are numerous and include [5]–[8]. The main
advantage of this approach is its low computational demands,
but it can achieve such good performance with the cost of
a limited expanse of possible equations, discoverable by the
framework: the researcher has to manually select all reasonable
terms for the equation.

One of the most actively developing methods involves
applications of artificial neural networks (ANN) to derive the
partial differential equation in the form of first-order time
derivative approximations. The most notable examples in this
include physics-inspired artificial neural networks, developed
by [9], aimed at the representation of both input data and the
structure of the PDE with ANNs. Another approach, proposed
by [10], views differential operators through the lens of con-
volution kernels, thus approximating the system’s dynamics.
The former approach has the downside of requiring knowledge
about the general structure of the equation. The latter approach
can detect an arbitrary operator for the dynamics, but the
classes of learned equations are still limited by necessarily
having first-time derivatives.

Evolutionary algorithms of PDE discovery proved to be
rather effective, being able to derive equations with complex

structures and systems of equations. Conceptually similar ap-
proaches were introduced in [11] and [12]. However, they tend
to have stability and convergence issues while operating on
noisy data. The inaccurate estimations of derivatives, leading
to the errors in calculating fitness functions and incorrect
operation of selection operator, make their output inconsistent
and the constructed models unreliable.

During the equation discovery process, different forms of
operators appear. In a classical mathematical physics analysis,
many methods allow solving an equation of a given type
with a given type boundary conditions. Classical solution
approaches require the expert to choose the proper method for
the given equation. Such an approach is improper for data-
driven discovery. We require a more automated yet maybe
less precise equation solver. Such approaches usually involve
neural networks [13]. In the paper, we use an alternative
realization of a neural network-based solver.

III. PROBLEM STATEMENT

This work’s primary goal is to check the influence of the
more advanced fitness function on the data-driven derivation of
ordinary and partial differential equations. As in the majority
of the data-driven methods, the model is constructed based
on sets of measurements. It has to be expected that a single
dynamical process prevails in the entire area so that the derived
model can be applied to the complete dataset. The versatility
of the approach makes possible the creation of models in forms
of non-linear ordinary and partial differential equations with
the defined order n in the form of the expression Eq. 1, where
t is time, x is spatial coordinates vector, u is the function to
be modeled. The subscript denotes derivative along that axis,
e.g., ut means the first-order time derivative.

F (t, x1, ... , xk, ut, ux1
, ... , utt, utx1

, ...) ∼ Lu = 0 (1)

In contrast to the symbolic regression, which does not im-
pose any limitations on the models’ structures, the proposed al-
gorithm makes assumptions about the equation form to reduce
the search space and avoid unlikely candidates. The candidate
model structure is granted a form of Eq. 2, where the factors
fj belong to the set of derivatives {ut, ux1

, ... , utt, ...}.
The highest order of the derivative along the axis for the set
may vary. In some cases, the dynamical system’s details may
indicate that the derivatives along a specific axis can be only up
to a certain order, or a similar notion can be obtained from an
algorithm’s launch results. Also, it is possible to assume that
the total number of significant (i.e., with nonzero coefficient)
terms in the candidate equation and factors in a term will be
relatively low due to the majority of existing equations for
dynamical systems having this property.

L′u =
∑

i ai(t,x)ci = 0 , ci =
∏

j fj ,

ai(t,x) = a′i(t,x) ∗ bi, b ∈ R (2)

While the process modeling shall be based on the solution
of a single equation, the study [14] shows the benefits of

the multi-objective optimization approach. It allows the re-
searcher to obtain the set of Pareto-optimal solutions in terms
of multiple objective criteria, such as quality of the model
(zero discrepancies or data reproduction precision computed
with solver), its complexity, etc. For the latter criterion, the
approach adopts the proposed quantity of the significant terms
in the equation, containing derivatives or other variables, that
are informative for the research, as shown in Eq. 3. The
selection of the former objective function is the main object
of this research.

C(L′
ju) = #(L′

ju) (3)

The multi-objective optimization operates by a separate EA
based on the MOEA/DD algorithm, proposed by [15]. In study
[14], the optimization problem was stated for the tasks of
differential equations systems, but its approach is applicable
for the case of a single equation discovery.

IV. ALGORITHM DESCRIPTION

This section describes the general details of the proposed
partial differential equations discovery approach. The gen-
eralized scheme of the developed evolutionary algorithm is
presented in the Fig. 1. For the purposes of the fitness
evaluation both optimization-based partial differential equation
solver and equation discrepancy evaluation procedure can be
used.

Fig. 1. Scheme of the evolutionary algorithm of partial differential equation
derivation.

A. Evolutionary algorithm

The proposed algorithm’s main objective is to discover a
Pareto-optimal set of equations regarding objective functions,
describing various aspects of equation quality. The algorithm
uses hyperparameters vectors of the single equation discov-
ery algorithm for multi-objective optimization. The previous
works have shown that the evolutionary algorithm, performing
the search of an equation, can converge to a single solution
or several equivalent equations if provided with enough it-
erations and correctly selected evolutionary operators. These

discovered equations are defined only by data and by the
hyperparameters of the algorithm, mainly sparsity parameters,
which limit the number of terms in the equation.

Before the fitness evaluation discussion, we provide the gen-
eral details of the evolutionary algorithm shall be introduced
without delving into the details of candidate equation quality
evaluations. The search process for the best equation form is
divided into several steps. At first, the evolutionary operators
are utilized to suggest a set of terms {a′1c1, ...a′kck}, where
ci is the product of selected derivatives or modeled function,
while the products a′i are constructed from an allowed set of
case-specific functions. Next, in a loop over the terms of the
equation in a set, the following procedure is performed: the
term is selected as a ”right part of the equation”, while other
ones are used to approximating it: the sparsity is applied, and
then the coefficients are refined. The overview of the EA is
presented in the form of Alg. 1.

In each algorithm launch, a total number of terms in the set
{a′1c1, ...a′kck} is fixed for mutation and crossover evolution-
ary operators. Sparsity operator 4 has to be applied to set zero
coefficients to the additional terms in the set, absent in the
equation, describing the process. Here, the sparsity-promoting
technique, based on LASSO regression, is employed, although
other works indicate that the correlation can be used as an
indicator of term significance. In the operator description, β∗
and β refer to the sparse vector of real-valued intermediate
equation weights. The intermediate status is guided by the
nature of sparse regression, where the features and predicted
values have. λ is the sparsity constant, which is case of the
equation discovery regulates the number of terms with non-
zero coefficients. F is the matrix of left part terms, evaluated
on domain grid, while Ftarget is the vector of right part term.

β∗ = argmin
β

∥Fkβ − Ftarget,k∥22 + λ∥β∥1 (4)

The operation of sparse regression requires calculated li-
braries of the predictors. Thus the algorithm must have access
to the values of all possible equation factors in the grid, placed
in the studied domain. While the values of functions a′i(t,x)
can be calculated from the coordinates of the grid points, the
evaluation of derivatives has to be performed in the other way
to increase the overall speed of the algorithm.

Differentiation prepossessing method phase includes the
stage of the input data variable approximated by the fully-
connected artificial neural network. Then the outputs of ANN
for specific points are used in the finite-difference scheme to
evaluate the derivatives. The main advantage of using an inter-
mediate artificial neural network between data assimilation and
derivative calculation is its ability to filter out the input noise.
Finite-difference differentiation has the property of increasing
the magnitudes of noise. Thus to obtain reasonable values of
the derivatives, the data has to be smoothed beforehand. Other
preprocessing approaches include kernel (Gaussian) filtering
and fitting polynomials for the analytical differentiation, as
presented in Fig. 2.

Fig. 2. Scheme of the possible preprocessing phases of the evolutionary
algorithm of PDE discovery. The alternative ways indicate alternative steps
of the algorithm. The specific choice is dependent on prevalence of noise in
data, time restraints, etc.

The final element of the proposed algorithm of equation
discovery is the calculation of real-valued coefficients between
the terms, selected by the sparsity operator: {a′ici | β∗i ̸=
0}. For these purposes, linear regression is employed, so the
coefficients β are obtained.

During the initialization of the evolutionary algorithm, a
random initial population of equations is constructed with
derivatives of the modeled function and a set of additional
case-specific functions selected by the researcher. While oper-
ating with the EA, the ”phenotype” of an individual stands
for the equation it represents, while the ”genotype” under
the current encoding paradigm is defined with the string of
objects representing equation terms. These terms by them-
selves consist of a string of factors. Some additional restric-
tions are imposed on the constructed terms to avoid some
undesired behavior of the algorithm. For example, all terms
must have the modeled function, or another function, specified
as meaningful for the model. In other cases, function type-
specific restrictions are necessary, e.g., the higher powers of
trigonometric functions must be avoided to prevent trigono-
metric identity ”discovery” that obviously will have lower zero
discrepancies than the other candidates and will be preferred
by the algorithm.

During the search for the optimal structure of PDE, the
evolutionary operators of mutation and crossover are applied
to the population, as shown on the scheme of the algorithm.
The elitism is introduced to preserve the quality of the best
candidate solution. The scheme of evolutionary operators is
presented in Fig. 3.

B. Equation discrepancy evaluation

The specifics of the task pose an unusual problem: the
question of selecting an objective function, which allows faster
and more reliable convergence of the evolutionary algorithm.
Previously, the only viable approach was the evaluation of
the quality of equation term approximation, i.e., solving the
optimization problem, stated on the Eq. 5.

Data: set of tokens T = {T0, T1, ... Tn}, where T0

are derivatives and T1, ... Tn are user-specified
functions, sparsity constant lambda

Result: partial differential equations
Randomly generate initial population of candidate

equations from tokens from set T ;
for individual in population do

right part idx = 0;
max fitness val = −inf ;
for target idx = 0 to terms number do

Apply sparse (LASSO) regression to find
intermediate coefficients β;

Apply linear regression to find correct
coefficients of the equations & get fitness
value fit val;

if fit val > max fitness val then
max fitness val = fit val;
right part idx = target idx;

else
pass

for epoch = 1 to epoch number do
population.sort();
Remove worst solutions to maintain population
size;

Tournament selection of parents for recombination;
Apply recombination and mutation operators;
for new individual in offsprings do

Use LASSO operator and linear regression to
find the best partition into left & right parts
and calculate fitness (as above);

Add new solutions into population;
Algorithm 1: The pseudo-code of a single equation dis-
covery process

L =
∑
i

a∗i (t,x)bici −→ min
a∗
i ;ci

(5)

The objective function, representing the quality of the
proposed model, is evaluated as the L2-norm of discrepancy of
the right part of candidate equation term approximation with
the left part ones on the domain grid points. The overview of
the function is portrayed in Eq. 6

ffitness = (||L||2)−1

= (||
∑

i ̸=i rhs

(a∗i (t,x)bici)− a∗i rhs(t,x)ci rhs||2)−1 (6)

While the equation discovery process, guided by this ob-
jective function, on noiseless data can converge to the desired
candidate solution, several issues may arise in other cases.
First of all, the correct structure of the equation may not be
optimal from the sense of the introduced optimization metrics.
An example of such an occasion can be found during the
process of heat equation discovery Eq. 7.

ut = ∇(α∇u) (7)

Fig. 3. Scheme of the implemented evolutionary algorithm operators for tasks of partial differential equation discovery. As presented on the left, mutation
operator works by altering the existing solutions, while crossover operator, portrayed on the right, combines terms from selected equations.

Due to the properties of the equation, the second time
derivative of its solution is close to zero across the domain.
On the other hand, the second derivative in the extended heat
equation has a physical meaning in some physics applications.
The multi-objective optimization algorithm tends to converge
to the candidate utt = 0, which has low modeling error on
the input data, and complexity of 1 term, thus alone forming
Pareto non-dominated set. However, the predictive qualities of
this model are low, and integration of the equation will not
achieve the result. Such cases should be handled manually.

C. Solver-based approach

Another approach to evaluate the fitness function of a
partial differential equation is defined by using an automated
technique of PDE solution. In contrast to the conventional
algorithms of numerical differential equations solution (finite-
difference or spectral methods), we should process an arbitrary
candidate proposed by the evolutionary algorithm.

The quality of the evolutionary algorithm individual is
defined with the fitness function, stated in Eq. 8, where u
represents the data, and ũ denotes the ANN approximation of
the equation solution.

ffitness = (||ũ− u||2)−1 (8)

In line with the objective for the fitness function evaluation,
the equation solution process is performed on the fixed mesh
(ti,xi) in the domain Ω, corresponding with the data points.
In most problems, the mesh is uniform, but an arbitrary
discretization can also be selected.

The PDE-solving algorithm requires correctly (at least
“domain-averaged” correctly) posed differential operator and
initial/boundary conditions, matching with the type of passed
boundary problem, expressed in Eq. 9, where for the modelled
function u(t,x), defined in domain (t,x) ∈ Ω ⊂ Rk+1, where
k is the number of spatial dimensions. In the studied examples,
the cases of two dimensions (time and space) are analyzed,
but there are no strict limitations on the dimensionality.
L and b are correspondingly arbitrary (possibly, non-linear)
differential and boundary operators, with the latter defined on
the boundary Γ.

{
Lu(t,x) = f ;

bu(t,x) = g, (t,x) ∈ Γ
(9)

To simplify the discovery process, we state only Dirichlet-
type boundary conditions. While the choice of boundary condi-
tions not being a severe issue for the equations of up to second
order, where the problem statement does not diverge from
the conventional ones, this approach may face difficulties on
equations of higher orders. As a temporary way of providing
a PDE-solving algorithm with sufficient conditions, the field
values in additional areas inside the domain are utilized. For
example, if the equation has third order, the algorithm is
provided with values on boundaries and in the center of the
domain.

The equation solution task is reduced the optimization
problem, stated in Eq. 10, where || · ||i and || · ||j are norms
of arbitrary and not necessarily same orders i and j, and λ is
a constant.

(||Lũ(t,x)− f ||i + λ||bũ(t,x)− g||) −→ min
ũ

(10)

Due to numerical limitations, the differential operator L
is substituted by the approximate one L. In a generalized
approach to the PDE solution, the boundary operator b will be
substituted to the approximate operator b. However, as it was
stated earlier, the equation discovery process requires Dirichlet
boundary conditions, the definition of which does not cause
approximation errors. Calculations of partial derivatives for the
operators are done with the finite-difference scheme Eq. 11,
where for example, the first time derivative is considered. ∆t
denotes the time step of the domain grid.

∂ũ(t,x)

∂t
=

ũ(t+∆t,x)− ũ(t−∆t,x)

2 ∗∆t
(11)

In the stated problem the task is the selection of function
ũ(x,x), matching the minimum value of functional on Eq. 10.
For these purposes the parameterized function ũ(t,x,Θ) :
Rk+1 −→ R, where Θ = (θ1, ..., θn params) is the parameter
vector for this specific function type, is chosen. Generally,

the class of parameterized function can be arbitrary. The
optimization problem can be posed as stated in the Eq. 12.

(||Lũ(t,x,Θ)− f ||i + λ||bũ(t,x,Θ)− g||) −→ min
Θ

(12)

In this research, fully-connected artificial neural network is
selected to represent the function ũ(t,x,Θ). The question of
selecting the best architecture of the ANN to represent the
PDE solution is not of interest in this work. The search for
parameter vector Θ is held by the training process of the
neural network. The details of the equation solver algorithms
are presented in the Alg. 2

Data: Encoded equation and boundary conditions,
initial NN model model

Result: Trained neural network model that
approximates the solution

Compute model Sobolev space norm min norm;
for NN in cache do

Train model to repeat NN output;
Apply differential operator to trained model;
Compute Sobolev space norm norm curr if
norm curr < min norm then

model=trained model ;
min norm = norm curr

else
pass

while patience < threshold do
Apply differential operator to trained model;
Compute Sobolev space norm norm ;
if norm oscilates near the same value then

patience = patience+ 1
if norm is not improved in improving patience

steps then
patience = patience+ 1

Gradient descent step for model with respect to
norm;

Algorithm 2: The pseudo-code of an equation solver
algorithm

V. VALIDATION

The algorithm was tested on the synthetic data to evaluate
the effects of the newly introduced PDE solver-based fitness
function evaluation technique. The necessity of using synthetic
data in the experiment is created by the fact, that for the
validation purposes we need to know the true structure of
the equation. With this approach the performance of the
algorithm on the experimental data can be evaluated with the
success rate: fraction of independent launches, that result in
the discovery of correct equations. By the correct results we
denote the equations with correct structure (i.e. set of terms),
and with coefficients, that insignificantly (up to 5%) deviating
form the ground truth. For these purposes, the solution of the
Korteweg-de Vries equation (Eq. 13) added was utilized. The
equation was solved on a grid of 31 × 31 points with the
dimension t representing time and x - space.

ut + 6uux + uxxx = f(x, t) (13)

Following forcing, initial and boundary conditions as shown
in Eq. 14 were applied.

f(x, t) = cos t sinx
u(x, 0) = 0

[uxx + 2ux + u]
∣∣∣
x=0

= 0

[2uxx + ux + 3u]
∣∣∣
x=1

= 0

[5ux + 5u]
∣∣∣
x=1

= 0

(14)

The data for the numerical solution was obtained using the
Wolfram Mathematica 12.3 software to avoid any numerical
errors and shown in Fig. 4.

Fig. 4. Visualization of the Korteweg-de Vries equation solution, used during
the experiments

While, as it was stated earlier, the convergence on noiseless
data was proved to be rather robust, the additional Gaussian
noise (ϵ ∼ N (µ = 0;σ = n ∗ ||u(t)||, n = 0.1, 0.2, ..., 0.9))
was added into the data for more detailed analysis of algorithm
performance. To assess the changes in algorithm behavior, the
success rate, manifesting in the fraction of algorithm launches,
when it converges to the correct equation (for one point on
the Pareto frontier), was utilized. The motivation behind the
selection of this metric was driven by the fact that it is
consistent even for launches with different fitness function
evaluation approaches. The improvements were made only
in the selection operator, so no significant changes in the
coefficient calculation quality were made. For each of the noise
levels, 20 independent algorithm launches were commenced.
The examples took forms of Pareto-frontiers, as presented in
Fig. 6

From the success rate results, presented on the graph Fig. 5,
the interpretation can be made that on high-quality data, the
EA performance with both approaches tends to be similar.

Fig. 5. Dependency of the evolutionary algorithm success rate in response
to the noise in data. In the experiments, for each magnitude factor n the
Gaussian noise with the standard deviation of n ∗ ||u(t)| was added to the
solution of Korteweg-de Vries equation.

Fig. 6. An example of Pareto frontier, obtained from the multiobjective
optimization.

When the algorithm is applied to lesser quality data contain-
ing significant noise, the discrepancy-based method tends to
converge to incorrect structures, driven by high order deriva-
tives approximation errors. The robustness of the solver-based
approach allows it to have a considerably higher operational
threshold, which makes. This quality is vital for the algorithm
applications to real-world problems, where the significant
noise related to the measurement process is unavoidable.

One of the issues linked with the use of the algorithm,
solving partial differential equations to evaluate the quality of
the proposed candidate, is the significant increase in required
computational operations. Previously, to obtain the fitness
function value, a single L2 norm of the matrix had to be
calculated, while with the solver introduction, the algorithm
has to perform additional ANN training procedures during
every EA epoch.

VI. CONCLUSION

This paper proposes a novel candidate solutions quality
evaluation method for the evolutionary algorithm of partial
differential equation discovery. The improvements were aimed

at increasing algorithm applicability to creating data-driven
models for dynamical systems. The objective function is
evaluated as the norm of PDE solution deviations from the
expected input values on some grid in the modeled domain.
The optimization-based method is employed to solve the
differential equation proposed by the EA. In accordance with
the specified differential and boundary operators, which define
the boundary problem, representing the dynamical system, it
can detect the parameters of function - solution of the equation.

The novel approach achieved better performance on artifi-
cially noised synthetic data, indicating that the evolutionary
algorithm can model natural processes and dynamical systems
based on the measurements datasets.

The direction of the future work on the related topic is
guided by the high computational costs of the proposed
approach. Its performance may be refined, and the program
realization may be optimized To increase the viability of
applying the evolutionary algorithm with PDE solver as the
fitness function evaluation tool to practical tasks. Another
promising approach is the application of techniques that reduce
the total number of required PDE solving launches by making
guesses of new candidate qualities compared to the previously
processed ones.

DATA AND CODE AVALIABILITY

The numerical solution data and the Python code that
partially reproduce the experiments are available at the GitHub
repository 1.

ACKNOWLEDGEMENTS

This work was supported by the Analytical Center
for the Government of the Russian Federation (IGK
000000D730321P5Q0002), agreement No. 70-2021-00141.

REFERENCES

[1] Jun He, Tianshi Chen, and Xin Yao, “On the easiest and hardest fitness
functions,” IEEE Transactions on evolutionary computation, vol. 19, no.
2, pp. 295–305, 2014.

[2] Schmidt Michael and Hod Lipson, “Distilling free-form natural laws
from experimental data,” Science, vol. 5923, pp. 81–85, 2019.

[3] H. Cao, L. Kang, Y. Chen, et al., “Evolutionary modeling of systems
of ordinary differential equations with genetic programming,” Genetic
Programming and Evolvable Machines, vol. 1, pp. 309–337, 2000.

[4] Sébastien Gaucel, Maarten Keijzer, Evelyne Lutton, and Alberto
TONDA, “Learning dynamical systems using standard symbolic regres-
sion,” in 17. European Conference EuroGP 2014, Grenade, Spain, Apr.
2014, vol. 8599 of Lecture Notes in Computer Science, p. np, Springer,
Chapitre 3.

[5] H. Schaeffer, R. Caflisch, C. D. Hauck, and S. Osher, “Learning
partial differential equations via data discovery and sparse optimiza-
tion,” Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Science, 2017.

[6] Hayden Schaeffer, “Learning partial differential equations via data
discovery and sparse optimization,” Proc. R. Soc. A, vol. 473, no. 2197,
pp. 20160446, 2017.

[7] Samuel H. Rudy, Alessandro Alla, Steven L. Brunton, and J. Nathan
Kutz, “Data-driven identification of parametric partial differential
equations,” SIAM Journal on Applied Dynamical Systems, vol. 18, no.
2, pp. 643–660, 2019.

[8] Linan Zhang and H. Schaeffer, “On the convergence of the sindy
algorithm,” Multiscale Model. Simul.,, vol. 17(3), pp. 948–972, 2019.

1https://github.com/ITMO-NSS-team/EPDE

[9] M Raissi, P Perdikaris, and GE Karniadakis, “Physics informed deep
learning (part ii): Data-driven discovery of nonlinear partial differential
equations,” arXiv preprint arXiv:1711.10566, 2017.

[10] Zichao Long, Yiping Lu, and Bin Dong, “Pde-net 2.0: Learning pdes
from data with a numeric-symbolic hybrid deep network,” Journal of
Computational Physics, vol. 399, pp. 108925, 2019.

[11] Mikhail Maslyaev, Alexander Hvatov, and Anna V Kalyuzhnaya, “Par-
tial differential equations discovery with epde framework: application for
real and synthetic data,” Journal of Computational Science, p. 101345,
2021.

[12] Hao Xu, Haibin Chang, and Dongxiao Zhang, “Dlga-pde: Discovery of
pdes with incomplete candidate library via combination of deep learning
and genetic algorithm,” Journal of Computational Physics, vol. 418, pp.
109584, 2020.

[13] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis,
“Deepxde: A deep learning library for solving differential equations,”
SIAM Review, vol. 63, no. 1, pp. 208–228, 2021.

[14] Mikhail Maslyaev and Alexander Hvatov, “Multi-objective discovery of
pde systems using evolutionary approach,” in 2021 IEEE Congress on
Evolutionary Computation (CEC), 2021, pp. 596–603.

[15] Ke Li, Kalyanmoy Deb, Qingfu Zhang, and Sam Kwong, “An evolu-
tionary many-objective optimization algorithm based on dominance and
decomposition,” IEEE Transactions on Evolutionary Computation, vol.
19, no. 5, pp. 694–716, 2014.

