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Abstract: This paper describes a generative design methodology for a micro hydrodynamic single-
RBC (red blood cell) trap for applications in microfluidics-based single-cell analysis. One key
challenge in single-cell microfluidic traps is to achieve desired through-slit flowrates to trap cells
under implicit constraints. In this work, the cell-trapping design with validation from experimental
data has been developed by the generative design methodology with an evolutionary algorithm.
L-shaped trapping slits have been generated iteratively for the optimal geometries to trap living-cells
suspended in flow channels. Without using the generative design, the slits have low flow velocities
incapable of trapping single cells. After a search with 30,000 solutions, the optimized geometry was
found to increase the through-slit velocities by 49%. Fabricated and experimentally tested prototypes
have achieved 4 out of 4 trapping efficiency of RBCs. This evolutionary algorithm and trapping
design can be applied to cells of various sizes.

Keywords: microfluidics; cell trap; RBC; evolutionary algorithm; generative design; artificial intelligence

1. Introduction

Microfluidic devices are indispensable for studying behaviors of single living cells,
such as cytological, mechanical, and electrical responses for potential applications ranging
from early disease diagnosis to drug testing. To study single-cell activities, microfluidics
trapping systems are important platforms; several approaches have been reported previ-
ously, such as acoustic [1,2], dielectrophoretic [3,4], hydrodynamic [5–8], magnetic [9,10],
and optical trapping schemes [11,12]. Hydrodynamic trapping of single cells happens
within a microfluidic channel, where the channels’ geometries and flowrates require careful
study and optimization. Hydrodynamic trapping utilizes mechanical barriers or arrays for
the separation of target particles from the main flow. Separated particles are retained within
the hydrodynamic traps for further analyses by employing various principles, such as
vortices-based trapping (centrifugation assisted, cavitation microstreaming, hydrodynamic
tweezers), cross streamed (viscoelastic focusing, inertial migration, dean flow and deforma-
bility selective cell separation), and external controlled approaches (pneumatic valves,
PID controllers, eddy currents, electro-magnetic fields, acoustics) [6]. The advantages of
hydrodynamic processing are the ease to implement the inertial focusing of enhanced
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cell separation and sorting with narrowed sheathed flows. As a disadvantage, the hy-
drodynamic single cell platform may produce stress on cell samples, and is reported to
alter molecular mechanisms, and inhomogeneity issues [13–16]. The geometric design of
hydrodynamic single cell trapping belongs to the category of “wet fluid-structure inter-
action (FSI)”; a standard approach is the topology optimization through gradient-based
methods [17,18].

In this work, we approached the FSI design problem by using the evolutionary al-
gorithm. It allowed us to extend the ‘classical’ statement of the topology optimization
and explore more comprehensive designs with extended variability [19]. In general, the
topology generative design has no a priori assumptions on the form of the initial design, i.e.,
optimization starts ‘from scratch’. The idea of evolutionary generative design allows the
algorithm to extend the possible design from the creation and improvement of the digital
twins of real-world objects [20]. Researchers have also successfully applied evolutionary
algorithms and other AI methods in different areas, including studies for coastal struc-
tures [21], mathematical models [22], architecture [23], and drug designs [24]. However,
the adaptation of this approach to the hydrodynamic cell trappings has specific factors
that should be taken into consideration. As an example, we have developed task-specific
evolutionary operators, validation rules, objective functions, and post-processing proce-
dures in this work. In addition, the parallelization of computations has been implemented
due to the high computational cost of the hydrodynamic simulations. Here, the micro
hydrodynamic traps were designed with a unique feature to trap RBCs (red blood cells)
in channels while keeping it suspended to allow fluidic flows. The trapping chamber was
designed with a specific implementation evolutionary algorithm. The prototype devices
have been fabricated and tested using frog RBCs as the living cells for validations.

2. Materials and Methods
2.1. Single Cell Traps

The goal of this work is to create single-cell traps by an evolutionary-based generative
design. Figure 1a shows the design principle for the single RBC trapping scheme and
Figure 1b is an example for the chamber design with the trapping structure of the zero
trapping chance due to the low through-trap flow. Figure 1c demonstrates the result from
the evolutionary algorithm, which generated the necessary flow obstacles to obtain the
high trapping probability. The COMSOL simulation results are displayed in Figure 1d,
showing the velocity gradient in the final design with inflow velocity of 0.01 m/s and
the no slip boundary condition. Figure 1e shows the flows schematics in the trapping
chamber and Figure 1f presents the experimental results of the prototype system following
the evolutionary algorithm design to trap RBCs.

The properties and constraints of the microfluidic single-RBC traps are targeted to
have 4 erythrocytes trapped within one FOV (field of vision) while keeping the flow streams
around RBCs. This is different to erythrocytes trapped in cavity, pocket, and well-like
structures with little or no fluid flows [8,25,26]. The basic assumptions include: a single
phase Navier–Stokes flow, steady-state, and no-slip boundary condition. The rheological
parameters used in this work include: the kinematic viscosity of 3.3 mm2/s; dynamic
viscosity of 0.0035 kg/ms; and the fluid density of 1060 kg/m3 (blood density). PDMS
(polydimethylsiloxane) was chosen as the material with built-in properties in the COMSOL
Multiphysics library. For all the simulations in COMSOL Multiphysics, the following
built-in meshing parameters were used. We set sequence type as physics-controlled mesh
and element size as finer, respectively.
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Figure 1. The overall device design sequence. Blue arrow indicates the flow direction; (a) the single
RBC trapping principle; (b) an example of the chamber with trapping structure deign with zero
trapping chance due to the low through-trap flow rate; color bar corresponds to the flow velocity
distribution (c) the evolutionary algorithm which generated necessary flow obstacles to obtain high
RBC trapping chances; (d) COMSOL simulation of the velocity gradient in the final geometry of the
trapping chamber (inflow velocity = 0.01 m/s, no slip boundary condition); (e) flow schematics in
the trapping chamber; (f) experimental results of the prototype system following the evolutionary
algorithm design to trap RBCs; green “V”s mark the successfully trapped cells in each slot.

Frog RBCs were chosen as the trapping object based on their good availability and
bigger nucleated RBCs were chosen for good trapping visualizations. To implicitly account
for the number of cells trapped, three physical parameters were calculated for each design.
The CRV and CRL parameters were used as the constraints to avoid the cases where the
cells are destroyed by the flow. The CRV (curvature of rotated vector fields) reflects the
flow curvature level. It takes the cross-section of a channel flow and cuts it into multiple
pieces with probed values for each piece, and then performs a summation of all velocities
from all the pieces of the cross-section as:

CRV =
x

Ω

abs

u2 ∗ ∂v
∂x − v2 ∂u

∂y + uv ∗
(

∂v
∂y −

∂u
∂x

)
(u2 + v2)

3/2

dxdy (1)

where u is the horizontal velocity and v is the vertical velocity. Second, the CRL reflects
rapid changes in the flow channel and calculates the maximum of velocity and velocity
gradient in the designated area. It takes the sum of the maximum values of the y derivative
of u and x derivative of v as:

CRL = max
Ω

(
∂u
∂y

)
+ max

Ω

(
∂v
∂x

)
(2)

Third, TVR is used as an objective function and maximized during the optimization
process. TVR is the flow ratio in trapping slits and those of non-trapping channels to ensure
the cells can be trapped as the objective of topology optimization:

TVR =
∑4

k=1 vk

vPD + vmain
(3)

where vk is flow velocity (m/s) in the trapping slit, k = 1, 2, 3, 4; vPD is the flow velocity in
the pressure dropping channel, and vmain is the flow velocity in the main output channel.

Designs from Figure 2a to Figure 2b has improved efficiency by increasing the number
of trapping slits to 3 with the new L-shape structure where the opening width of the slit
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is close to the width of the cells. Furthermore, the slits were placed at 90-degrees against
the flow direction with an increased height, as shown to allow cell trappings. The flow
simulation results show poor flow gradient to trap cells. Figure 2c shows the L-shape
traps placed in the same direction of the flow to trap cells, while the flow velocities in the
slits are nearly zero, due to the high flow resistance. To further improve the cell trapping
efficiency, a more advanced version of L-shaped traps with geometric alternations were
designed to increase the flow velocity in the slits, as shown in Figure 2d. In the later
experimental sections, the typical length and breadth of the nucleated erythrocytes of frog
were 19.8 ± 1.5 µm and 8.6 ± 0.3 µm, respectively. As such, the slit width was chosen
as 11 µm. Qualitatively, the L-shaped traps possessed the built-in 90-degree microfluidic
obstacle to create weak flows for cells to flow into the trap and remain there. The stagnation-
point flows and Moffatt-type vortices have been studied in the trapping slits as part of the
design considerations.
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cific flow velocity in the trapping slits used in Equation (3). The pixelated zone in Figure 
2g is the optimization domain where the evolutionary algorithm was used by placing pol-
ygons to optimize flow velocities under the constraints of Equations (1)–(3).  

Figure 2h,i are the architecture of the evolutionary algorithm with major components 
and stages, including initial population examples, evolutionary loops and the final solu-
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Figure 2. The design stages of cell traps and the architecture of the evolutionary algorithm. Flow
direction from left to right. Red circles symbolize the RBCs. (a–e) are stages of cell trapping struc-
tures: each L-shape trap traps one cell; red rectangle highlights the design changes of the trapping
slits; (f)—problem statement: velocities v_1 . . . v_4 through slits have near-zero values, and almost
zero flux pass through these slits; thus it is incapable of luring a cell by this configuration. Topol-
ogy optimization is needed (TVR, Equation (2)) to increase the flow velocity in the slits to insure
cell trappings; Red, blue, and green colors indicate the flow (g)—topology optimization domain
(marked pixilated zones); (h,i)—architecture of the evolutionary algorithm with the final design of
the trapping chamber.
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Figure 2e shows the final design for the L-trap with 4 traps within 1 FOV. The top
of the chamber has a 21 µm-wide pressure dropping channel (red arrow in Figure 2f),
which helps to slow down the flow along the traps, while an erythrocyte can pass through
easily. The design also removes the two upstream rectangular trapezoidal shape structures
and becomes the initial design for the topology optimization process. Figure 2f shows
the specific flow velocity in the trapping slits used in Equation (3). The pixelated zone
in Figure 2g is the optimization domain where the evolutionary algorithm was used by
placing polygons to optimize flow velocities under the constraints of Equations (1)–(3).

Figure 2h,i are the architecture of the evolutionary algorithm with major components
and stages, including initial population examples, evolutionary loops and the final solution
which satisfies the objective function and constraints. The optimization pipeline presented
in Figure 2i is organized accordingly. First, the initial population was set in a random way.
Each design in this population was represented as a list of polygons; the values of fitness
for the designs were evaluated using the COMSOL simulator. The evolutionary operators
were used to modify the designs. Next, modified designs were used in the selection stage;
the solution obtained after the last iteration represented the best design.

2.2. Evolutionary Algorithm

The initial trapping slit designs from the previous section have flow velocities of less
than 0.009 m/s (simulated with COMSOL) with zero trapping probability. The generative
design creates obstacles in the chamber to increase the flow velocities in slits. Our design
approach refers to the alternative scheme of the topology optimization—the intelligent
field of generative design [22], by using artificial intelligence (AI) and machine learning
(ML) methods to create a diversity of variants that have adequate values of the objective
function, while satisfying all limitations.

The evolutionary optimization of the cell trapping topology has been implemented
using the concept of genetic algorithms with continuous numerical genotype encoding [27].
The pipeline of the algorithm’s implementation is presented in Figure 2. As can be seen, the
evaluation of the fitness function was based on the COMSOL model. The selection stage was
based on the binary tournament algorithm. The pseudocode of the evolutionary algorithm
is presented in Algorithm 1. It consists in a procedure for generating initial populations,
evolutionary operators, constraint validations, and connectors to the hydrodynamic model.
The software implementation of the algorithm has been done in Python 3.8 and is avail-
able as a part of the GEFEST framework (https://github.com/ITMO-NSS-team/GEFEST;
accessed on 23 December 2021).

The convergence of the evolutionary search for the best topology is presented in
Figure 3, where the convergence of the fitness function was calculated by comparing a
given design solution to the specified aim for the 100 generations (iterations of evolution).
We show that the diversity was successfully preserved even in the late generations of the
algorithm. In addition, the optimization was not converging to local minima and the final
solution was constantly improving without long stagnation.

The genotype of the designs was represented in the vector form. It consisted of N
polygons with Ki ∈ [3, . . . , Nvert] vertices, where i = 1, . . . , N. The objective function was
based on inverted values of the flow ratio. Several custom operators for the mutation,
crossover, and initialization of the initial population were implemented and the competition
selection was used to preserve diversity. There are different mutations: rotation, rescaling
or movement of entire geometric polygons, or single nodes in it. The crossover was
implemented at the polygon level to allow for the combination of promising solutions to
obtain a more effective one.

https://github.com/ITMO-NSS-team/GEFEST
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Algorithm 1: Evolutionary algorithm for cell trap design
input: params = set of hyperparameters for evolutionary algorithm (population size, number of populations, etc)
constraints = set of constraints for cell trap
output: Best found cell trap design
�Generate random initial population
pop← InitPopulation(params.pop_size, constraints)
while not IsFinished(params.num_pop) do
offsprings← Reproduce(pop, constraints)
pop.fitness← Fitness(pop, constraints)
pop← TournamentSelection(offsprings)
return Best(pop)

procedure Reproduce:
input: pop, constraints
output: offsprings
while not Validate(constraints)
modify cell traps designs
offsprings← Crossover (pop)
offsprings←Mutation (pop)
return offsprings

procedure Fitness:
input: pop, constraints
output: fitness values for each individual
fitnesses={}
for ind in pop:
if Validate(individual, constraints)
run sim for cell trap described in genotype
fitnesses[ind]← COMSOL_Sim(ind)
else
fitnesses[ind]← 0
return fitnesses
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Figure 3. The convergence of the fitness function values (the function that is used to estimate how
close a given design solution is to the specified aim) during the evolutionary optimization of cell traps
for the 100 generations (#, iterations of evolution). The boxplots represent the diversity of the solutions
in each population: the centerline of each box represents the median of the fitness distribution in
each population, the boundaries of the box—25 and 75 percentiles of the same distribution, and
the additional lines, represent the minimum and maximal values of fitness. The solution with the
best fitness in all populations is highlighted with the dashed line. It can be seen that the quality of
solutions improved steadily during the optimization. The shade of the boxplots’ color depends on
the number of a generation.
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2.3. Fabrication

PDMS microfluidics chips were fabricated in a clean room by a typical soft lithography
method and were glued to a glass substrate. The photolithography and molding were
made with a negative photoresist SU-8 2025 (25 µm height). We used a Sylgard 186 Silicone
Elastomer Kit for the PDMS slab fabrication.

2.4. Bio-Samples Preparation

Samples of frog blood were purchased from YuanXieShengWu, Shanghai, PRC (LOT:
H13J9Q65425,) in accordance with the Tsinghua University (Graduate School in Shenzhen)
Ethics Committee.

3. Results and Discussion
3.1. Optimal Designed Micfluidic Traps

The trapping geometry was designed in Autocad (CAD) and flow patterns were
simulated in COMSOL Multiphysics. They are redesigned and re-simulated until all key
flow parameters and constraints were satisfied. Two criteria were set: velocities in the slits
to be close to 0.015 m/s, and a TVR value of 1.93 (chosen after analyzing the first 100 of
the simulations as the minimum values). The final trapping chamber design is shown
in Figure 4, where A, B, and C were the flow breaking structures to form main chamber
streams; bodies 1, 2, 3, and 4 were L-shaped elements for capturing a single cell and holding
it during the analyses of single RBC responses to a solution/object/stimuli; I-IX are the
flow streams. IV is the top by-passing collateral flow. II is the local turbulence flow that
creates the inertia moment pushing the cells towards the traps. III and IV are the valve-like
streams that dump excessive pressure and I is the main inflow (large red arrow). VI, VII,
VIII, and IX are weak flows to ensure single cell will flow into the trap and stay there. X is
the main flow that passes the traps and meets collateral flow IV and creates the main flow
that goes into the next chamber.
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Figure 4. The trapping chamber flows schematics of the final design: (A–C)—flow breaking structures
to form main streams; 1, 2, 3, & 4—L-shaped elements for capturing a single cell and holding it during
the analyses of single RBC responses to a solution/object/stimuli; I–IX—flow streams. IV—the top
by-passing collateral flow, II—the local turbulence flow that creates inertia moment pushing the cells
towards the traps; III and IV—valve-like streams which dump excessive pressure; I—main inflow
(red arrow); VI, VII, VIII, IX—weak flows to insure single cell will flow into the trap and stay there;
X—main flow that passes traps and meets collateral flow IV and creates the main flow that goes into
the next chamber.
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To ensure the correctness of the obtained solutions, the geometry-based and flow-
based constraints were involved in the optimization. The geometry-based constraints
include self-intersection, minimal inter-polygon distance, and other simple checks. The
flow-based constraints validate the different parameters of liquid solution in COMSOL. The
value of CRL was calculated directly and with an upper limit CRL < 30,000 (chosen after
analyzing the first 100 of the simulations as the maximum value). Beyond this value, the
flow had multiple turns with sharp angles causing cells to pile up around the pivotal points
to block the passage. The value of CVR was calculated directly and with an upper limit
CVR < 7× 107. The flow constraint 1.22 < TVR < 2 was calculated from the COMSOL liquid
velocity magnitude field U (Equation (3)). The values for the constraints were chosen after
analyzing the first 100 of the simulations as the minimum/maximum values to achieve the
optimal slit through the flow vales of 0.015 m/s (COMSOL integral probe); designs that
violate the constraints were rejected during the application of evolutionary operators.

The additional improvement of the computational performance is achieved using
the parallelization of implemented operators. The probability of mutation and crossover
was selected as 0.6 and 0.4. The size of the population was set as 300 and the maximum
number of generations was defined as 100. Hyper parameters of evolutionary algorithm
are chosen based on the best practices in the field of the geometrical structures design [28].
The through-slit velocities and parameters for the resulting geometries are listed in Table 1.
The initial values of the “empty” (no obstacles) design in Figure 1e of vi, CRL, CVR, and
TVR are obtained during simulations. Lines connecting the vertices at the end of the slits
served as boundary edges.

Table 1. Values of velocities, optimization objectives, and obtained gains for the initial, and optimized
solutions.

Parameter Units Initial Target Values Optimized Gain, %

vl_1 m/s 0.012038 determined 0.02308 92

vl_2 m/s 0.009443 0.01579 67

vl_3 m/s 0.009478 by 0.012701 34

vl_4 m/s 0.009544 0.010092 6

vl_PD m/s 0.005998 TVR ratio 0.012438 107

vl_main m/s 0.027247 0.019577 −28

CVR 1/m 70,769,000 <7 × 107 17,113,000 −76

CRL 1/s 12,717 <30,000 20,615 62

TVR (target) - 1.22 1.22 < TVR < 2 1.93 58

The optimized values of Table 1 were obtained in the same way at the same locations
but after the optimized obstacles were generated by the evolutionary algorithm and placed
before the cell traps. Gain (%) is the percentage increase of vi, CRL, and TVR values
compared with optimal values, where corresponding initial values were set as 100%.

3.2. Experimental Results

Figure 5 shows the fabricated device designed by the evolutionary algorithm success-
fully trapping nucleated RBCs within one FOV (objective ×20 with NA 0.45) made with
camera Opax A3514DU3 (Opax; Berkeley, CA, USA) and Motic MHG-100B microscope
(Motic, Berkeley, CA, USA). Figure 5a–e show the trapping sequence of three living cells.
Figure 5a–c,e,a1–d1 show a single RBC approaching and being trapped. Figure 5e1 has the
trapping results, where all 4 slots were occupied by a single erythrocyte. Green “V”s mark
the successfully trapped cell in each slot. Time elapsed images from Figure 5a to Figure 5e
take 11 s and Figure 5a1 to Figure 5e1 take 5 s.
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Figure 5. Experimental results of the prototype system following the evolutionary algorithm design
to trap RBCs. The RBC cell approaching a trap is highlighted with the red oval. (a–e) Trapping
of three living cells with one empty slot; (a–d) and (a1–d1) A single RBC is approaching the trap;
(e1) the trapping is completed with all 4 slots occupied by erythrocytes. Green “V”s mark the
successfully trapped cells in each slot. Time elapsed images from (a) to (e) take 11 s and it takes 3 s
from (a1) to (e1); photos made with objective ×20 with NA 0.45, camera Opax A3514DU3, and Motic
MHG-100B microscope.

Figure 6 shows the experimental results of the prototype system following the evolu-
tionary algorithm design to trap RBCs with three consecutive flow chambers. Green “V”s
mark the successfully trapped cells.
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Figure 6. Experimental results of the prototype system following the evolutionary algorithm design to
trap RBCs. Three consecutive chambers are designed to trap RBCs. Green “V”s mark the successfully
trapped cells in each slot.

The experiment was conducted under the following parameters: the width of the
chamber inlet of 118 µm for 4 traps, and the height of the channels of 25 µm (less than the
2 × RBC width,) with the height/width ratio of 0.211 (which is within the recommend
domain of PDMS manufacturer’s guidelines). Flow rates from 0.0046 to 621.4 µL/min were
applied to the chamber inlet (max and min of the pump output). Applying this flow rate
range is equivalent to applying a flowrate range of 0.046 µL/min to 6214 µL/min to a chip
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comprised of 10 branch channels. During the experiments, the viability of the cells was
observed to be high enough for the RBCs to squeeze through the slits half their size and
return to their original biconcave shape without turning into any damaged morphology
under the high pressure.

The chamber inflow velocities are from 0.026 µm/s to 3510.6 µm/s (max and min of
the pump output). The evolutionary algorithm parameters achieved for the best optimized
solution are: CRL = 20,615 (62% increase compared to initial zero trapped cells design) in
Figure 2e; CVR = 1.7 × 107 (initial value 7.07 × 107); TVR = 1.93 (initial, zero trapped cells
design = 1.22, goal value = 1.93 fully achieved).

The evolutionary algorithm results applied to microfluidic trap design can be used
for various design goals as well. For example, these results can help researchers to achieve
the required flowrate parameters through the slits/channel designs. The evolutionary
algorithm reduced the time required for microfluidics design and allowed for achieving
desired flows with tight constraints. The setup time for the evolutionary algorithm was
40 human-hours and the computational cost for a 6-core Intel CPU was 60 h (100 gener-
ations). Furthermore, from a bio-physical viewpoint, the proposed method enabled the
investigation and control of the transfer processes by RBCs in a dynamic mode.

4. Conclusions

In this paper, we presented a hydrodynamic trap with a unique feature to trap sin-
gle RBCs in the flow channels by allowing through-slit flows. The single RBC trapping
slits were designed with an evolutionary algorithm for the topology optimizations of the
system. After adequate training, our system achieved desired flow parameters and met
all constraints. Experimentally, we have built microfluidic devices and tested their trap-
ping capabilities using frog RBCs for validations. Experimental results showed 4 out of
4 nucleated RBCs were trapped within one FOV.

We envision this evolutionary algorithm method can be applied to other microfluidics
designs. In the future, the convergence speed of the algorithm can be further improved
with expert-generated initial assumptions. In addition, the deep learning model can be
applied to build the hybrid algorithms that can be used to achieve the better effectiveness
of the whole system [29]. The designed cell-trapping system can be used in the microscopic
studies of single cells in blood plasma flows, such as erythrocytes and lymphocytes. The
automated design approach made it possible to fine-tune existing configurations and
produce entirely new setups for each specific task.

5. Code and Data Availability

The scripts and data for the described implementation of generative design for single
red blood cell traps were available in the open repository https://github.com/ITMO-
NSS-team/rbc-traps-generative-design (accessed on 23 December 2021). The algorithmic
implementation of evolutionary optimization of geometrically-encoded structures were
added to the self-developed GEFEST framework: https://github.com/ITMO-NSS-team/
GEFEST (accessed on 23 December 2021).
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