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Abstract An important benefit of multi-objective search is that it maintains a di-
verse population of candidates, which helps in deceptive problems in particular. Not
all diversity is useful, however: candidates that optimize only one objective while
ignoring others are rarely helpful. A recent solution is to replace the original objec-
tives by their linear combinations, thus focusing the search on the most useful trade-
offs between objectives. To compensate for the loss of diversity, this transformation
is accompanied by a selection mechanism that favors novelty. This paper improves
this approach further by introducing novelty pulsation, i.e. a systematic method to
alternate between novelty selection and local optimization. In the highly deceptive
problem of discovering minimal sorting networks, it finds state-of-the-art solutions
significantly faster than before. In fact, our method so far has established a new
world record for the 20-lines sorting network with 91 comparators. In the real-world
problem of stock trading, it discovers solutions that generalize significantly better
on unseen data. Composite Novelty Pulsation is therefore a promising approach to
solving deceptive real-world problems through multi-objective optimization.

1 Introduction

Multi-objective optimization is most commonly used for discovering a Pareto front
from which solutions that represent useful tradeoffs between objectives can be se-
lected [5, 8, 9, 10, 15]. Evolutionary methods are a natural fit for such problems
because the Pareto front naturally emerges in the population maintained in these
methods. Interestingly, multi-objectivity can also improve evolutionary optimiza-
tion because it encourages populations with more diversity. Even when the focus of
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optimization is to find good solutions along a primary performance metric, it is use-
ful to create secondary dimensions that reward solutions that are different in terms
of structure, size, cost, consistency, etc. Multi-objective optimization then discovers
stepping stones that can be combined to achieve higher fitness along the primary
dimension [26]. The stepping stones are useful in particular in problems where the
fitness landscape is deceptive, i.e. where the optima are surrounded by inferior so-
lutions [20].

However, not all such diversity is helpful. In particular, candidates that optimize
one objective only and ignore the others are less likely to lead to useful tradeoffs,
and they are less likely to escape deception. Prior research demonstrated that it is
beneficial to replace the objectives with their linear combinations, thus focusing the
search in more useful areas of the search space, and make up for the lost diversity
by including a novelty metric in parent selection [31]. This paper improves upon
this approach by introducing the concept of novelty pulsation: the novelty selection
is turned on and off periodically, thereby allowing exploration and exploitation to
leverage each other repeatedly.

This idea is tested in two domains. The first one is the highly deceptive domain of
sorting networks [17] used in the original work on composite novelty selection [31].
Such networks consist of comparators that map any set of numbers represented in
their input lines to a sorted order in their output lines. These networks have to be cor-
rect, i.e. sort all possible cases of input. The goal is to discover networks that are as
small as possible, i.e. have as few comparators organized in as few sequential layers
as possible. While correctness is the primary objective, it is actually not that diffi-
cult to achieve, because it is not deceptive. Minimality, on the other hand, is highly
deceptive and makes the sorting network design an interesting benchmark problem.
The experiments in this paper show that while the original composite novelty selec-
tion and its novelty-pulsation-enhanced version both find state-of-the-art networks
up to 20 input lines, novelty pulsation finds them significantly faster. It also beat
the state of the art for 20-lines network by finding a 91 comparators design, which
broke the previous world record of 92 [32].

The second domain is the highly challenging real-world problem of stock trad-
ing. The goal is to evolve agents that decide whether to buy, hold, or sell particular
stocks over time in order to maximize returns. Compared to original composite nov-
elty method, novelty pulsation finds solutions that generalize significantly better to
unseen data. It therefore forms a promising foundation for solving deceptive real-
world problems through multi-objective optimization.

2 Background and Related Work

Evolutionary methods for optimizing single-objective and multi-objective problems
are reviewed, as well as the idea of using novelty to encourage diversity and the
concept of exploration versus exploitation in optimization methods. The domains
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of minimal sorting networks and automated stock trading are introduced and prior
work in them reviewed.

2.1 Single-Objective Optimization

When the optimization problem has a smooth and non-deceptive search space, evo-
lutionary optimization of a single objective is usually convenient and effective.
However, we are increasingly faced with problems of more than one objective and
with a rugged and deceptive search space. The first approach often is to combine the
objectives into a single composite calculation [8]:

Composite(O1, O2, . . . ,Ok) =
k

∑
i=1

αiO
βi
i (1)

Where the constant hyper-parameters αi and βi determine the relative importance
of each objective in the composition. The composite objective can be parameterized
in two ways:

1. By folding the objective space, and thereby causing a multitude of solutions to
have the same value. Diversity is lost since solutions with different behavior are
considered to be equal.

2. By creating a hierarchy in the objective space, and thereby causing some ob-
jectives to have more impact than many of the other objectives combined. The
search will thus optimize the most important objectives first, which in decep-
tive domains might result in inefficient search or premature convergence to local
optima.

Both of these problems can be avoided by casting the composition explicitly in
terms of multi-objective optimization.

2.2 Multi-Objective Optimization

Multi-objective optimization methods construct a Pareto set of solutions [10], and
therefore eliminate the issues with objective folding and hierarchy noted in Section
2.1. However, not all diversity in the Pareto space is useful. Candidates that optimize
one objective only and ignore the others are less likely to lead to useful tradeoffs,
and are less likely to escape deception.

One potential solution is reference-point based multi-objective methods such as
NSGA-III [9, 10]. They make it possible to harvest the tradeoffs between many
objectives and can therefore be used to select for useful diversity as well, although
they are not as clearly suited for escaping deception.
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Another problem with purely multi-objective search is crowding. In crowding,
objectives that are easier to explore end up with disproportionately dense represen-
tation on the Pareto front. NSGA II addresses this problem by using the concept
of crowding distance [8], and NSGA III improves upon it using reference points
[9, 10]. These methods, while increasing diversity in the fitness space, do not nec-
essarily result in diversity in the behavior space.

An alternative method is to use composite multi-objective axes to focus the
search on the area with most useful tradeoffs [31]. Since the axes are not orthog-
onal, solutions that optimize only one objective will not be on the Pareto front. The
focus effect, i.e. the angle between the objectives, can be tuned by varying the coef-
ficients of the composite.

However, focusing the search in this manner has the inevitable side effect of
reducing diversity. Therefore, it is important that the search method makes use of
whatever diversity exists in the focused space. One way to achieve this goal is to
incorporate a preference for novelty into selection.

2.3 Novelty Search

Novelty search [23, 25] is an increasingly popular paradigm that overcomes decep-
tion by ranking solutions based on how different they are from others. Novelty is
computed in the space of behaviors, i.e., vectors containing semantic information
about how a solution performs during evaluation. However, with a large space of
possible behaviors, novelty search can become increasingly unfocused, spending
most of its resources in regions that will never lead to promising solutions.

Recently, several approaches have been proposed to combine novelty with a more
traditional fitness objective [11, 13, 29, 30] to reorient search towards fitness as it
explores the behavior space. These approaches have helped scale novelty search to
more complex environments, including an array of control [2, 7, 29] and content
generation [19, 21, 22] domains.

Many of these approaches combine a fitness objective with a novelty objective in
some way, for instance as a weighted sum [6], or as different objectives in a multi-
objective search [29]. Another approach is to keep the two kinds of search separate,
and make them interact through time. For instance, it is possible to first create a
diverse pool of solutions using novelty search, presumably overcoming deception
that way, and then find solutions through fitness-based search [18]. A third approach
is to run fitness-based search with a large number of objective functions that span
the space of solutions, and use novelty search to encourage search to utilize all those
functions [7, 28, 30]. A fourth category of approaches is to run novelty search as the
primary mechanism, and use fitness to select among the solutions. For instance, it is
possible to add local competition through fitness to novelty search [22, 23]. Another
version is to accept novel solutions only if they satisfy minimal performance criteria
[11, 24]. Some of these approaches have been generalized using the idea of behavior
domination to discover stepping stones [26, 27].
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In the Composite Novelty method [31], a novelty measure is employed in a fifth
way: to select which individuals to reproduce and which to discard. In this manner, it
is integrated into the genetic algorithm itself, and its role is to make sure the focused
space that the composite multiple objectives define is searched thoroughly.

2.4 Exploration versus Exploitation

Every search algorithm needs to both explore the search space and exploit the known
good solutions in it. Exploration is the process of visiting entirely new regions of a
search space, whilst exploitation is the process of visiting regions within the neigh-
borhood of previously visited points. In order to be successful, a search algorithm
needs to establish a productive synergy between exploration and exploitation [35].

A common problem in evolutionary search is that it gets stuck in local minima,
i.e. in unproductive exploitation. A common solution is to kick-start the search pro-
cess in such cases by temporarily increasing mutation rates. This solution can be
utilized more systematically by making such kick-starts periodic, resulting in meth-
ods such as in delta coding and burst mutation [33, 34].

This paper incorporates the kick-start idea into novelty selection. By turning nov-
elty selection on and off periodically allows local search (i.e. exploitation) and nov-
elty search (i.e. exploration) to leverage each other, leading to faster search and
better generalization. These effects will be demonstrated in the sorting networks
and stock trading domains, respectively.

Fig. 1 A Four-Input Sorting Network. This network takes as its input (left) four numbers, and
produces output (right) where those number are sorted (large to small, top to bottom). Each com-
parator (connection between the lines) swaps the numbers on its two lines if they are not in order,
otherwise it does nothing. This network has three layers and five comparators, and is the minimal
four-input sorting network. Minimal networks are generally not known for large input sizes. Their
design space is deceptive which makes network minimization a challenging optimization problem.

2.5 Sorting Networks

A sorting network of n inputs is a fixed layout of comparison-exchange operations
(comparators) that sorts all inputs of size n (Fig.1) [17]. Since the same layout can
sort any input, it represents an oblivious or data-independent sorting algorithm, that
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is, the layout of comparisons does not depend on the input data. The resulting fixed
communication pattern makes sorting networks desirable in parallel implementa-
tions of sorting, such as those in graphics processing units, multi-processor comput-
ers, and switching networks [1, 16, 31]. Beyond validity, the main goal in

designing sorting networks is to minimize the number of layers, because it deter-
mines how many steps are required in a parallel implementation. A tertiary goal is to
minimize the total number of comparators in the networks. Designing such minimal
sorting networks is a challenging optimization problem that has been the subject
of active research since the 1950s [17]. Although the space of possible networks is
infinite, it is relatively easy to test whether a particular network is correct: If it sorts
all combinations of zeros and ones correctly, it will sort all inputs correctly [17].

Many of the recent advances in sorting network design are due to evolutionary
methods [32]. However, it is still a challenging problem, even for the most powerful
evolutionary methods, because it is highly deceptive: Improving upon a current de-
sign may require temporarily growing the network, or sorting fewer inputs correctly.
Sorting networks are therefore a good domain for testing the power of evolutionary
algorithms.

Fig. 2 Stock Trading Agent. The agent observes the time series of stock prices and makes live
decisions about whether to buy, hold, or sell a particular stock. The signal is noisy and prone to
overfitting; generalization to unseen data is the main challenge in this domain.

2.6 Stock Trading

Stock trading is a natural multi-objective domain where return and risk must be bal-
anced [36, 37]. Candidate solutions, i.e. trading agents, can be represented in several
ways. Rule-based strategies, sequence modeling with neural networks and LSTMs
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(Long Short-Term Memory), and symbolic regression using Genetic Programming
or Grammatical Evolution are common approaches [38, 39]. Frequency of trade,
fundamental versus technical indicators, choice of trading instruments, transaction
costs, and vocabulary of order types are crucial design decisions in building such
agents.

The goal is to extract patterns from historical time-series data on stock prices
and utilize those patterns to make optimal trading decisions, i.e. whether to buy,
hold, or sell particular stocks (Fig.2) [40, 41]. The main challenge is to trade in a
manner that generalizes to previously unseen situations in live trading. The data is
extremely noisy and prone to overfitting, and methods that discover robust decisions
are needed.

3 Methods

In this section, the genetic representation, the single and multi-objective opti-
mization approaches, the composite objective method, the novelty-based selection
method, and the novelty pulsation method are described, using the sorting network
domain as an example. These methods were applied to stock trading in an analogous
manner.

3.1 Representation

In order to apply various evolutionary optimization techniques to the sorting net-
work problem, a general structured representation was developed. Sorting networks
of n lines can be seen as a sequence of two-leg comparators where each leg is con-
nected to a different input line and the first leg is connected to a higher line than the
second:{( f1, s1) ,( f2, s2) ,( f3, s3) , . . . ,( fc, sc)}.

The number of layers can be determined from such a sequence by grouping suc-
cessive comparators together into a layer until the next comparator adds a second
connection to one of the lines in the same layer. With this representation, mutation
and crossover operators amount to adding and removing a comparator, swapping
two comparators, and crossing over the comparator sequences of two parents at a
single point.

Domain-specific techniques such as mathematically designing the prefix layers
[3, 4] or utilizing certain symmetries [32] were not used.
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3.2 Single-Objective Approach

Correctness is part of the definition of a sorting network: Even if a network mishan-
dles only one sample, it will not be useful. The number of layers can be considered
the most important size objective because it determines the efficiency of a parallel
implementation. A hierarchical composite objective can therefore be defined as:

SingleFitness(m, l, c) = 10000 m+100 l + c (2)

Where m, l, and c are the number of mistakes (unsorted samples), number of layers,
and number of comparators, respectively.

In the experiments in this paper, the solutions will be limited to less than one
hundred layers and comparators, and therefore, the fitness will be completely hier-
archical (i.e. there is no folding).

3.3 Multi-Objective Approach

In the multi-objective approach, the same dimensions, i.e. the number of mistakes,
layers, and comparators m, l, c, are used as three separate objectives. They are opti-
mized by the NSGA-II algorithm [8] with selection percentage set to 10%. Indeed,
this approach may discover solutions with just a single layer, or a single comparator,
since they qualify for the Pareto front. Therefore, diversity is increased compared to
the single-objective method, but this diversity is not necessarily helpful.

3.4 Composite Multi-Objective Approach

In order to construct composite axes, each objective is augmented with sensitivity
to the other objectives:

Composite1 (m, l, c) = 10000 m+100 l + c (3)

Composite2 (m, l) = α1m+α2l (4)

Composite3 (m, c) = α3m+α4c (5)

The primary composite objective (Formula 3), which will replace the mistake axis,
is the same hierarchical fitness used in the single-objective approach. It discourages
evolution from constructing correct networks that are extremely large. The second
objective (Formula 4), with α2 = 10, primarily encourages evolution to look for
solutions with a small number of layers. A much smaller cost of mistakes, with
α1 = 1, helps prevent useless single-layer networks from appearing in the Pareto
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front. Similarly, the third objective (Formula 5), with α3 = 1 and α4 = 10, applies
the same principle to the number of comparators.

The values for α1, α2,α3, and α4 were found to work well in this application, but
the approach was found not to be very sensitive to them; A broad range will work
as long as they establish a primacy relationship between the objectives.

It might seem like we are adding several hyper-parameters which need to be
tuned, but we can estimate them in each domain by picking values that push away
trivial or useless solution off the Pareto front.

3.5 Novelty Selection Method

In order to measure how novel the solutions are it is first necessary to characterize
their behavior. While there are many ways to do this, a concise and computationally
efficient approach is to count how many swaps took place on each line in sorting all
possible zero-one combinations during the validity check. Such a characterization
is a vector that has the same size as the problem, making the distance calculations
quite fast. It also represents the true behavior of the network; that is, even if two
networks sort the same input cases correctly, they may do it in different ways, and
the characterization is likely to capture that difference. Given this behavior charac-
terization, novelty of a solution is then measured by the sum of pairwise distances
of its behavior vector to those of all the other individuals in the selection pool:

NoveltyScore(xi) =
n

∑
j=1

d(b(xi) , b(x j)) (6)

The selection method also has another parameter called selection multiplier (e.g.
set to 2 in these experiments), varying between one and the inverse of the elite frac-
tion (e.g. 1/10, i.e. 10%) used in the NSGA-II multi-objective optimization method.
The original selection percentage is multiplied by the selection multiplier to form a
broader selection pool. That pool is sorted according to novelty, and the top fraction
representing the original selection percentage is used for selection. This way, good
solutions that are more novel are included in the pool.

One potential issue is that a cluster of solutions far from the rest may end up
having high novelty scores while only one is good enough to keep. Therefore, after
the top fraction is selected, the rest of the sorted solutions are added to the selection
pool one by one, replacing the solution with the lowest minimum novelty, defined
as:

MinimumNovelty(xi) = Min
≤ j≤n; j 6= i

d(b(xi) , b(x j)) (7)

Note that this method allows tuning novelty selection continuously between two
extremes: by setting it to one, the method reduces to the original multi-objective
method (i.e. only the elite fraction ends up in the final elitist pool), and setting it
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to the inverse of the elite fraction reduces it to pure novelty search (i.e. the whole
population, sorted by novelty, is the selection pool). In practice, low and midrange
values for the multiplier work well, including the value 2 used in these experiments.

3.6 Novelty Pulsation Method

Parent selection is a crucial step in an evolutionary algorithm. In almost all such
algorithms, whatever method is used for selection remains unchanged during the
course of an evolutionary run. However, when a problem is deceptive or prone to
over-fitting, changing the selection method periodically may make the algorithm
more robust. It can be used to alternate the search between exploration and exploita-
tion, and thus find a proper balance between them.

In Composite Novelty Pulsation, novelty selection is switched on and off after
a certain number of generations. As in delta-coding and burst mutation, once good
solutions are found, they are used as a starting point for exploration. Once explo-
ration has generated sufficient diversity, local optimization is performed to find the
best possible versions of these diverse points. These two phases leverage each other,
which results in faster convergence and more reliable solutions.

Composite Novelty Pulsation adds a new hyper-parameter, P, denoting the num-
ber of generations before switching to novelty selection. Preliminary experiments
showed that P = 5 works well in both sorting network and stock trading domains;
however, in principle it is possible to tune this parameter to fit the domain.

4 Experiment

Previous work in the sorting networks domain demonstrated that composite nov-
elty can match the minimal known networks up to 18 input lines with reasonable
computational resources [31, 32]. The goal of the sorting network experiments was
to achieve the same result faster, i.e. with fewer resources. The experiments were
therefore standardized to a single machine (a multi-core desktop).

In the stock market trading domain, the experiments compared generalization by
measuring the correlation between seen and unseen data.

4.1 Experimental Setup

In the sorting networks domain, to compare composite novelty with novelty pulsa-
tion, experiments were run with the following parameters:

• Eleven network sizes, 8 through 18;
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• Ten runs for each configuration (220 runs in total);
• 10% parent selection rate;
• Population size of 1000 for composite novelty selection and 100 for novelty pul-

sation. These settings were found to be appropriate for each method experimen-
tally.

In the trading domain, to compare composite novelty with novelty pulsation, 10
experiments were run with the following parameters:

• 10 runs on five years of historical data;
• Population size of 500;
• 100 generations;
• 10% parent selection rate;
• Performance of the 10 best individuals from each run compared on the subse-

quent year of historical data, withheld from all runs.

Fig. 3 The average runtime needed to converge to the state of the art over different size networks.
Novelty pulsation converges significantly faster at all sizes, demonstrating improved balance of
exploration and exploitation.



12 Hormoz Shahrzad et al.

4.2 Sorting Networks Results

Convergence time of the two methods to minimal solutions for different network
sizes is shown in Fig.3. Novelty pulsation shows an order of magnitude faster con-
vergence across the board. All runs resulted in state-of-the-art sorting networks.

An interesting observation is that sorting networks with an even number of lines
take proportionately less time to find the state-of-the-art solution than those with
odd numbers of lines. This result is likely due to symmetrical characteristics of
even-numbered problems. Some methods [32] exploit this very symmetry in order
to find state-of-the-art solutions, but this domain-specific information was not used
in our implementations. The fact that we have been able to achieve the state-of-
the-art without exploiting domain specific characteristics of the problem is itself a
significant result.

One of the nice properties of Novelty Pulsation Method is the ability to con-
verge with a very small pool size (like only 30 individuals in case of sorting
networks). However, it still took almost two months to break the world record
on the 20-lines network running on a single machine (Fig.6). Interestingly,
even if it takes the same number of generations for the other methods to get
there with a normal pool size of a thousand, those runs will take almost five
years to converge!

4.3 Stock Trading Results

Fig.4 and Fig.5 compare generalization of the composite novelty selection and nov-
elty pulsation methods, respectively. Points in Fig.5 are noticeably closer to a diag-
onal line, which means that better training fitness resulted in better testing fitness,
i.e. higher correlation and better generalization. Numerically, the seen-to-unseen
correlation for the composite novelty method is 0.69, while for composite novelty
pulsation, it is 0.86. In practice, this difference is significant, translating to much
improved profitability in live trading.

5 Discussion and Future Work

The results in both sorting network and stock trading domains support the antici-
pated advantages of the composite novelty pulsation approach. The secondary ob-
jectives diversify the search, composite objectives focus it on most useful areas,
and pulses of novelty selection allow for both accurate optimization and thorough
exploration of those areas. These methods are general and robust: they can be read-
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Fig. 4 Generalization from seen (x) to unseen (y) data with the Composite Novelty method. The
correlation is 0.69, which is enough to trade but could be improved.

Fig. 5 Generalization from seen (x) to unseen (y) data with Composite Novelty Pulsation method.
The correlation is 0.89, which results in significantly improved profitability in live trading.
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ily implemented in standard multi-objective search such as NSGA-II and used in
combination with many other techniques already developed to improve evolution-
ary multi-objective optimization.

The sorting network experiments were designed to demonstrate the improvement
provided by novelty pulsation over the previous state of the art. Indeed, it found
the best known solutions significantly faster. One compelling direction of future
work is to use it to optimize sorting networks systematically, with domain-specific
techniques integrated into the search, and with significantly more computing power,
including distributed evolution [14]. It is likely that given such power, many new
minimal networks can be discovered, for networks with even larger number of input
lines.

The stock trading experiments was designed to demonstrate that the approach
makes a difference in real-world problems. The main challenge in trading is gen-
eralization to unseen data, and indeed in this respect novelty pulsation improved
generalization significantly.

The method can also be applied in many other domains, in particular those that
are deceptive and have natural secondary objectives. For instance, various game
strategies from board to video games can be cast in this form, where winning is
accompanied by different dimensions of the score. Solutions for many design prob-
lems, such as 3D printed objects, need to satisfy a set of functional requirements, but
also maximize strength and minimize material. Effective control of robotic systems
need to accomplish a goal while minimize energy and wear and tear. Thus, many
applications should be amenable to the composite novelty pulsation approach.

Another direction is to extend the method further into discovering effective col-
lections of solutions. For instance, ensembling is a good approach for increasing
the performance of machine learning systems. Usually the ensemble is formed from
solutions with different initialization or training, with no mechanism to ensure that
their differences are useful. In composite novelty pulsation, the Pareto front consists
of a diverse set of solutions that span the area of useful tradeoffs. Such collections
should make for a powerful ensemble, extending the applicability of the approach
further.

6 Conclusion

The composite novelty pulsation method is a promising extension of the compos-
ite novelty approach to deceptive problems. Composite objectives focus the search
on the most useful tradeoffs and allow escaping deceptive areas. Novelty pulsa-
tion leverages the exploration of diversity with local search, finding solutions faster
and finding solutions that generalize better. These principles were demonstrated in
this paper in the highly deceptive problem of minimizing sorting networks and in
the highly noisy domain of stock market trading. Composite novelty pulsation is
a general method that can be combined with other advances in population-based
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search, thus increasing the power and applicability of evolutionary multi-objective
optimization.

Appendix

The graph of the new world record for 20-lines sorting network, which moved the
previous record of 92 comparators also discovered by evolution [31] down to 91:

Fig. 6 The new 20-lines sorting network with 91 comparators, discovered by Novelty Pulsation.
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