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Abstract- We propose a performance enhancement using parallelization of genetic operations 

that takes highly fit schemata (building-block) linkages into account. Previously, we used the 

problem of solving Sudoku puzzles to demonstrate the possibility of shortening processing times 

through the use of many-core processors for genetic computations. To increase accuracy, we 

proposed a genetic operation that takes building-block linkages into account. Here, in an evaluation 

using very difficult problems, we show that the proposed genetic operations are suited to 

fine-grained parallelization; processing performance increased by approximately 30% (four times) 

with fine-grained parallel processing of the proposed mutation and crossover methods on Intel Core 

i5 (NVIDIA GTX5800) compared with non-parallel processing on a CPU. Increasing GPU 

resources will diminish the conflicts with thread usage in coarse-grained parallelization of 

individuals and will enable faster processing. 
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1. INTRODUCTION 

Sudoku pencil puzzles are a type of constraint satisfaction problem. There are several studies that 

have used genetic algorithms (GA) to solve Sudoku puzzles. However, the execution time and 

number of steps leading to the optimum solution for particularly the difficult problem is enormous 

[1]. The presumed cause is that there are many local solutions, and crossover, i.e., the main 

operation of GAs, is more likely to destroy some of the valid puzzle solutions. In many cases, the 

previous studies have tried to address the issue through the use of grammatical evolution [2] or the 

cultural algorithm [3]. Previously, we proposed genetic operations considering the linkage of loci 

and tried to improve the accuracy of the genetic operation [4]. As a result, we found that a solution 

could be arrived at in more than half the number of runs. However, Sudoku solving algorithms like 

the backtracking algorithm [5] can be executed faster than the proposed method. On the other hand, 

research has growing on using multi-core processors and GPUs as a means to speed up the GA 

[6-10]. Began to be popular in the general PC with multi-core processors and GPU, it became 

available relatively cheaply, was considered one of the reasons many examples of research. 

In this study, we investigated the possibility of reducing processing time for genetic 

computations by parallelization of genetic operations that take building-block linkages into account. 

In section 2, we briefly describe the rules of Sudoku puzzles. In section 3, we show how the 

accuracy of Sudoku puzzle solution can be improved by using a genetic operation that takes 

building-block linkages into account. In section 4, we describe the method that parallelizes the 

proposed genetic operation. Section 5 describes a comparative evaluation of the solutions of a 
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difficult Sudoku puzzle executed on a CPU and on a many-core processor. Section 6 concludes this 

paper. 

2. RULES OF SUDOKU 

  We shall explain the rules of Sudoku with the help of Fig. 1. Sudoku puzzles consist of a 9 x 9 

matrix of square cells, some of which already contain a numeral from 1 to 9. A Sudoku puzzle is 

completed by filling in all of the empty cells with numerals 1 to 9, but no row or column and no 3 

x 3 sub-block (the sub-blocks are bound by heavy lines in Fig. 1) may contain more than one of 

any numeral. The arrangement of initially given numerals is called the starting point. The puzzle in 

Fig. 1 contains 24 non-symmetrically placed numbers at the starting point, and the goal is for the 

player to enter the correct number in the other 57 squares. The degree of difficulty varies with the 

number of given numerals and their placement. Basically, fewer numerals at the starting point 

means more combinations among which the solution must be found, so this raises the degree of 

difficulty. Moreover, there are 15 to 20 other factors that have an effect on the difficulty rating 

[11].  

  The above rules are good for basic puzzles, and methods such as back-tracking, which counts up 

all possible combinations in the solution, and the meta-heuristics approach [12] are effective for 

solving such puzzles. There are also certain algorithms that solve such Sudoku puzzles [13-15] 

faster than GAs can. 

  On the other hand, there are many variations of Sudoku. Some puzzles are of a larger size, such 

as 16 x 16 or 25 x 25. Others impose additional constraints, such as not permitting the same 
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numeral to appear more than once in diagonals or in special sets of 9 cells that have the same color, 

etc. In particular, GAs and stochastic search methods are effective at solving 16 x 16 or 25 x 25 

puzzles. 

3. IMPROVING ACCURACY IN SUDOKU USING GENETIC OPERATION THAT 

TAKES LINKAGE INTO ACCOUNT 

3.1 IDENTIFYING BUILDING-BLOCK LINKAGE THROUGH THE CONSTRAINTS 

  GAs are generally useful for solving problems with a wide search range of solutions. The GA 

implicitly manipulates a large number of highly fit schemata (building blocks) [16, 17] by 

mechanism of selection and recombination. References [1-3], for example, defines a 

one-dimensional chromosome that has a total length of 81 integer numbers and consists of linked 

sub-chromosomes for each 3 x 3 sub-block of the puzzle, and applies uniform crossover in which 

the crossover positions are limited to the links between sub-blocks. However, the conventional 

Sudoku applications require a huge number of generations to solve a hard problem with few 

initial placements [1]. The presumed causes are as follows. It is thought that crossover, the main 

operation of GAs, likely destroys building blocks and a proper growth and mixing of good 

building blocks were not achieved. Basically, most GAs employed in practice are unable to learn 

genetic linkage and the linkage learning genetic algorithm (LLGA) [18] was proposed to tackle 

the linkage problem with several specially designed mechanisms. LLGA is capable of learning 

genetic linkage in the evolutionary process, but it takes an extra time for linkage learning. To 

avoid that problem, we defined 9 x 9 two-dimensional arrays as the GA chromosome and devised 
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a genetic operation [4] that takes building-block linkages through the constraints of Sudoku. 

3.2 SETTING INITIAL VALUES 

  The blanks of the puzzle are initially filled with random numbers. The numbers filling each of 

the 3 x 3 sub-blocks do not contain duplicates, i.e., each grid will run through the numbers from 1 

to 9. By performing operations on each sub-block and continuing to meet the above criteria, the 

building blocks in sub-blocks will not be destroyed. 

3.3 FITNESS FUNCTION 

The evaluation value in Equation (1) is the sum of all evaluation values of rows and columns 

with no duplicate numbers. In addition, as indicated in equation (2) and (3), the numbers in each 

row and column are limited to 1-9. Therefore, the highest score of each row or column is 9, and 

hence, the maximum score of the fitness function f(x) becomes 162.  

          (1) 

      (2) 

      (3) 

3.4 CROSSOVER THAT PRESERVE BUILDING BLOCKS 

The crossover operations emphasize averting destruction of building-blocks over creating 

diversity in the search process. When two child individuals are generated from two parents, scores 

are obtained for each of the three rows that constitute the sub-blocks of the parents, and a child 

inherits the ones with the highest scores. Then the columns are compared in the same way and the 
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other child inherits the ones with the highest scores. 

An example of crossover is shown in Fig. 2. In this figure, we assumed that the highest score 

of each row or column is 9. Therefore, the highest score of each row or column in sub-blocks 

becomes 27. Child 1 inherits the row information from parent 1, parent 2, and parent 1 in order 

from top to bottom. Child 2 inherits the column information from parent 1, parent 2, and parent 2 

in order from left to right. 

3.5 MUTATION 

  An example of mutation using the upper left sub-block of the puzzle is shown in Fig. 3. The 

numbers displayed in gray are given in the starting point. In this example, the starting point of the 

sub-block includes the three given numbers {4, 5, 8}. Therefore, two numbers are selected 

randomly from the set {1, 2, 3, 6, 7, 9}, which excludes the three given numbers. The figure 

shows an example of swapping in which the two numerals 6 and 7 are selected and swapped. 

Mutations are performed for each sub-block. 

3.6 IMPROVED LOCAL SEARCH 

  We used the multiple offspring sampling (MOS) [19] method to generate the child individual. 

That is, we used a simple local search function in which multiple child candidates are generated 

when mutation occurs and the candidate that has the highest score is selected as the child. 

4. PARALLELIZATION OF GENETIC OPERATION  

There are various methods of parallelizing the GA on many-core processors [6-10]. In 
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particular, coarse-grained parallelization of individuals and has been found to be successful at 

speeding up GAs for Sudoku [10]. We also tried to implement parallel operations considering the 

linkage of genetic loci.  

4.1 PARALLEL MUTATION 

As shown in Fig. 4, to increase the parallel processing speed of mutation, nine threads were 

allocated to the processing of one individual. Two numbers were randomly chosen within a 

sub-block, and the swapping of the two within the nine region blocks was processed in parallel. 

4.2 PARALLEL CROSSOVER 

 Crossover consists of six comparisons and six inheritance operations, as described in Section 

3.1.4. As Fig. 5 shows, 3-parallel processing is done by performing the same thread row-wise and 

column-wise. Parallelization in one block thus includes the calculation of the evaluation value, 

comparison, and inheritance of the child individuals. 

4.3 PARALLEL EVALUATION CALCULATION 

The evaluation is done in the same thread as the genetic operations. As Fig. 6 shows, Sudoku 

puzzles are 9 x 9 matrixes, so the parallelization for this calculation is 9-parallel.  

5. EVALUATION 

5.1 EXPERIMENTAL METHOD  

For the puzzles used to investigate the effectiveness of the genetic operations proposed in [4], we 

selected two puzzles from each level of difficulty in the puzzle set from a book [20]: puzzles 1 and 
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11 from the easy level, 29 and 27 from the intermediate level, and 77 and 106 from the difficult 

level, for a total of six puzzles. We also used the particularly super difficult Sudoku puzzles 

introduced in reference [21] for the parallel processing with the Intel Core i5 and NVIDIA GTX580. 

An example of the puzzles used in the experiment is shown in Fig. 7 and Fig. 8 respectively. We 

used tournament selection and the experimental parameters [4] are described in Table 1.  

5.2 EXPERIMENTAL ACCURACY  

  The relation between the number of givens in the starting point and the number of generations 

required to reach the optimum solution is shown in Fig. 9. For the three cases in which only 

mutation is applied (a kind of random search), when mutation and the proposed crossover method 

are applied (mut+cross), and when the local search improvement measure is applied in addition to 

mutation and crossover (mut+cross+LS), the tests were run 100 times and the averages of the 

results were compared. The termination point for the search was 100,000 generations. If a 

solution was not obtained before 100,000 generations, the result was displayed as 100,000 

generations. When the search is terminated at 100,000 generations, the proportion of obtaining an 

optimum solution for a difficult puzzle was clearly improved by adding the proposed crossover 

technique to the mutation, and improved even further by adding the local search function. The 

mean number of generations until a solution is obtained is also reduced. 

On the other hand, Fig. 10 shows the relation of the average number of generations and 

dispersion. For puzzles that have the same number of initial givens, there is a dependence on the 

locations of the givens, and a large variance is seen in the mean number of generations needed to 
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obtain the optimum solution. Furthermore, for difficult puzzles that provide few initial givens, 

there were cases in which a solution was not obtained even when the search termination point was 

set to 100,000 generations. The reason for that result is considered to be that the search scope for 

the solution to a difficult puzzle is large and there exist many high-scored local solutions that are 

far from the optimum solution. Another possibility is that there are puzzles for which the search 

scope is too broad and there is a dependence on the initial values. 

5.3 EXPERIMENTS ON INTEL CORE i5 AND OpenMP 

5.3.1 Specifications of computer  

  Table 2 lists the specifications of the PC used in these experiments.  

5.3.2 Results 

Table 3 shows the relationship between the number of givens in the starting point and the 

execution time to reach the optimal solution. On the other hand, Figure 11 shows the relationship 

between the number of givens in the starting point and the execution time required to search the 

10,000 generations. Both of the case, the tests were run 50 times and the averages of the results 

were compared. 

From Table 3 and Fig. 11, we can see that the parallelized crossover was slower than 

no-parallelized crossover, whereas the parallelized evaluation calculation and mutation were 

faster. The mutation parallelization was more effective when there were more initial placements. 

5.4 EXPERIMENTS ON GTX580 AND CUDA 

5.4.1 Specifications of computer 
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  The parameters for the genetic algorithm were the same as those of the previous experiment, 

with the level of difficulty set at Super Difficult 3 [21]. Table 4 lists the specifications of the 

machine used for the experiment. 

5.4.2 Results 

  Table 5 shows the fine-grained parallel processing results. Processing time equals the average 

generation number required to obtain the answer divided by the execution time (sec). 

In addition, the degree of increase in processing performance is a value relative to the 

execution without parallel processing of individuals on a CPU. 

5.5 DISCUSSION 

  In the accuracy experiments, the proposed method finds the optimum solution within 20,000 

generations more than half of the time and had significantly improved accuracy compared with 

the conventional method that took 100,000 generations to solve the puzzle. However, the 

proposed method had a high initial value dependence and great variation in the number of 

generations needed to reach the optimum solution. In the performance experiments, 

parallelization of the evaluation calculation and the mutation led to a speed-up from 20 to 30% on 

the Intel Core i5 and approximately four times on the NVIDIA GTX5800. This is attributed to 

that each operation takes up a small ratio in the overall program and that creating threads and 

communication between threads costs too much. Another reason is that the performance 

assessment was done on an individual without parallel processing. We already implemented 

coarse-grained parallel genetic computing on the NVIDIA GTX 460, and showed that execution 
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acceleration factors of from 10 to 25 relative to execution of a C program on a CPU are attained 

[10]. The proposed method involves parallelization of the genetic operation, and it can be used in 

conjunction with parallelization of individuals. Consequently, the parallelization would multiply 

in their effect. 

6. CONCLUSION  

Parallelization of genetic operations based on genetic operations that consider effective 

building blocks can speed up Sudoku calculations. The parallelization described here resulted in a 

constant speedup of approximately 30% on an Intel Core i5 and four times on an NVIDIA 

GTX5800, compared with execution without parallel processing on a CPU. The parallelization of 

genetic operations would work even better in conjunction with parallelization of individuals since 

parallelization of genetic operations does not compete with parallelization of individuals. 
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Fig.1 Example Sudoku puzzle. 

 

Fig.2 Example of crossover considered preserve building blocks 

Fig.3 Example of mutation. Two numbers inside the sub block are 

selected randomly if the numbers are free to change puzzles. 
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Fig.5 Parallelization of crossover 

Fig.6 Parallelization of Evaluation Calculation 

 

Fig.4 Parallelization of mutation 
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Fig.7 The puzzles used to investigate the effectiveness of the proposed genetic operations. 
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Fig.9 Relationship between number of numerals placed at the start (givens) 

and the average of each generation 

 

Fig.8 The puzzles used for the particularly super difficult Sudoku puzzles. 
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Fig.10 The difficulty order of tested Sudoku. The minimum and maximum 

generations needed to solve each Sudoku from 100 test runs as a function of 

generations needed. 

 

Fig.11 Relationship between givens and the execution time for 

10,000 generations 
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1) Execution of the original method (not parallelized). 
2) Execution of parallel crossover. 
3) Execution of parallel evaluation calculation. 
4) Execution of parallel mutation. 
5) Execution of parallel evaluation calculation and mutation. 

Table 2 Intel Core i5 execution environment 

 

Table 3 Execution time to reach the optimal 

solution 

 

Table 1 The experimental parameters of genetic operations 
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1) No parallel processing of individuals (CPU). 
2) No parallel processing of individuals (GPU). 
3) Parallel processing of crossovers (GPU). 
4) Parallel processing of mutations and crossovers (GPU). 

Table 5 Comparison of processing times in fine-grained parallel processing 

 

Table 4 GTX580 execution environment 

 


