
 1

Parallelization of Genetic Operations
 that Takes Building-Block Linkage into Account

Yuji Sato*, Hazuki Inoue*, Mikiko Sato+

*Graduate School of Computer and Information Sciences, Hosei University,

3-7-2 Kajino-cho, Koganei-shi, Tokyo, 184-8584, Japan

Tel:+81-42-387-4533, Fax:+81-42-387-4560, E-mail: yuji@k.hosei.ac.jp

+The Graduate School of Engineering, Tokyo University of Agriculture and Technology,

2-24-16 Naka-cho, Koganei-shi, Tokyo, 184-8588, Japan

Tel:+81-42-388-7139, Fax:+81-42-388-7139, E-mail: mikiko@namikilab.tuat.ac.jp

 2

Abstract- We propose a performance enhancement using parallelization of genetic operations

that takes highly fit schemata (building-block) linkages into account. Previously, we used the

problem of solving Sudoku puzzles to demonstrate the possibility of shortening processing times

through the use of many-core processors for genetic computations. To increase accuracy, we

proposed a genetic operation that takes building-block linkages into account. Here, in an evaluation

using very difficult problems, we show that the proposed genetic operations are suited to

fine-grained parallelization; processing performance increased by approximately 30% (four times)

with fine-grained parallel processing of the proposed mutation and crossover methods on Intel Core

i5 (NVIDIA GTX5800) compared with non-parallel processing on a CPU. Increasing GPU

resources will diminish the conflicts with thread usage in coarse-grained parallelization of

individuals and will enable faster processing.

Key Words - Genetic Algorithms, Linkage, Parallelization, Sudoku

 3

1. INTRODUCTION

Sudoku pencil puzzles are a type of constraint satisfaction problem. There are several studies that

have used genetic algorithms (GA) to solve Sudoku puzzles. However, the execution time and

number of steps leading to the optimum solution for particularly the difficult problem is enormous

[1]. The presumed cause is that there are many local solutions, and crossover, i.e., the main

operation of GAs, is more likely to destroy some of the valid puzzle solutions. In many cases, the

previous studies have tried to address the issue through the use of grammatical evolution [2] or the

cultural algorithm [3]. Previously, we proposed genetic operations considering the linkage of loci

and tried to improve the accuracy of the genetic operation [4]. As a result, we found that a solution

could be arrived at in more than half the number of runs. However, Sudoku solving algorithms like

the backtracking algorithm [5] can be executed faster than the proposed method. On the other hand,

research has growing on using multi-core processors and GPUs as a means to speed up the GA

[6-10]. Began to be popular in the general PC with multi-core processors and GPU, it became

available relatively cheaply, was considered one of the reasons many examples of research.

In this study, we investigated the possibility of reducing processing time for genetic

computations by parallelization of genetic operations that take building-block linkages into account.

In section 2, we briefly describe the rules of Sudoku puzzles. In section 3, we show how the

accuracy of Sudoku puzzle solution can be improved by using a genetic operation that takes

building-block linkages into account. In section 4, we describe the method that parallelizes the

proposed genetic operation. Section 5 describes a comparative evaluation of the solutions of a

 4

difficult Sudoku puzzle executed on a CPU and on a many-core processor. Section 6 concludes this

paper.

2. RULES OF SUDOKU

 We shall explain the rules of Sudoku with the help of Fig. 1. Sudoku puzzles consist of a 9 x 9

matrix of square cells, some of which already contain a numeral from 1 to 9. A Sudoku puzzle is

completed by filling in all of the empty cells with numerals 1 to 9, but no row or column and no 3

x 3 sub-block (the sub-blocks are bound by heavy lines in Fig. 1) may contain more than one of

any numeral. The arrangement of initially given numerals is called the starting point. The puzzle in

Fig. 1 contains 24 non-symmetrically placed numbers at the starting point, and the goal is for the

player to enter the correct number in the other 57 squares. The degree of difficulty varies with the

number of given numerals and their placement. Basically, fewer numerals at the starting point

means more combinations among which the solution must be found, so this raises the degree of

difficulty. Moreover, there are 15 to 20 other factors that have an effect on the difficulty rating

[11].

 The above rules are good for basic puzzles, and methods such as back-tracking, which counts up

all possible combinations in the solution, and the meta-heuristics approach [12] are effective for

solving such puzzles. There are also certain algorithms that solve such Sudoku puzzles [13-15]

faster than GAs can.

 On the other hand, there are many variations of Sudoku. Some puzzles are of a larger size, such

as 16 x 16 or 25 x 25. Others impose additional constraints, such as not permitting the same

 5

numeral to appear more than once in diagonals or in special sets of 9 cells that have the same color,

etc. In particular, GAs and stochastic search methods are effective at solving 16 x 16 or 25 x 25

puzzles.

3. IMPROVING ACCURACY IN SUDOKU USING GENETIC OPERATION THAT

TAKES LINKAGE INTO ACCOUNT

3.1 IDENTIFYING BUILDING-BLOCK LINKAGE THROUGH THE CONSTRAINTS

 GAs are generally useful for solving problems with a wide search range of solutions. The GA

implicitly manipulates a large number of highly fit schemata (building blocks) [16, 17] by

mechanism of selection and recombination. References [1-3], for example, defines a

one-dimensional chromosome that has a total length of 81 integer numbers and consists of linked

sub-chromosomes for each 3 x 3 sub-block of the puzzle, and applies uniform crossover in which

the crossover positions are limited to the links between sub-blocks. However, the conventional

Sudoku applications require a huge number of generations to solve a hard problem with few

initial placements [1]. The presumed causes are as follows. It is thought that crossover, the main

operation of GAs, likely destroys building blocks and a proper growth and mixing of good

building blocks were not achieved. Basically, most GAs employed in practice are unable to learn

genetic linkage and the linkage learning genetic algorithm (LLGA) [18] was proposed to tackle

the linkage problem with several specially designed mechanisms. LLGA is capable of learning

genetic linkage in the evolutionary process, but it takes an extra time for linkage learning. To

avoid that problem, we defined 9 x 9 two-dimensional arrays as the GA chromosome and devised

 6

a genetic operation [4] that takes building-block linkages through the constraints of Sudoku.

3.2 SETTING INITIAL VALUES

 The blanks of the puzzle are initially filled with random numbers. The numbers filling each of

the 3 x 3 sub-blocks do not contain duplicates, i.e., each grid will run through the numbers from 1

to 9. By performing operations on each sub-block and continuing to meet the above criteria, the

building blocks in sub-blocks will not be destroyed.

3.3 FITNESS FUNCTION

The evaluation value in Equation (1) is the sum of all evaluation values of rows and columns

with no duplicate numbers. In addition, as indicated in equation (2) and (3), the numbers in each

row and column are limited to 1-9. Therefore, the highest score of each row or column is 9, and

hence, the maximum score of the fitness function f(x) becomes 162.

 (1)

 (2)

 (3)

3.4 CROSSOVER THAT PRESERVE BUILDING BLOCKS

The crossover operations emphasize averting destruction of building-blocks over creating

diversity in the search process. When two child individuals are generated from two parents, scores

are obtained for each of the three rows that constitute the sub-blocks of the parents, and a child

inherits the ones with the highest scores. Then the columns are compared in the same way and the

 7

other child inherits the ones with the highest scores.

An example of crossover is shown in Fig. 2. In this figure, we assumed that the highest score

of each row or column is 9. Therefore, the highest score of each row or column in sub-blocks

becomes 27. Child 1 inherits the row information from parent 1, parent 2, and parent 1 in order

from top to bottom. Child 2 inherits the column information from parent 1, parent 2, and parent 2

in order from left to right.

3.5 MUTATION

 An example of mutation using the upper left sub-block of the puzzle is shown in Fig. 3. The

numbers displayed in gray are given in the starting point. In this example, the starting point of the

sub-block includes the three given numbers {4, 5, 8}. Therefore, two numbers are selected

randomly from the set {1, 2, 3, 6, 7, 9}, which excludes the three given numbers. The figure

shows an example of swapping in which the two numerals 6 and 7 are selected and swapped.

Mutations are performed for each sub-block.

3.6 IMPROVED LOCAL SEARCH

 We used the multiple offspring sampling (MOS) [19] method to generate the child individual.

That is, we used a simple local search function in which multiple child candidates are generated

when mutation occurs and the candidate that has the highest score is selected as the child.

4. PARALLELIZATION OF GENETIC OPERATION

There are various methods of parallelizing the GA on many-core processors [6-10]. In

 8

particular, coarse-grained parallelization of individuals and has been found to be successful at

speeding up GAs for Sudoku [10]. We also tried to implement parallel operations considering the

linkage of genetic loci.

4.1 PARALLEL MUTATION

As shown in Fig. 4, to increase the parallel processing speed of mutation, nine threads were

allocated to the processing of one individual. Two numbers were randomly chosen within a

sub-block, and the swapping of the two within the nine region blocks was processed in parallel.

4.2 PARALLEL CROSSOVER

 Crossover consists of six comparisons and six inheritance operations, as described in Section

3.1.4. As Fig. 5 shows, 3-parallel processing is done by performing the same thread row-wise and

column-wise. Parallelization in one block thus includes the calculation of the evaluation value,

comparison, and inheritance of the child individuals.

4.3 PARALLEL EVALUATION CALCULATION

The evaluation is done in the same thread as the genetic operations. As Fig. 6 shows, Sudoku

puzzles are 9 x 9 matrixes, so the parallelization for this calculation is 9-parallel.

5. EVALUATION

5.1 EXPERIMENTAL METHOD

For the puzzles used to investigate the effectiveness of the genetic operations proposed in [4], we

selected two puzzles from each level of difficulty in the puzzle set from a book [20]: puzzles 1 and

 9

11 from the easy level, 29 and 27 from the intermediate level, and 77 and 106 from the difficult

level, for a total of six puzzles. We also used the particularly super difficult Sudoku puzzles

introduced in reference [21] for the parallel processing with the Intel Core i5 and NVIDIA GTX580.

An example of the puzzles used in the experiment is shown in Fig. 7 and Fig. 8 respectively. We

used tournament selection and the experimental parameters [4] are described in Table 1.

5.2 EXPERIMENTAL ACCURACY

 The relation between the number of givens in the starting point and the number of generations

required to reach the optimum solution is shown in Fig. 9. For the three cases in which only

mutation is applied (a kind of random search), when mutation and the proposed crossover method

are applied (mut+cross), and when the local search improvement measure is applied in addition to

mutation and crossover (mut+cross+LS), the tests were run 100 times and the averages of the

results were compared. The termination point for the search was 100,000 generations. If a

solution was not obtained before 100,000 generations, the result was displayed as 100,000

generations. When the search is terminated at 100,000 generations, the proportion of obtaining an

optimum solution for a difficult puzzle was clearly improved by adding the proposed crossover

technique to the mutation, and improved even further by adding the local search function. The

mean number of generations until a solution is obtained is also reduced.

On the other hand, Fig. 10 shows the relation of the average number of generations and

dispersion. For puzzles that have the same number of initial givens, there is a dependence on the

locations of the givens, and a large variance is seen in the mean number of generations needed to

 10

obtain the optimum solution. Furthermore, for difficult puzzles that provide few initial givens,

there were cases in which a solution was not obtained even when the search termination point was

set to 100,000 generations. The reason for that result is considered to be that the search scope for

the solution to a difficult puzzle is large and there exist many high-scored local solutions that are

far from the optimum solution. Another possibility is that there are puzzles for which the search

scope is too broad and there is a dependence on the initial values.

5.3 EXPERIMENTS ON INTEL CORE i5 AND OpenMP

5.3.1 Specifications of computer

 Table 2 lists the specifications of the PC used in these experiments.

5.3.2 Results

Table 3 shows the relationship between the number of givens in the starting point and the

execution time to reach the optimal solution. On the other hand, Figure 11 shows the relationship

between the number of givens in the starting point and the execution time required to search the

10,000 generations. Both of the case, the tests were run 50 times and the averages of the results

were compared.

From Table 3 and Fig. 11, we can see that the parallelized crossover was slower than

no-parallelized crossover, whereas the parallelized evaluation calculation and mutation were

faster. The mutation parallelization was more effective when there were more initial placements.

5.4 EXPERIMENTS ON GTX580 AND CUDA

5.4.1 Specifications of computer

 11

 The parameters for the genetic algorithm were the same as those of the previous experiment,

with the level of difficulty set at Super Difficult 3 [21]. Table 4 lists the specifications of the

machine used for the experiment.

5.4.2 Results

 Table 5 shows the fine-grained parallel processing results. Processing time equals the average

generation number required to obtain the answer divided by the execution time (sec).

In addition, the degree of increase in processing performance is a value relative to the

execution without parallel processing of individuals on a CPU.

5.5 DISCUSSION

 In the accuracy experiments, the proposed method finds the optimum solution within 20,000

generations more than half of the time and had significantly improved accuracy compared with

the conventional method that took 100,000 generations to solve the puzzle. However, the

proposed method had a high initial value dependence and great variation in the number of

generations needed to reach the optimum solution. In the performance experiments,

parallelization of the evaluation calculation and the mutation led to a speed-up from 20 to 30% on

the Intel Core i5 and approximately four times on the NVIDIA GTX5800. This is attributed to

that each operation takes up a small ratio in the overall program and that creating threads and

communication between threads costs too much. Another reason is that the performance

assessment was done on an individual without parallel processing. We already implemented

coarse-grained parallel genetic computing on the NVIDIA GTX 460, and showed that execution

 12

acceleration factors of from 10 to 25 relative to execution of a C program on a CPU are attained

[10]. The proposed method involves parallelization of the genetic operation, and it can be used in

conjunction with parallelization of individuals. Consequently, the parallelization would multiply

in their effect.

6. CONCLUSION

Parallelization of genetic operations based on genetic operations that consider effective

building blocks can speed up Sudoku calculations. The parallelization described here resulted in a

constant speedup of approximately 30% on an Intel Core i5 and four times on an NVIDIA

GTX5800, compared with execution without parallel processing on a CPU. The parallelization of

genetic operations would work even better in conjunction with parallelization of individuals since

parallelization of genetic operations does not compete with parallelization of individuals.

ACKNOWLEDGMENTS

This research is partly supported by the collaborative research program 2012, Information

Initiative Center, Hokkaido University, and a grant from the Institute for Sustainability Research

and Education of Hosei University 2012.

REFERENCES

[1] Mantere, T., Koljonen, J., Solving and Rating Sudoku Puzzles with Genetic Algorithms, In

Proceedings of the 12th Finnish Articial Conference STeP 2006, Espoo, Finland, October 26-27,

2006, pp.86–92.

 13

[2] Nicolau, M., Ryan, C., Genetic Operators and Sequencing in the GAuGE System, IEEE

Congress on Evolutionary Computation 2006 (CEC 2006), Vancouver, BC, July 16-21, 2006, pp.

1561–1568.

[3] Mantere, T., Koljnen, J., Solving and Analyzing Sudokus with Cultural Algorithms, IEEE

Congress on Evolutionary Computation 2008 (CEC 2008), Hong Kong, China, 1-6 June, 2008,

pp.4053–4060.

[4] Sato, Y., Inoue, H., Solving Sudoku with Genetic Operations that Preserve Building Blocks,

IEEE Symposium on Computational Intelligence and Games (CIG) 2010, Copenhagen, Denmark,

Aug. 18-21, 2010, pp.23–29.

[5] Wikipedia, Backtracking, http://en.wikipedia.org/wiki/Backtracking (cited 1.11.2011).

[6] Byun, J.H., Datta, K., Ravindran, A., Mukherjee, A., Joshi, B., Performance analysis of

coarse-grained parallel genetic algorithms on the multi-core sun UltraSPARC T1, IEEE

Southeastcon, SOUTHEASTCON’09, March 5-8, 2009, pp. 301–306.

[7] Serrano, R., Tapia, J., Montiel, O., Sep’ulveda, R., Melin, P., High performance parallel

programming of a GA using multi-core technology, Soft Computing for Hybrid Intelligent

Systems, Studies in Coputational Intelligence, Vol. 154, Springer Berlin Heidelberg, 2008, pp.

307–314.

[8] Tsutsui, S., Fujimoto, N., Solving quadratic assignment problems by genetic algorithms with

GPU computation: a case study, In Proceedings of the 11th Annual Conference Companion on

Genetic and Evolutionary Computation Conference: Late Breaking Papers (GECCO ’09),

 14

Montreal, Canada, July8-12, 2009, pp. 2523–2530.

[9] Munawar, A., Wahib, M., Munetomo, M., Akama, K., Theoretical and Empirical Analysis of a

GPU Based Parallel Bayesian Optimization Algorithm, In Proceedings of the International

Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT '09),

IEEE, Hiroshima, Japan, December 8-11, 2009, pp. 457–462.

[10] Sato, Y., Hasegawa, N., Sato, M., Acceleration of Genetic Algorithms for Sudoku Solution

on Many-core Processors. In Proceedings of the 2011 ACM/SIGEVO GECCO Workshop on

Computational Intelligence on Consumer Games and Graphics Hardware CIGPU-2011, Dublin,

Ireland, July 12-16, 2011, pp. 407–414.

[11] Wikipedia, Sudoku. http://en.wikipedia.org/wiki/Sudoku (cited 8.3.2010).

[12] Lewis, R., Metaheuristics can Solve Sudoku Puzzles, Journal of Heuristics, Vol. 13 (4),

August, 2007, pp. 387–401.

[13] Simonis, H., Sudoku as a constrain problem, In Proceedings of 4th International Workshop

Modeling and Reformulating Constraint Satisfaction Problem, 2005, pp. 13–27.

[14] Lynce, I., Ouaknine, J., Sudoku as a SAT problem, In 9th International Symposium on

Artificial Intelligence and Mathematics (AIMATH’06), Fort Lauderdale, January 4-6, 2006.

[15] Moon, T.K., Gunther, J.H., Multiple constrain satisfaction by belief propagation: An

example using Sudoku, In 2006 IEEE Mountain Workshop on Adaptive and Learning Systems,

July 24-26, 2006, pp. 122–126.

[16] Goldberg, D. E., Genetic algorithms in search optimization and machine learning (1st ed.),

 15

Boston, MA, USA, Addison-Wesley Longman Publishing Co., Inc., 1989.

[17] Goldberg, D. E., Sastry, K., A practical schema theorem for genetic algorithm design and

tuning, In Proceedings of the 2001 Genetic and Evolutionary Computation Conference, Morgan

Kaufmann Publishers, 2001, pp. 328–335.

[18] Harik, G. R., Goldberg, D. E., Learning linkage, In Foundations of Genetic Algorithms 4,

1996, pp. 247–262.

[19] LaTorre, A., Peña, J. M., Robles, V., De Miguel, P., Supercomputer Scheduling with

Combined Evolutionary Techniques, In Metaheuristics for Scheduling in Distributed Computing

Environments, Studies in Computational Intelligence, Vol. 146, Springer Berlin Heidelberg, 2008,

pp. 95–120.

[20] Number Place Plaza (eds.), Number Place Best Selection 110, vol. 15, ISBN-13:

978-4774752112, Cosmic mook, December, 2008.

[21] Super difficult Sudoku’s.,

http://lipas.uwasa.fi/~timan/sudoku/EA_ht_2008.pdf#search='CT20A6300%20Alternative%20Pr

oject%20work%202008' (cited 8.3.2010).

 16

Fig.1 Example Sudoku puzzle.

Fig.2 Example of crossover considered preserve building blocks

Fig.3 Example of mutation. Two numbers inside the sub block are

selected randomly if the numbers are free to change puzzles.

 17

Fig.5 Parallelization of crossover

Fig.6 Parallelization of Evaluation Calculation

Fig.4 Parallelization of mutation

 18

Fig.7 The puzzles used to investigate the effectiveness of the proposed genetic operations.

 19

Fig.9 Relationship between number of numerals placed at the start (givens)

and the average of each generation

Fig.8 The puzzles used for the particularly super difficult Sudoku puzzles.

 20

Fig.10 The difficulty order of tested Sudoku. The minimum and maximum

generations needed to solve each Sudoku from 100 test runs as a function of

generations needed.

Fig.11 Relationship between givens and the execution time for

10,000 generations

 21

1) Execution of the original method (not parallelized).
2) Execution of parallel crossover.
3) Execution of parallel evaluation calculation.
4) Execution of parallel mutation.
5) Execution of parallel evaluation calculation and mutation.

Table 2 Intel Core i5 execution environment

Table 3 Execution time to reach the optimal

solution

Table 1 The experimental parameters of genetic operations

 22

1) No parallel processing of individuals (CPU).
2) No parallel processing of individuals (GPU).
3) Parallel processing of crossovers (GPU).
4) Parallel processing of mutations and crossovers (GPU).

Table 5 Comparison of processing times in fine-grained parallel processing

Table 4 GTX580 execution environment

