
Automatic Synthesis of Swarm Behavioural Rules from their
Atomic Components

Dilini Samarasinghe
The University of New South Wales

Canberra, Australia
d.samarasinghewidanaarachchige@student.adfa.edu.au

Erandi Lakshika
The University of New South Wales

Canberra, Australia
e.henekankanamge@adfa.edu.au

Michael Barlow
The University of New South Wales

Canberra, Australia
m.barlow@adfa.edu.au

Kathryn Kasmarik
The University of New South Wales

Canberra, Australia
k.kasmarik@adfa.edu.au

ABSTRACT
This paper presents an evolutionary computing based approach
to automatically synthesise swarm behavioural rules from their
atomic components, thus making a step forward in trying to miti-
gate human bias from the rule generation process, and leverage the
full potential of swarm systems in the real world by modelling more
complex behaviours.We identify four components that make-up the
structure of a rule: control structures, parameters, logical/relational
connectives and preliminary actions, which form the rule space
for the proposed approach. A boids simulation system is employed
to evaluate the approach with grammatical evolution and genetic
programming techniques using the rule space determined. While
statistical analysis of the results demonstrates that both methods
successfully evolve desired complex behaviours from their atomic
components, the grammatical evolution model shows more poten-
tial in generating complex behaviours in a modularised approach.
Furthermore, an analysis of the structure of the evolved rules im-
plies that the genetic programming approach only derives non-
reusable rules composed of a group of actions that is combined
to result in emergent behaviour. In contrast, the grammatical evo-
lution approach synthesises sound and stable behavioural rules
which can be extracted and reused, hence making it applicable in
complex application domains where manual design is infeasible.

CCS CONCEPTS
•Computingmethodologies→Multi-agent systems;Genetic
programming; Control methods; Artificial life;

KEYWORDS
Multi-agent Systems, Grammatical Evolution, Genetic Program-
ming, Swarm Intelligence, Artificial Life

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’18, July 15–19, 2018, Kyoto, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5618-3/18/07. . . $15.00
https://doi.org/10.1145/3205455.3205546

ACM Reference Format:
Dilini Samarasinghe, Erandi Lakshika, Michael Barlow, and Kathryn Kas-
marik. 2018. Automatic Synthesis of Swarm Behavioural Rules from their
Atomic Components. In GECCO ’18: Genetic and Evolutionary Computa-
tion Conference, July 15–19, 2018, Kyoto, Japan. ACM, New York, NY, USA,
Article 4, 8 pages. https://doi.org/10.1145/3205455.3205546

1 INTRODUCTION
Multi-agent models for swarms adopt a bottom-up approach in
modelling virtual behavioural dynamics. The individual agents are
codified with simple rules so that they act according to their own
discrete perceptions without any centralized control, yet the lo-
cal interactions among them give rise to emergent fluid motions
at the group level. The self-organizing agents whose micro level
interactions help explain the macro structures and emergent be-
haviours of a systemmake thesemodelsmore effective in simulating
composite dynamics and in adapting to changes of the environ-
ment [21]. However, simulating such collective swarm and team
behavioural interactions of the real world in artificial environments
is increasingly becoming challenging due to numerous application
requirements that desire more complex and life-like behaviours.
Manual design of such behaviours would require an understanding
of the high level macro behaviours in a way to decompose them into
micro-level behaviours which can be adopted by individual agents
of the system. Given a pre-specified task description, designing
aggregate sets of behavioural rules is difficult with a hand crafting
approach as mere intuition is insufficient to get an insight when the
complexity increases. Such limitations of human bias have made a
significant impact in leveraging the full potential of swarm systems
in real world domains.

A better alternative for domains where human reasoning and
capabilities become limited in comprehending and solving complex
problems is to explore automatic synthesis mechanisms of rules.
The existing mechanisms, often involving evolutionary approaches,
either focus on evolving parameters related to pre-designed rules or
on finding the best subset from a pool of hand generated behaviours
to result in required emergent behaviours. The need for rigorous
manual tuning of parameters and/or the design of a pool of primary
behaviours suggest that human intervention during the synthesis
process is still significant. As a result, the levels of complexities that
can be reached with the mechanisms are still limited. As opposed
to the existing approaches, focusing on the intrinsic logic which
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defines the behavioural rule structure and generating rules with
the atomic components that form the said structure (Section 3
describes the atomic components we identified as control structures,
parameters, preliminary actions and logical/relational connectives)
would help mitigate human bias to a greater extent.

The work presented in this paper is aimed at exploring whether
evolutionary approaches could be successfully employed in auto-
matically generating rules for emergent behaviours from pools of
their atomic components. The method tries to limit the human bias
in the process and address the requirement of more complex be-
havioural outputs. We propose a grammatical evolution (GE) based
approach where the syntax of the behavioural rules is maintained
by a grammar represented in Backus-Naur form [14] designed based
on the identified atomic components. The same rule space is then
employed in a genetic programming (GP) based environment to
define the tree structure of the evolving programs. The two models
are evaluated with a boids behaviour simulation system where the
collective motion of the group of agents is automatically controlled
based on the evolving behavioural rules. The key contributions of
the paper are as follows:

(1) Introduction of an evolutionary computing based automatic
synthesismechanism formulti-agent behavioural ruleswhere
the entire rule structure can be evolved from their atomic
components based on a valid syntax unlike the existingmech-
anisms where the rule structure is pre-defined.

(2) Evaluation of the proposed mechanism with GE and GP
based models for evolving simple and complex behavioural
rules.

(3) An initial exploration of adopting a modularised approach
to generate more complex behavioural rules starting from
evolved groups of simple behaviours using the proposed
mechanism.

(4) An analysis of the rule structures generated with GE and
GP models discussing the possibility of reverse engineering
them.

The rest of the paper is organized as follows. Section 2 sum-
marises the existing literature on modelling swarm behavioural
rules and their limitations. Section 3 describes the overview of the
proposed grammatical evolution based approach and the genetic
programming approach. The experimental setups for the evalua-
tions are presented in Section 4 and, in Section 5 a detailed discus-
sion of results is carried out. Finally, Section 6 concludes the paper
with possible future research directions.

2 RELATEDWORK
Multi-agent Behavioural Rules
The seminal work on multi-agent behavioural rule modelling was
presented by Reynolds [18] where a simulation model was devel-
oped with simple rules leading to aggregate motions of a flock of
birds. The model adopts a simple weighted linear combination of
three steering behaviours [20]: Alignment, Cohesion and Avoidance
which correspond to steering towards average heading of neigh-
bour boids, moving towards neighbour boids and forming a group
and, maintaining a distance from neighbours avoiding collisions,
respectively. They are applied on each individual boid separately
based on their local perception of neighbouring flock mates.

This model unveiled new dimensions in computer animations by
replacing the traditional approach of scripting individual paths of
agents, with a distributed behavioural model where agents follow
their own course of actions based on a pre-defined set of rules. Since
the seminal model, similar multi-agent systems have repeatedly
been discussed in the literature [11, 12, 22]. Although the said
behavioural models are capable of defining the characteristics of
expected tasks and behavioural patterns, the rules are essentially
hand-crafted based on human perception of natural swarms and
teams. Thus, these approaches are subjected to human bias and
more critically, are prone to fail in situations where the requirement
is to model numerous and complex interactions.

Automatic Synthesis of Rules
Automatic design methods have often been explored as a more
desirable substitute for manual design of behavioural rules and can
be broadly discussed under two categories; reinforcement learn-
ing and evolutionary frameworks. Reinforcement Learning (RL)
based approaches are commonly explored in the domains where
reinforcement information, expressed as rewards and penalties, can
be provided for the actions [7]. The agents in the system learn
behaviours through trial-and-error interactions with a dynamic
environment by maximizing a cumulative reward [1, 6]. However,
automation of swarm behaviours has achieved limited success with
this approach [15] due to the limitations in decomposition of global
reward at the emergent level into individual rewards for agents.
Hence, they fall behind when multi-agent systems pursuing more
complex behavioural tasks are at hand.

Evolutionary Computing [3], inspired by natural evolution is
more capable than RL to automatically evolve individual behaviours
in multi-agent contexts. Genetic algorithms [5], which are one of
the most popular types of evolutionary algorithms, have been a
common choice in this field in trying to model multi-agent be-
havioural patterns. However, these algorithms have no control
over the structure of the individuals that are being evolved. Hence,
despite the fact that these efforts have tried limiting the human
involvement in rule generation, they have concentrated primarily
on automatic evolution of the parameters necessary for formula-
tion of behavioural rules rather than exploring the capability of
automatic generation and evolution of rules themselves. The agent
rules are either manually designed [2, 10] or they are represented
by an artificial neural network (ANN) [23]. Thus, the rules have to
be decided with human involvement or using an ANN that hinders
reverse engineering, analysis and combination of individual rules
for complex behaviour generation [4].

Genetic programming [8] is adopted as a better alternative, since
it evolves solution spaces consisting of computer programs that
naturally embody a tree structure which is also the natural repre-
sentation of behavioural rules. The solution space is confined to
a primitive set of functions and terminals and the function set is
required to adhere to closure property [8]. These requirements limit
the control over the structure of the programmes being evolved.
Nevertheless, the nature of the rules composed of functions and
terminals have encouraged such approaches to be tested in evolving
behaviours in several work [9, 19, 24]. Due to the limited control
provided by GP over the rule structure, most of these approaches
intrinsically focus on finding a group of simple behaviours that can
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result in a specified emergent behaviour rather than concentrating
on evolving the emergent behavioural rules from their structure.

Being closely related to GP, grammatical evolution [14] also
evolves programs abiding a tree structure, but as opposed to GP,
a grammar controls the nature that the solution space is being ex-
plored and restricts the programs to a particular syntax through a
context-free grammar (CFG). Behaviour trees for Mario AI bench-
mark are evolved using GE in [16], and horse gait optimizations
are explored in [13] where motion data from a walking horse is
optimized for a horse model. The work presented in [4] employs a
grammar based method in a multi-agent system evolving a food for-
aging task. However, the approach does not incorporate the atomic
components of rules, but rather combines a set of preconditions,
low-level behaviours and actions, all hand crafted to evolve simple
rules. We see our work as a further enhancement to the currently
explored GP and GE techniques for swarm behavioural rule gen-
eration and a step forward towards eliminating human bias in the
synthesis process by decomposing the rule structure to its atomic
components to evolve behaviours. The next section presents details
of the proposed evolutionary approach.

3 EVOLUTIONARY MODEL FOR AUTOMATIC
SYNTHESIS OF BEHAVIOURAL RULES

Building a Rule Space from Atomic Components
The proposed approach is based on deriving emergent behaviours
from combining the basic components of the rules. A close exami-
nation on the behavioural rule structures shows that they ideally
assume a similar pattern in implementation and consist of a logic
formulated by 4 components: control structures, parameters, pre-
liminary actions and logical or relational connectives. For example,
consider the following rule in a boids system:

[if] [distance to boid] [<] [2.5] [move away from boid]

The rule can be broken down into several components including
a control structure: If, parameters: distance to boid and the value
2.5, a relational connective: < and a preliminary action: move away
from boid. A similar structure is observed in aggregate rule sets
with a logical connective such as and,or being used to combine
several rules together. With this understanding, a rule space was
constructed from a pool of these 4 types of components for a boids
system. As all rules are primarily of if-else format, if was used as
the construct and the else component is built into the structure.
A commonly used set of logical and relational connectives were
chosen from the general pool of mathematical operators. The pa-
rameters and preliminary actions were chosen by examining the
dynamics of natural flocks and their hand crafted implementations
to test the feasibility of the approach, and a richer component set
is intended to be used with future experiments.

3.1 Grammatical Evolution Model
A grammar is established based on the rule space and the general
syntax of the behavioural rules. For the proposed work, a CFG
which is represented in Backus-Naur form is used. Figure 1 depicts
the production rules of the grammar (G), formulated based on the
rule space, and defined by the tuple { ν , τ , ρ, ς } where ν is the set
of non-terminals, τ the set of terminals, ρ is the set of production

⟨S⟩ |= ⟨angle of vision⟩ ⟨distance of vision⟩ ⟨S1⟩
⟨S1⟩ |= ⟨S1⟩ ⟨S1⟩ | ⟨I⟩*⟨W⟩
⟨I⟩ |= if ⟨O⟩ ⟨I⟩ ⟨I⟩

| if ⟨O⟩ ⟨I⟩ ⟨A⟩
| if ⟨O⟩ ⟨A⟩ ⟨I⟩
| if ⟨O⟩ ⟨A⟩ ⟨A⟩

⟨O⟩ |= and ⟨O⟩ ⟨O⟩ | or ⟨O⟩ ⟨O⟩
| LTE ⟨P⟩ ⟨distance⟩
| between ⟨P⟩ ⟨distance⟩ ⟨distance⟩

⟨P⟩ |= separation distance
| distance to flockcentre

⟨A⟩ |= move away from boid | move forward
| move away from flockcentre
| move towards flockcentre
| move towards boid | turn by ⟨angle⟩
| match velocity with boid

⟨distance⟩ |= random distance
⟨distance of vision⟩ |= random distance

⟨angle⟩ |= random angle
⟨angle of vision⟩ |= random angle

⟨W⟩ |= random weight

Figure 1: Production Rules (ρ) of the Grammar (G).

rules and ς represents the start symbol which in this case is ⟨S⟩. The
components on the left of each production are the non-terminals,
which can be replaced with a combination of terminals and non-
terminals as defined in the production. The rest of the components
are the terminals which cannot be further replaced.

The syntax of the rules is defined as follows: The production rule
of ⟨S⟩ states that, for each individual rule, a ⟨distance of vision⟩ and
an ⟨angle of vision⟩ is specified which will determine the vision
range of boids in the flock. The parameters are initially replaced
by random values which will be evolved over the generations. The
syntax of ⟨S1⟩ is designed such that an individual rule can consist
of a single simple rule or an aggregate set of simple rules which
are combined based on a weight assigned to each simple rule. The
non-terminal ⟨W⟩ represents this weight which is randomly de-
cided for the initial generation. Each simple rule ⟨I⟩ follows the
syntax [if] [condition] [then-do] [else-do]. The condition ⟨O⟩ can be
one of the relational connectives between or LTE (less than or equal
to), or several relational connectives combined with logical connec-
tives and or or. The then and else actions could either be another if
condition generating nested rules within one rule or a preliminary
action ⟨A⟩. The relational connective LTE evaluates whether its
first argument is less than or equal to its second argument. Sim-
ilarly, between evaluates whether its first argument is within its
second and third arguments. The first arguments of the two con-
nectives are one of the two parameters ⟨P⟩, separation distance or
distance to flockcentre, and the other arguments are random dis-
tance values. The preliminary actions are as defined under the
non-terminal ⟨A⟩ and the action ⟨turn by⟩ accepts an argument
which is the angle it should turn. All random angle and distance
values (⟨distance⟩ , ⟨angle⟩) generated in the initial generation are
then evolved to find the best parameter values suitable.
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Grammatical evolution initiates with a genotype encoded in
binary strings, known as Codons, that can be mapped to a syntacti-
cally correct phenotype of valid programs based on the designed
grammar. It is then evolved using a genetic algorithm, based on an
appropriate fitness criteria with crossover and mutation operations
to automatically generate behavioural rules. Algorithm 1 illustrates
the process of grammatical evolution. The mapping of the genotype
to the phenotype is done by generating the corresponding integer
string for the binary values and applying the following mapping
function on each integer value:

(Integer Value) MOD (no. of production rules for the cur-
rent non-terminal)

The mapping process can be initiated by considering the number
of production rules for the start symbol ⟨S⟩ and a decision is made
as to which rule component will replace it. The process continues
until eventually an expression consisting entirely of terminals is
reached. As can be seen, this approach provides more control over
the structure of the rule that is being evolved and eliminates the
limitations caused by closure property as crossover and mutation
operations are performed on the binary string rather than on the
tree structure unlike genetic programming. Thus, it is adopted in
the proposed approach to further mitigate human intervention in
generation of behaviour rules for multi-agent systems.

Algorithm 1 Grammatical Evolution
Input: ρ: CFG production rules set

β : Population size
Ω: Maximum generations

Output: Ib : Individual rule with the best fitness
1: procedure GrammaticalEvolution(ρ, β,Ω)
2: pop ← InitializePopulation(β, ρ)
3: EvaluateFitness(pop)
4: Ib ← GetMostFitIndividual(pop)
5: ω ← 0
6: while ω , Ω do
7: valid ← f alse
8: while valid == f alse do
9: parents ← ParentSelection(pop)
10: childM1, childM2 ← null
11: for parent1,parent2 ∈ parents do
12: children ← Crossover(parent1,parent2,probcross )
13: for child1, child2 ∈ children do
14: childM1 ← Mutate(child1,probmut )

15: childM2 ← Mutate(child2,probmut )

16: if MapWithCFG(ρ, childM1) == true AND
MapWithCFG(ρ, childM2) == true then

17: valid ← true
18: IW ← GetTwoWorstFitIndividuals(pop)
19: for IW 1, IW 2 ∈ IW do
20: IW 1 ← ReplaceIndividual(IW 1, childM1)
21: IW 2 ← ReplaceIndividual(IW 2, childM2)

22: EvaluateFitness(pop)
23: Ib ← GetMostFitIndividual(pop)
24: ω + +
25: return Ib

3.2 Genetic Programming Model
GP employs individuals embodying a tree structure with functions
and terminals. To cater to the need, the same rule space used for
GE was considered in defining the programs evolved in this con-
text for a fair evaluation of the two approaches. All parameters
except for distance of vision and angle of vision and all primitive
actions except turn by were pooled as terminals in the GP solu-
tion, as they represent the inputs to the computer programs being
evolved, and actions enabling the boids to make movements result-
ing in emergent behaviour respectively. They take no arguments
and hence are better categorised as terminals. The two parame-
ters distance of vision and angle of vision were eliminated from the
rule space as they are essential components for all individuals and
cannot be made part of the evolutionary process where a random
combination might or might not select them as part of the program
tree. Instead, experimentally determined values, PI as the angle and
100 as the distance were hand coded into the programs in order to
define the vision range of boids. A preliminary sensitivity analysis
conducted with different combinations of parameter values showed
variation in performance but did not exceed that of the GE approach.
This is one limitation of GP as rigorous manual tuning is required
to determine the parameter values in contrast to the GE approach
where all parameters and structural details can be conveniently
handed over to the algorithm to automatically generate.

All the control structures, connectives and the action turn by
from the rule space were categorised as functions in this approach
since these accept arguments and are better suited for the inner
nodes of the program trees. Each of the functions ⟨if⟩, ⟨between⟩,
⟨LTE⟩, ⟨and⟩, ⟨or⟩, ⟨turn by⟩ accept 3, 3, 2, 2, 2, and 1 argument(s)
respectively.

Thus, the function (F) and terminal (T) sets for the rule space
can be represented as follows:

F = {⟨if⟩, ⟨between⟩, ⟨LTE⟩, ⟨and⟩, ⟨or⟩, ⟨turn by⟩}
T = {separation distance, distance to flockcentre, random angle,

random distance, move away from boid, move towards boid, move
away from flockcentre, move towards flockcentre, move forwards,
match velocity with boid}

As GP performs the genetic operations such as crossover and
mutation on the initially determined function and terminal sets in
generating program trees, all functions should be well defined for
arguments consisting of any combination of functions and termi-
nals from the primitive set. Hence in the above case, every primitive
component returns a numerical value in order to preserve this clo-
sure property required by the algorithm by allowing combination
of subtrees during the evolution process. Separation distance and
distance to flockcentre return those values calculated at the given
time for a specific boid. random angle and random distance gen-
erate random values in specific ranges at their first encounter
and these values will be preserved over the generations of evo-
lution. The actions move away from boid, move towards boid, move
away from flockcentre,move towards flockcentre,move forwards and
match velocity with boid return the numerical values 1, 2, 3, 4, 5, and
6 respectively. Of the primitive function set, ⟨if⟩ evaluates its first
argument and if it is not 0 then it returns the numerical value of the
second argument. Otherwise it returns the numerical value of argu-
ment three. Similarly, ⟨between⟩ evaluates its first argument and if
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the value returned is between the second and third argument values
it returns 1, else returns 0. ⟨LTE⟩, ⟨and⟩, ⟨or⟩ functions return 1 or
0 based on the evaluation of their two arguments. ⟨turn by⟩ simply
returns the numerical value of its only argument.

4 EXPERIMENTAL SETUP
4.1 Evolutionary Setup
The evolutionary algorithms for GE and GP approaches were im-
plemented adopting the steady state replacement (SSR) mechanism,
replacing only the two worst fit solutions from the previous popu-
lation with offspring generated from crossover and mutation op-
erations. An initial population of valid 30 individuals generated
randomly was evolved for 100 generations. As for the parent se-
lection operator, tournament selection with a tournament size of 5
was used. SSR was conducted with one point crossover for the two
worst fit individuals with single point mutation with probability
0.005.

For the GE model, an individual was constructed with 25 codons
of size 8 bits. In order to allow for generation of sufficiently complex
rules, a maximum wrapping value of 50 was introduced which was
determined experimentally. I.e. if the individual runs out of codons
before reaching a valid expression during the mapping process, it
is wrapped and the codons are reused. If the individual does not
map to an expression of all terminals by the end of 50 wraps, it is
deemed invalid.

4.2 Simulation Environment
A boids behaviour simulation environment was adapted for con-
ducting the experiments. The autonomous virtual agents (boids)
were modelled with a hybrid architecture consisting of both reac-
tive and deliberative agent properties. I.e. the boids are capable of
interacting with the environment and reacting based on the envi-
ronmental changes and at the same time are driven to achieve a
common goal defined by the fitness measure. The interactions were
implemented focusing on a single perception which is vision. Each
boid has a sense of their neighbourhood based on a specified vision
range and adjusts their behaviour through evolution based on the
neighbourhood and the evolved rules.

The simulations were conducted with 150 boids in a wrap-around
environment for 15 evolutionary runs each as presented in Section 5,
with known seed values for the random number generator, ensuring
that the experiments can be repeated.

4.3 Fitness Measure
For the initial experiments on evolving micro behaviours, it was
investigated whether the model is capable of evolving Reynolds’
three rules for flocking: alignment, cohesion and avoidance which
were hand crafted in his approach to generate realistic emergent be-
haviour. Quantitative measures were used in evaluating the fitness
of each of the 3 micro behaviours. The order measure, introduced
by Vicsek [22] was used in evaluating the alignment behaviour.
Equation 1 depicts the order measure (Vavд ) which is the absolute
value of the average of normalized velocities of the boids. Average
separation distance between boids was used as the fitness measure
in quantifying cohesion behaviour. The separation distance func-
tion si to calculate average separation distance for a single boid

from other boids is given in Equation 2 . Average of si (Savд ) was
considered as the cohesion measure. The quantitative measure for
avoidance was adopted from the work of [17] applying average
separation distance among boids in the function. Equation 3 de-
picts the function Di with experimentally determined parameter
values used (δ = 100, γ = 0.99, µ =1000). For penalizing flocks with
collisions, if si was less than or equal to 500 units it was made equal
to µ. Average of Di (Davд ) was taken as the avoidance measure of
the flock.

Vavд =
−1
η
|

η∑
i=1

vi | (1)

si =
1

η − 1

η∑
j=1

distance(di − dj ) wherej , i (2)

Di = −1 +
1

1 + exp−δ (si−γ µ)/µ
(3)

η - total number of boids
vi - normalized velocity of boid i
si - average separation distance for boid i from other boids

For the experiments of the second phase involving complex be-
haviours, flocking was chosen to be tested as it is an emergent
behaviour that can only be generated by an appropriate combi-
nation of several simple behaviours. As for the fitness evaluation
measure, a simple equi-weighted combination of the previous 3
fitness measures for micro behaviours was utilized as given in equa-
tion 4. All four fitness measures are minimising functions and range
from values 0-1.

FlockinдMeasure =
1
3
Vavд +

1
3
Savд +

1
3
Davд (4)

5 RESULTS
5.1 Evolution of Behaviours from Scratch
Figure 2 illustrates the results of the experiments for evolving the 3
micro behaviours alignment, cohesion and avoidance. Both GE and
GP experiments were repeated for 15 evolutionary runs each and
the average fitness progression of the population over generations
and the progression of the most fit individual are presented.

The results demonstrate that both approaches are successful in
evolving better behaviours through fitness minimisation. At the
start of the evolution, the average fitness values of both approaches
remain closer to each other and as the evolution progresses, GE
demonstrates a slightly better drop in the fitness compared to GP.
In order to statistically determine the significance of the differ-
ence between the two models, we adopted Mann-Whitney U test
as the sample sizes are small and are not normally distributed. At
99% confidence level the p-values obtained for the most fit val-
ues of all 3 samples, alignment, cohesion and avoidance were less
than 0.001 proving that GE approach is better than the GP ap-
proach in general. Nevertheless, both approaches start with sig-
nificantly better individuals in the population for the alignment
behaviour and experience only a slight drop in fitness for the best
individual throughout the generations. The existence of the action
match velocity with boid could be the main cause as adjusting ve-
locities to match other flock members can easily generate aligned
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(a) Evolution of the average fitness of the population : Alignment.
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(b) Evolution of the most fit solution : Alignment.
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(c) Evolution of the average fitness of the population : Cohesion.
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(d) Evolution of the most fit solution : Cohesion.
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(e) Evolution of the average fitness of the population : Avoidance.
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(f) Evolution of the most fit solution : Avoidance.

Figure 2: Evolution results for micro behaivours. Figures 2a, 2c, 2e represent the average fitness progression of the population with error bars
representing standard deviation from 15 different experiments for alignment, cohesion and avoidance behaviours. Figures 2b, 2d, 2f represent
the fitness progression of the most fit solution for the 3 behaviours.

flocks. Other two behaviours are not as straightforward as align-
ment and hence take more generations to evolve better rules. The
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Figure 3: Evolution results for flocking behaviour. The average fit-
ness progression and the progression of the most fit solution for
both GE and GP models are shown in the graph.

next set of experiments evolve much complex behaviours and a
similar observation is not evident due to the complexity of the task.

Figure 3 illustrates the evolution results averaged over 15 runs for
evolving flocking behaviour which is more complicated to derive.
Both models were still capable of successfully generating the com-
plex flocking behaviour, however the p-value for the results with
quantitative measure was 0.014 (> 0.05) which suggests that there
is not enough evidence to state a significant higher performance
for GE approach unlike the previous case of simple behaviours.

5.2 Modularised Approach of Evolution
The next phase of the experimental analysis was to evolve flocking
behaviour from individually evolved micro-behavioural rules. The
experiment was conducted as a two-step process, initially evolving
random populations for alignment, cohesion and avoidance, and
then combining the evolved solution sets to form the initial popula-
tion for the experiment on flocking. 7 experiments were conducted
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(a) Evolution of flocking from modules with GE.
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(b) Evolution of flocking from modules with GP.
Figure 4: Fitness variability of the most fit solution for GE and GP models over 100 generations with different module combinations. Results
of 7 experiments each with initial populations of individually evolved micro-behavioural rules for each of alignment (Al), cohesion (Co),
avoidance (Av) and all possible combinations, are compared with that of the average of 15 experiments with random initial populations.

with different initial populations; the first 3 experiments used pop-
ulations of 30 which consisted entirely of individual sets evolved
for one of the 3 micro behaviours. For the next 3 experiments, two
sets from previously evolved populations were combined equally
to take 15 individuals from each. The final experiment combined
10 from each of the 3 sets to form the initial population of 30.

Figure 4 compares the variability of the fitness of the best solu-
tion over 100 generations for the above 7 experiments with that of
evolution results from a random population (results averaged over
15 runs) discussed before, for both GE and GP models. From the
results in figure 4a of the GE approach it is observed that except
for the evolution with initial rules from all 3 modules, all other
experiments outperformed the evolution results with the random
module. Also, from the results of the modules avoidance, align-
ment+cohesion, and alignment+avoidance, it is evident that GE
approach is capable of exploring a large solution space reaching
better fitness values even starting from weaker solutions at the
initial generation. Such an observation cannot be made with the
GP approach in figure 4b, and the variability is very narrow for
all experiments. Also, 3 out of 7 experiments performed weaker
than the random module while two more performed better only
marginally. The p-value of the most fit solution for the average
of 7 experiments of each GE and GP models was less than 0.001
indicating that GE approach performs significantly better than GP
approach with the modularised approach unlike in the case of di-
rectly evolving from a random population. On the other hand, GP
has less consideration on modules during evolution. The insights
gained through this experiment could be useful in future experi-
ments with GE for evolving much complex behaviours that cannot
be easily generated from a random population.

5.3 Analysis of Evolved Rule Structures
Figure 5 illustrates two indicative rules evolved for flocking from

random initial populations by the GE and GP models. A majority
of the evolved rules are complex and consist of a larger number
of nodes in the tree than the presented two rules. We selected the
presented rules based on their convenience of presentation as the
analysis is not affected by the rule length. The GE rule is essentially
an aggregate of two single rule vectors combined on weights 0.75
and 0.25 for each respectively. The angle and distance of vision
were decided as 3.38 radians and 253 units. First rule component

evaluates whether the separation distance from a neighbour boid
is less than or equal to a value of 249 and if it is greater it moves
towards that boid trying to form a group and if not it evaluates
another if condition nested into the second argument of the first
condition. The second if condition determines whether the distance
to the flock centre is less than or equal to a value of 25 and whether
the separation distance is between 34 and 91. If both are true the boid
moves away from the flockcentre, else it keeps moving forward. The
second rule component which was given a less weight, evaluates
whether the distance to the flock centre is less than a value of 451
and matches the velocity of the boid to the neighbour’s velocity.
Otherwise it moves towards the flockcentre. Simply put, the rule
tries to form a group by moving towards the neighbours while
avoiding collisions by moving away from the flockcentre if they are
too close. At the same time, it tries to align with the neighbours if it
is in a group and tries to be involved in the flock by moving towards
the flockcentre if it is at a larger distance away from the centre.
A manual design approach of a rule for flocking may not have
foreseen such details and certainly would consume more time and
resources in tuning the parameters to the appropriate values due
to the rigorousness of the task. The rule can be extracted from the
evolutionary environment and used in non-evolutionary contexts
with similar world designs as the evolved result is sound and stable.

On the other hand, the GP rule cannot be interpreted as the
GE rule and the structure unlike the GE rule, does not reveal any
valuable understandings on the behaviour rule in a way that can
be analysed and reused in another context. Although the atomic
components of the structure is utilized in the evolution process,
the results evolved are essentially a group of actions that chose
to behave appropriately based on the current parameter values.
The combination of the actions, turn by, match velocity with boid,
move towards boid andmove forward have been able to generate ac-
ceptable flocking behaviour, but the rule structure does not provide
any information that can be reverse engineered to understand or
enhance the rules at a later stage. The numerical values returned by
each of the terminals play a key role in maintaining the structure
and facilitating the closure property, while in reality the evolved
rule is not useful in a non-evolutionary environment. We identify
this to be the major drawback of GP approach in contrast to GE
where rules can be reused, analysed and modified based on the re-
quirements. Particularly, with complex requirements where human
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[Angle_of_vision=3.38 Distance_of_vision=253
[Rule1*0.75

[<If> [<LTE> Separation_distance 249]
[<If> [<and> [<LTE> Distance_to_flockcentre 25]

[<Between> Separation_distance 34 91]]
Move_away_from_flockcentre
Move_forward]

Move_towards_boid]]
[Rule2*0.25

[<If> [<LTE> Distance_to_flockcentre 451]
Match_velocity_with_boid
Move_towards_flockcentre]]]

(a) An indicative rule evolved with GE.

[<LTE> Distance_to_flockcentre
[<Between> Separation_distance

[<And> [<Turn_by> Match_velocity_with_boid]
Move forward]

[<If> Move_towards_boid
[<And> Separation_distance 2.8]
[<Turn_by> Move_forward]]]]

(b) An indicative rule evolved with GP.
Figure 5: Analysis of rule structures generated by the GE and GP models.

comprehension of the task is limited, the proposed GE approach
can be quite useful in gaining insight into the problem domain.

6 CONCLUSION AND FUTUREWORK
An automatic synthesis approach for swarm behavioural rules from
their atomic components is introduced in this paper. The proposed
approach adopts a rule space designed from a pool of control struc-
tures, parameters, logical and relational connectives and prelimi-
nary actions to derive the behaviours. The model is evaluated with
GE and GP based models where the results prove that both the mod-
els perform successfully in evolving desired behaviours with atomic
components of the rules, while the GE approach is more successful
in generating reusable behavioural rules, and it has the potential to
evolve more complex behaviours in a modularised approach.

Immediate extensions to the proposed work include enhancing
the rule space to include more components, and conducting a rigor-
ous sensitivity analysis to determine the effect of different manual
tuned parameters for the GP approach where they cannot be in-
cluded in the evolutionary model. Future research directions for the
above work involve employing heterogeneous agent systems where
different boids follow different rules and a set of rules is evolved
over generations to obtain complex behaviours. The modularised
approach with GE shows strong potential in generating emergent
behaviour which can be further experimented and analysed with
different modularity and hierarchical techniques to combine mod-
ules in different agent communities following different grammars,
to evolve more complex and high fidelity behavioural rules which
cannot be foreseen by a hand crafting approach.
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