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Plug-in hybrid electric vehicles (PHEVs) show great promise in reduc-
ing transportation-related fossil fuel consumption and greenhouse gas 
emissions. Designing an efficient energy management system (EMS) for 
PHEVs to achieve better fuel economy has been an active research topic 
for decades. Most of the advanced systems rely either on a priori knowl-
edge of future driving conditions to achieve the optimal but not real-time 
solution (e.g., using a dynamic programming strategy) or on only current 
driving situations to achieve a real-time but nonoptimal solution (e.g., 
rule-based strategy). This paper proposes a reinforcement learning–
based real-time EMS for PHEVs to address the trade-off between real-
time performance and optimal energy savings. The proposed model can 
optimize the power-split control in real time while learning the optimal 
decisions from historical driving cycles. A case study on a real-world 
commute trip shows that about a 12% fuel saving can be achieved with-
out considering charging opportunities; further, an 8% fuel saving can 
be achieved when charging opportunities are considered, compared with 
the standard binary mode control strategy.

Reducing transportation-related energy consumption and greenhouse 
gas (GHG) emissions has been a common goal of public agencies 
and research institutes for years. In 2013, the total energy con-
sumed by the transportation sector in the United States was as high 
as 24.90 quadrillion BTUs (1). The U.S. Environmental Protection 
Agency reported that nearly 27% of GHG emissions resulted from 
fossil fuel combustion for transportation activities in 2013 (2). From 
a vehicle perspective, innovative power train technologies, such as 
hybrid electric vehicles (HEVs), are very promising in improving 
fossil fuel efficiency and reducing exhaust emissions. Plug-in hybrid 
electric vehicles (PHEVs) attracted most of the attention because 
of their ability to also use energy off the electricity grid through 
charging their batteries, thereby achieving even higher overall 
energy efficiency (3).

The energy management system (EMS) is at the heart of PHEV 
fuel economy; its functionality is to control the power streams from 
the internal combustion engine (ICE) and the battery pack, on the 

basis of vehicle and engine operating conditions. In the past decade, 
a large variety of EMS implementations have been developed for 
PHEVs, whose control strategies may be well categorized into two 
major classes as shown in Figure 1: (a) rule-based strategies that rely 
on a set of simple rules without a priori knowledge of driving condi-
tions (4–7); such strategies make control decisions on the basis of 
instant conditions only and are easily implemented, but their solutions 
are often far from being optimal because of the lack of consideration 
of variations in trip characteristics and prevailing traffic conditions; 
and (b) optimization-based strategies that are aimed at optimizing 
some predefined cost function according to the driving conditions 
and the vehicle’s dynamics (3, 8–18). The selected cost function is 
usually related to fuel consumption or tailpipe emissions. Accord-
ing to the way the optimization is implemented, such strategies can 
be further divided into two groups: (a) offline optimization, which  
requires full knowledge of the entire trip to achieve the global 
optimal solution and (b) short-term prediction-based optimization, 
which takes into account the predicted driving conditions in the near 
future and achieves local optimal solutions segment-by-segment in 
an entire trip. However, major drawbacks of these strategies include 
(a) heavy dependence on a priori knowledge of future driving con-
ditions and (b) high computation costs that are difficult to implement 
in real time.

As discussed above, there is a trade-off between the real-time 
performance and optimality in the energy management for PHEVs. 
Specifically, rule-based methods can easily be implemented in 
real time but are far from being optimal while optimization-based 
methods are able to achieve optimal solutions but are difficult to 
implement in real time. To achieve a good balance in between, 
reinforcement learning (RL) has recently attracted researchers’ 
attention. Liu et al. proposed the first and only existing RL-based 
EMS for PHEVs; it outperforms the rule-based controller with 
respect to the defined reward function but is worse in regard to 
fuel consumption without considering charging opportunity in the 
model (19).

In this study, a novel model-free RL-based real-time EMS of 
PHEVs is proposed and evaluated; it is capable of simultaneously 
controlling and learning the optimal power-split operations in real 
time. The proposed model is theoretically derived from dynamic 
programming (DP) formulations and compared with DP in the 
computational complexity perspective. Three major features 
distinguish it from existing methods: (a) the proposed model can  
be implemented in real time without any prediction efforts since 
the control decisions are made only on the current system state; the 
control decisions are also considered for the entire trip information  
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by learning the optimal or near-optimal control decisions from 
historical driving behavior; therefore, a good balance between real-
time performance and energy saving optimality is achieved; (b) the 
proposed model is data driven and does not need any PHEV model 
information once it is well trained since all the decision variables can 
be observed and are not calculated with the use of any vehicle power 
train models (these details are described in the following sections); 
and (c) compared with existing RL-based EMS implementations, 
the proposed strategy considers charging opportunities along the way 
(a key distinguishing feature of PHEVs as compared with HEVs) 
(19). This proposed method represents a new class of models that 
could be a good supplement to the current method taxonomy as shown 
in Figure 1.

Background

PHEV Power Train and Optimal Energy 
Management Formulation

There are three types of PHEV power train architectures: (a) series, 
(b) parallel, and (c) power split (series parallel) (1). In this study the 
focus is on the power-split architecture. The decision making on 
the power-split ratio between internal combustion engine (ICE) and 
battery pack is called the power-split control problem (3). Mathe-
matically, the optimal energy management (i.e., power-split control) 
for PHEVs can be defined as a nonlinear constrained optimization 
problem (3). In this study, the ICE power supply is discretized into 
different levels, and the optimal PHEV power-split control problem 
therefore can be formulated as follows:
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where

	 M	=	 time span of entire trip,
	 N	=	discretized power level value for engine,

	 t	=	 time step index,
	 i	=	 ICE power level index,
	 C	=	� gap of battery pack’s state of charge (SOC) between initial 

and minimum,
	 Pi

eng	=	 ith discretized level for engine power,
	 ηi

eng	=	associated engine efficiency,
	 Pt	=	driving demand power at time step t, and
	 j	=	any time step between first and last time step.

The objective of the energy management problem is to find the opti-
mal action (i.e., selection of the optimal ICE power level) for each 
time step to achieve the best fuel efficiency along the entire trip.

Dynamic Programming

The optimization problem represented by Equations 1 to 4 can be 
solved by DP since it satisfies Bellman’s Principle of Optimality 
(20). Let s ∈ S be the state vector of the system and a ∈ A the deci-
sion variable. The optimization problem can be converted into the 
following single equation given the initial state s0 and the decisions 
at for each time step t:
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where β is discount factor, β ∈ (0, 1), and st is the current system 
state, and it can be solved by recursively calculating
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where

	 T	=	 time duration,
	 g(.)	=	one-step cost function, and
	 J(s)	=	 true value function associated with state s.

Equation 6 is also often noted as Bellman’s equation. In the case of 
PHEV energy management, st can be defined as a combination of 
vehicle states, such as the current SOC level and the remaining time 
to the destination, which is discussed in the following sections. at can 
be defined as the ICE power supply at each time step.

It is well known that the high computation cost of Equation 6 is 
always the barrier that impedes its real-world application although it 
is a very simple and descriptive definition. It could be computation-
ally intractable even for a small-scale problem (in regard to state 
space and time span). The major reason is that the algorithm has 
to loop over the entire state space to evaluate the optimal decision 
for every single step. Another obvious drawback in the real-world 
application of DP is that it requires the availability of the full infor-
mation of the optimization problem. In the present case, it means 
the power demand along the entire trip should be known before the 
trip, which is always impossible in practice.

Approximate Dynamic Programming  
and Reinforcement Learning

To address the above issues, approximate dynamic programming 
(ADP) has been proposed (21). The major contribution of ADP is 
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Deterministic Fuzzy Offline Prediction based

EMS of PHEV

Optimization basedRule based

FIGURE 1    Taxonomy of current EMS.
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that it significantly reduces the state space by introducing an approxi-
mate value function Ĵ(st, pt), where pt is a parameter vector. With the 
replacement of this approximate value function, Equation 6 can be 
reformulated as
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Now the optimal decision can be calculated at each time step t by
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The calculation of Equation 8 now relies only on the current sys-
tem state st, which substantially reduces the computational require-
ment of Equation 6 to polynomial time in regard to the number of 
state variables, rather than being exponential to the size of state 
space (22). In addition, the value iteration that solves the DP prob-
lem becomes forward into time, rather than being backward in 
Equation 6. In the case of PHEV energy management, this fact is 
actually a bonus since the predicted state (e.g., power demand) at 
the end of the time horizon is much less reliable compared with that 
at the beginning of the time horizon.

In principle, the value function approximation can be learned 
by tuning and updating the parameter vector pt on the addition of 
each observation on state transitions (22). RL is an effective tool 
for that purpose. The specific learning technique used in this study 
is temporal-difference learning, which was originally proposed by 
Sutton and Barto to approximate the long-term future cost as a func-
tion of current states (23). The details on the implementation of the 
algorithm are presented in the following sections.

Reinforcement Learning–Based EMS

In this study, a temporal-difference-learning strategy is adopted for 
the RL problem. An action-value function, Q(s, a), is defined as the 
expected total reward for the future receipt starting from that state. 
This function is to estimate how good it is to perform a given action 
in a given state in regard to the expected return. More specifically, 
Qπ(s, a) is defined as the value of taking action a in state s under a 
control policy π (i.e., a map that maps the optimal action to a system 
state), which is also the expected return starting from s, taking the 
action a, and thereafter following policy π:

, , , (9)
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where

	 st	=	state at time step t,
	 γ	=	�discount factor in (0, 1) to guarantee convergence 

(26),
	 k	=	 time steps elapsed after time step t, and
	 r(st+k, at+k)	=	� immediate reward based on state s and action a at 

given time step (t + k).

The ultimate goal of RL is to identify the optimal control policy that 
maximizes the above action-value function for all state-action pairs. 

Compared with the formulations defined by Equations 6 and 7,  
the policy π is the ultimate decision for each time step along the 
entire time horizon. The reward function r(st+k, at+k) here is g(.) in 
Equation 6. The action-value function [i.e., Q(s, a)] is actually an 
instantiation of the approximate value function Ĵ(st). So, it is not 
difficult to understand that the DP formulas are the basis for an 
RL problem.

Conceptually, an RL system consists of two basic components: 
a learning agent and an environment. The learning agent interacts 
continuously with the environment in the following manner: at each 
time step, the learning agent receives an observation on the environ-
ment state. The learning agent then chooses an action that is sub
sequently input into the environment. The environment then moves 
to a new state as a result of the action, and the reward associated with 
the transition is calculated and fed back to the learning agent. Along 
with each state transition, the agent receives an immediate reward, 
and these rewards are used to form a control policy that maps the 
current state to the best control action on that state. At each time step, 
the agent makes the decision on the basis of its control policy. Ulti-
mately, the optimal policy can guide the learning agent to take the 
best series of actions to maximize the cumulated reward over time 
that can be learned after sufficient training. A graphical illustration 
of the learning system is given in Figure 2. The definition of the 
environmental states, actions, and reward are provided next.

Action and Environmental States

In this study, the discretized ICE power supply level (i.e., Pi
eng in 

Equation 1) is defined as the only action the learning agent can take. 
The environment states include any other system parameters that 
could influence the decision of engine power supply. Here a defini-
tion is given for a five-dimensional state space for the environment, 
including the vehicle velocity (vveh), road grade (groad), percentage of 
remaining time to destination (ttogo), battery pack’s state-of-charge 
(bsoc), and available charging gain (cg) of the selected charging station:
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where Vveh is the set of discretized vehicle speed levels and Groad is 
the set of discretized road grade levels. The minimum and maximum 
value of vehicle velocity and road grade can be estimated from the 
historical data of commuting trips, which will be elaborated in the 
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FIGURE 2    Graphical illustration of RL system.
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following section. Bsoc is the set of battery SOC levels between the 
lower bound (e.g., 20%) and upper bound (e.g., 80%); Ttogo is the 
percentage (10%∼90%) of remaining time in the entire trip duration, 
which is calculated on the basis of the remaining distance to the 
destination. Cg is the set of discretized charging gain percentages 
(e.g., 30% and 60%) of the selected charger. This charging gain 
represents the availability of the charger, which may be a function 
of the charging time and charging rate and is assumed to be known 
beforehand. All of the states can be measured and updated in real 
time as the vehicle is running. Figure 3 shows all the real-time 
environmental states.

Reward Initialization with Optimal Results  
from Simulation

The definition of reward depends on the control objective, which is 
to minimize the fuel cost while satisfying the power demand require-
ment. Hence, the reciprocal of the resultant ICE power consumption 
at each time step is defined as the immediate reward. A penalty term 
is also included to penalize the situation in which the SOC is beyond 
the predefined SOC boundaries. Immediate reward is calculated by the 
following equations:
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where

	 ra
ss′	=	� immediate reward when state changes from s to s′ by 

taking action a,
	 PICE	=	 ICE power supply,
	 P	=	� penalty value and is set as maximum power supply 

from ICE in this study, and
	 min_PICE	=	minimum nonzero value of ICE power supply.

This definition guarantees that the minimum ICE power supply 
(action) that satisfies the power demand as well as the SOC con-
straints can have the largest numerical reward. A good initialization 
of reward is also critical for the quick convergence of the proposed 

algorithm. In this case, the optimal or near-optimal results of typical 
trips obtained from simulation are used as the initial seeds. These 
optimal or near-optimal results are deemed as the control decisions 
made by good drivers from historical driving. To obtain a large 
number of such good results for algorithm training, an evolutionary 
algorithm is adopted for the offline full-trip optimization since an 
evolutionary algorithm can provide multiple solutions for one single 
run. The quality of these solutions is different and, as a result, dif-
ferent levels of driving proficiency in the real-world situation may 
well be represented.

Q-Value Update and Action Selection

In the algorithm, a Q value, denoted by Q(s, a), is associated with 
each possible state-action pair (s, a). Hence there is a Q table that is 
kept updated during the learning process and can be interpreted as 
the optimal control policy that the learning agent is trying to learn. 
At each time step, the action is selected by using this table after it 
is updated. The details of the RL-based PHEV EMS algorithmic 
process are given in the following pseudocode.

Inputs. Initialization 6-D Q(s, a) table; discount factor γ = 0.5; 
learning rate α = 0.5; exploration probability ε ∈ (0, 1); vehicle 
power demand profile Pd (N time steps).

Outputs. Q(s, a) array; control decisions Pd (T time steps).

    1.  Initialize Q(s, a) arbitrarily.
    2.  For each time step t = 1:T
    3.    observe current st (vveh, groad, ttogo, bsoc, Cg).
    4.    Choose action at for current state st:
    5.      temp = random (0, 1);
    6.      if temp <= ε
    7.        at = arg maxa∈A{Q(st, a)}
    8.      else
    9.        at = randomly choose an action;
  10.      end.
  11.    Take action at, observe next state st+1 (Pt+1, SOCt+1).
  12.    If SOCt+1 < 0.2
  13.      switch into charging–sustaining mode;
  14.      give big penalty to rt according to Equation 10.
  15.    else
  16.      calculate reward rt according to Equation 10
  17.    end.
  18.    Update Q(st, at) with following value:
  19.    Q(st, at) + α{rt + γ p maxat+1

{Q(st+1, at+1)} − Q(st, at)}
  20.  end.

Starting point Charging station Destination

Cg

t togo

vveh

groad

bSOC

FIGURE 3    Illustration of environment states along trip.
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Case Study

The proposed model is then evaluated with real-world data in two 
scenarios: one without charging opportunities and the other with 
charging opportunities.

Data Description

To obtain a series of real trip data (second-by-second velocity tra-
jectories), the trajectory synthesis technique proposed in previous 
work (3) is applied to the inductive loop detector data archived 
in the California Freeway Performance Measurement System (24). 
The trajectory synthesis is a two-step process: (a) estimating aver-
age velocity by applying a two-dimensional interpolation method 
to real-world traffic data (e.g., volumes and occupancy) collected 
from inductive loop detectors and (b) generating random velocity 
disturbance based on representative driving cycles from the Motor 
Vehicle Emission Simulator database. Real traffic data were col-
lected at the I-210 freeway segment between I-605 and Day Creek 
Boulevard in Southern California; data were collected on traffic 
starting at 8:00 a.m. in the morning (westbound) and returning at 
4:00 p.m. in the afternoon every weekday during the period between 
January 9, 2012, and January 17, 2012. Twelve trips (including 
eastbound and westbound) were generated in total. The road grade 
information was also synchronized with the trip data to estimate the 
second-by-second power demands. For more detailed information 

on the trajectory synthesis and power demand profile generation, 
see Wu et al. (3).

Model Without Charging Opportunity: Trip Level

To validate the proposed strategy, the model without charging 
opportunity being considered is first trained and tested with trips 
for which there is no charging opportunity in the trip. Data for mul-
tiple westbound trips described in Wu et al. are used for training 
(3). Although it has been proved that Q learning is guaranteed to 
converge mathematically, an experimental analysis of convergence 
is conducted in this study (19). In the experiment, the trip data 
for the first 6 days are concatenated one by one to form a single 
training cycle. The proposed model is trained with repeated train-
ing cycles. At the end of each training cycle, the trained model is 
tested with the seventh day trip; the fuel consumption is recorded 
in Figure 4. In addition, the training of the model with good initial-
ization using the simulated optimal or near-optimal solution and 
the training of the model without good initialization are compared. 
As can be seen in the figure, there is a clear convergence in fuel 
consumption for the two cases. However, the initialization with 
simulated optimal or near-optimal solutions helps achieve a faster 
convergence.

As previously described, the selected state space is five-dimensional 
and the action space has one dimension. Therefore the Q(s, a) table is 
six-dimensional. Figure 5 shows the 4-D slice diagram of the learned 
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Q(s, a) table in which different color grids represent different numer-
ical reward values (e.g., blue means lower values) and three slices  
on the ICE power supply and power demand space are given at 
three SOC levels: 1, 6, and 12 (i.e., 20%, 50%, and 80%). The road 
grade and vehicle speed are implicitly aggregated into power demand. 
The dimension of remaining time is not indicated in the figure. As 
can be observed in each slice, when the power demand is not so high 
(e.g., below Level 5), Action Level 1 or 2 is usually the most appro-
priate because the least ICE power is consumed. When the power 
demand becomes higher, the range of the feasible action levels widens 
also. In such cases, lower levels of ICE power supply may not be 
enough to satisfy the power demand and the resultant SOC level could 
be lower than 0.2, resulting in a penalty defined in Equation 10. When 
the SOC level is high, it is less likely that the higher ICE power supply 
level would be chosen to satisfy the same power demand. The reason 
is that when the vehicle battery SOC is high, the ICE power is not 
likely to be used aggressively.

As discussed in the previous sections, an exploration–exploitation 
strategy is adopted for the action selection process to avoid prema-
ture convergence. The action with the biggest Q value has a prob-
ability of 1-ε to be selected. Hence the value of ε may significantly 
affect the performance of the proposed method. To evaluate such 
effects, a sensitivity analysis of ε is carried out and is illustrated in 
Figure 6. It can be observed that the fuel consumption and the resul-
tant SOC curves are very close to those of the binary mode control if 
the value of ε is small. A possible explanation is that a small ε value 
indicates a large probability to select the most aggressive action 
with the biggest Q value (or the lowest levels of ICE power supply). 
Therefore, the battery power is consumed drastically as it is with the 
binary mode control. However, if the value of ε is too large (e.g., 
>0.8), the battery power is used too conservatively so that the final 
SOC is far away from the lower bound, resulting in much greater 
fuel consumption. It is found that the best value of ε in this study 
is about 0.7, which ensures that the SOC curve is quite close to the 
global optimal solution obtained by the offline DP strategy. With 
this best ε value, the fuel consumption is 0.3559 gal, which is 11.9% 
less than that of the binary mode control and only 2.86% more than 
that of the DP strategy as shown in Figure 6. The implication is that 
an adaptive strategy for determining the exploration rate along the 
trip could be useful. Figure 7a shows a linearly decreasing control 
of ε along the trip. A smaller ε is preferred at the later stage of the 
trip because SOC is low and the battery power should be consumed 
more conservatively. With this adaptive strategy for ε, the proposed 
mode could also achieve a good solution with a 0.3570-gal fuel 
consumption, which is 11.7% less than by binary control shown in 
Figure 6.

Model with Charging Opportunity: Tour Level

The most distinctive characteristic of PHEVs from HEVs is that 
PHEV can be externally charged whenever a charging opportunity 
is available. To further evaluate the effects resulting from charging 
availability, this information is included in the proposed model as a 
decision variable. For simplicity, the charging opportunity is quanti-
fied by the gain in the battery’s SOC, which may be a function of 
available charging time and charging rate. Data for a typical tour 
are constructed by combining a round-trip between the origin and 
destination (3). It is assumed that there is a charger in the workplace 
(westmost point on the map) and the available charging gain has 
only two levels: 30% and 60%. In this case, a corresponding adap-
tive strategy of ε is also used as shown in Figure 7b. The rationale 
behind this adaptive strategy is that battery power should be used 
less conservatively (i.e., higher ε value) after it has been charged, 
when Cg is higher, or in both cases.

The obtained optimal results are shown in Figures 8 and 9. As 
can be seen in the two figures, the resultant SOC curves are much 
closer to the global optimal solutions obtained by DP than by binary 
control. To obtain the statistical significance of the performance,  
the proposed model is tested with 30 trips by randomly combining 
two trips and assuming a charging station in between with a ran-
dom Cg (randomly choose from 30% and 60%). With binary control 
taken as the baseline, the reduced fuel consumption is given in 
Figure 10. As can be seen in the figure, the RL model achieves an aver-
age of 7.9% fuel savings. It seems that having more information results 
in lower fuel savings, which is a counterintuitive result. The reason 
is that the inclusion of additional information or state variable to 
the model, exponentially increases the search space of the problem, 
which thereby increases the difficulty of learning the optimal solu-
tion. And also more uncertainty is introduced into the learning process 
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curves by different exploration probabilities.
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FIGURE 8    Optimal results when available charging gain is 0.3 (Cg 5 0.3).
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because of the errors in the added information, which degrades the 
quality of the best solution the model can achieve.

Conclusions and Future Work

This paper proposes a data-driven reinforcement learning–based 
real-time energy management system for PHEVs that is capable 
of simultaneously controlling and learning the optimal power-
split operation. The proposed EMS model is tested with trip data 
(i.e., multiple speed profiles) synthesized from real-world traffic 
measurements. Numerical analyses show that a near-optimal solu-
tion can be obtained in real time when the model is well trained 
with historical driving cycles. For the study cases, the proposed 
EMS model can achieve better fuel economy than the binary mode 
strategy by about 12% and 8% at the trip level and tour level (with 
charging opportunity), respectively. The possible topics for future 
work are (a) propose a self-adaptive tuning strategy for exploration–
exploitation (ε); (b) test the proposed model with more real-world 
trip data, which could include other environmental states, such as the 
position of charging stations; and (c) conduct a robustness analysis to 
evaluate the performance of the proposed EMS model when there is 
error present in the measurement of environment states.
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