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Abstract—People with diabetes have to properly manage their
blood glucose levels in order to avoid acute complications. This
is a difficult task and an accurate and timely prediction may
be of vital importance, especially of extreme values. Perhaps
one of the main concerns of people with diabetes is to suffer a
hypoglycemia (low value) event and moreover, that the event
will be prolonged in time. It is crucial to predict events of
hyperglycemia (high value) and hypoglycemia that may cause
health damages in the short term and potential permanent
damages in the long term. The aim of this paper is to describe
our research on predicting hypoglycemia events using Dynamic
structured Grammatical Evolution. Our proposal gives white box
models induced by a grammar based on if-then-else conditions.
We trained and tested our system with real data collected from 5
different diabetic patients, producing 30-minute predictions with
encouraging results.

Index Terms—Diabetes, Hypoglycemia prediction, Rule Sys-
tem, Structured Grammatical Evolution

I. INTRODUCTION

The progression of Diabetes Mellitus (DM) in recent years
has made it one of the most relevant diseases of the 21st
century. According to World Health Organization (WHO)
estimations, diabetes will be among the leading causes of death
worldwide by 2030. Type I diabetes is an autoimmune disease
that causes the destruction of the insulin-producing cells (beta
cells) of the pancreas. A healthy pancreas is responsible for
regulating blood glucose levels by producing insulin. Thanks
to insulin, the body’s cells can absorb glucose from the
bloodstream. In the case of a person with diabetes, the absence
of insulin prevents the assimilation of glucose, causing an
increase in the levels of glucose in the blood stream. As a
result, the person needs to inject insulin to be able to maintain
these values in a healthy range, however there are a lot of
external factors that affect the variability of the blood glucose
levels. As a result, is very common for a people with diabetes
(PwD) to suffer hypoglycemia events, not only as a result of
over injecting insulin, but also due to other facts such as doing
exercise.

Exercising is also very important for PWD and it can specif-
ically help with weight management and insulin sensitivity. A

good control of the body weight and a stable sensibility to
insulin value reduce the amount of insulin a diabetic patient
needs to inject per meal and, consequently the reaction on their
blood sugar levels, leading to more stable values. However, as
a result of the increasing in insulin sensitivity, and the fact
that the muscles need sugar while exercising, it can result in a
state of hypoglycemia or low blood sugar for the patient that
can be dangerous if it is not addressed properly, and might
lead to a loss of consciousness.

The symptoms of hypoglycemia vary depending on the
person but usually encompass: shaking, sweating, hunger, fast
or irregular heartbeat, numbness in extremities, etc... These
symptoms can be easily confused whilst exercising and a per-
son with diabetes might not be aware that she/he is suffering an
hypoglycemia event. Another thing to take into account is that
the body can get used to being in a state of hypoglycemia, this
means that the more hypoglycemic episodes a patient suffers
the less they will feel the initial symptoms until their blood
sugar drops lower and lower, which is not ideal when trying
to recognize the state if the patient is not actively looking at
their current blood sugar levels.

The motivation for this research lies in the need for reliable
predictive models of blood glucose low levels for PwD. The
prediction of a future hypoglycemic episode can lead the
patient to take measures to remedy it before it happens and
to take better decisions in the future to avoid acute complica-
tions. We train classification models by means of Structured
Grammatical Evolution (SGE). We present a method to obtain
White-box models composed by a set of if-then-else condi-
tions. The conditions to evaluate include information of a set
of physiological variables during the last two hours previous
to the prediction time. In particular, we include the values of
glucose levels measured by a Continuous Glucose Monitoring
System (CGM), and heart rate information, number of steps
and calories burned (these last three obtained by wearing a
smartwatch). As a result, we obtain models that predict a class
which represents the future state of the person (hypoglycemia-
non hypoglycemia) in the short term (30 minutes). We inves-



tigate the performance of both static SGE and Dynamic SGE.
Experimental results with a set of data of real people from
a Hospital in Spain are encouraging, and shows that GE can
produce good rule-based models.

The rest of the paper is organized as follows. Section II
describes the problem of predicting hypoglycemia in people
with diabetes and revises other works in the literature. Section
III explains our approach, the workflow and the main tech-
niques used in this research, whereas Section IV describes
the experimental setup and the forecasting results that these
techniques have obtained. Conclusions and future work are
exposed in Section V.

II. HYPOGLYCEMIA PREDICTION

Having identified that one of the most important aspects to
control in patients with diabetes is hypoglycemia, let us start
presenting the problem and analyzing the related work. We
already mentioned that hypoglycemia is understood as a state
of low blood sugar that can be due to multiple factors, such as
physical exercise, an incorrect diet or the injection of excessive
doses of insulin. In this work we consider four important
variables related to these factors: glucose, heart rate, steps and
calories burned. The latter two are used because it has been
shown that physical exercise is highly recommended in PwD
and can contribute to stabilizing blood glucose values, but it
could also be dangerous and lead to a state of hypoglycemia
because of the demand for glucose at a muscular level.

It is therefore of vital importance to detect or predict these
states of hypoglycemia. Previous hypoglycemia data may be
the best predictors of new hypoglycemia events and, if we can
correctly predict a future episode of hypoglycemia, persons
can act to remedy it before it happens.

Hypoglycemia is identified when the blood glucose level
falls below 70 mg/dL [1], but as a reference of possible hy-
poglycemia states, the American Diabetes Association (ADA)
work-group has proposed a classification with five different
grades, from Severe Hypoglycemia to Pseudo-hypoglycemia
[2], [3].

In general, the problem addressed is the prediction of the
blood glucose level value over a time horizon using historical
information of physiological variables. Some approaches use
values of the previous 90 minutes, 120 minutes, in the case
of postprandial blood glucose, and other approaches work
with periods up to 24 hours. There are also approaches that
work with models adapted to individuals and general models
constructed with information of several persons.

For our particular study we will use historical information
of blood glucose, heart rate, steps and calories burned data
(for each of these variables we will use samples taken every 5
minutes). Hypoglycemia and glucose prediction is a widely
discussed topic. Many studies have proposed methods to
characterize glycemic variability, which as mentioned above is
considered an important risk factor in patients with diabetes. In
[4] they have developed a new metric, the glycemic variability
percentage (GVP), to assess glycemic variability. In [5] they
propose a new metric called coefficient of gradient variability

(CVG), which allows characterizing glycemic variability and
the risk of hypoglycemia.

A description of the different techniques that are commonly
applied to make predictions can be found in [6]. Several
papers have used Genetic Programming and variants ( [7]–
[13]), Grammatical evolution (GE) has achieved good results
in time series prediction problems [14], [15]. Probabilistic
fitting in evolutionary optimized models has also been used
successfully [16]. In [17], authors applied a Particle Swarm
Optimization algorithm (PSO) to calibrate a model of glucose
dynamics to predict short-term glucose level.

Machine learning (ML) is an area with great impact and ap-
plication in the field of medicine [18], [19]. It has been shown
that ML techniques applied to prediction has produced very
encouraging results. With specific reference to the prediction
of hypoglycemia states, a review of the techniques that use
ML is given in [20], where the different techniques applied to
hypoglycemia prediction are summarized in detail, considering
also the type of data used, predictions horizons, the age of the
population, the type of treatment and the gender of the patient.

For instance artificial Neural Networks [21] [22] [23] [24]
[25], Random Forest [26] [27] [28], Kernel based SVM [29]
[30], Logistic Regression [31] [32], etc.) .

Machine learning techniques often use black box represen-
tations to make sense of the models, without knowing the
level of detail. They are very complicated to understand at a
detailed level, so only the inputs and outputs of the system
are analyzed and studied without taking into account its inner
workings. While machine learning techniques use black box
representations to make sense of the models, without knowing
the level of detail, our approach uses white box models in
which the deductive approach is mixed with all the theoretical
part that governs the system internally. We use ”explainable”
models in which the internal model can be calibrated and
adjusted to do data validation, prediction, etc.

Other work has shown that Structured Grammatical Evo-
lution (SGE) perform better than traditional Grammatical
Evolution (GE) [14]. In [33], they use Structured Grammatical
Evolution for glucose prediction, but the approach is different
from ours: different variables are used (past glucose values,
insulin injections, and the amount of carbohydrate ingested by
a patient), different grammars and different metrics are also
used to optimize the solutions of the evolutionary algorithm.
In [34], a comparison is made between evolutionary gram-
mars (GE), Contex-Free-Grammar Genetic Programming and
Structured (CFG-GP) and Grammatical Evolution (SGE), and
they showed that SGE has a better performance than GE on
several problems.

III. METHODOLOGY

Although there can be different degrees of hypoglycemia, in
this paper we address the problem of identifying hypoglycemic
events over a set period of time as if it were a single class
between two possible classifications: Hypoglycemia and Non-
Hypoglycemia. We created a classification system that can
identify a hypoglycemic state when glucose values are equal



or less than 70mg/dL mg. For this classification, we use
an evolutionary algorithm with Static structured Grammatical
Evolution and Dynamic structured Grammatical Evolution.

A. Structured Grammatical Evolution

Grammatical Evolution (GE) [35] is a variation of Genetic
Programming (GP) that uses a grammar to generate the
phenotype from the genotype of the individuals, the genotype
is made up of a list of numbers each one of which will generate
a terminal o non-terminal symbol of the grammar forming the
phenotype until there is no more possible expansions and it has
been completely created. Although GE has been successfully
applied to different problems, it presents some drawbacks
derived from the process of decoding the solutions. GE has
two main issues: (i) since each allele depends on the previous
one, a small change on it can completely change the final
resulting phenotype, and, (ii) since we use a modulus operation
to determine the next rule, we could potentially change an
allele but the generated phenotype might be equivalent. On
the other hand, the ability to change the problem by using the
grammar rather than editing the code is a great feature of GE.

In order to partially solve this concerns, Lourenço et al.
proposed Structured Grammatical Evolution [34]. In compari-
son to Grammatical Evolution where individuals are made up
of a list of numbers of a set length and each number is used
to generate the next symbol of the phenotype, in Structured
Grammatical Evolution, individuals are made up of a list of
lists.

Each internal list represents a non-terminal of the grammar
and the numbers contained are the possible expansions of this
rule, therefore each internal lists length can be at most the
maximum number of expansions for a certain rule and each
one of the numbers contained in the list will represent what
production we take for a rule, the numbers can go from 0
to Cn−1, being Cn−1 the number of derivation options for a
non-terminal.

1) Static Structured Grammatical Evolution: In this case
each internal list is generated completely to its maximum
length, the maximum number of expansions for each non-
terminal element of the grammar, even if those expansions
are not being used to decode the individual. This forces us
to eliminate recursion from the grammar file, since recursion
means that there could exist an infinite number of expansions
for the recursive rule. We have performed this by setting a
maximum recursive depth, defined by the user, and trans-
forming the recursive rule into a set of rules that mimic the
recursion up to the set depth.

<expr> ::= <expr> <op> <expr>

As an example, for depth 4 this rule will be transformed
into:

<expr> ::= <expr1> <op> <expr1> |
<term> <op> <term>

<expr1> ::= <expr2> <op> <expr2> |
<term> <op> <term>

<expr2> ::= <expr3> <op> <expr3> |
<term> <op> <term>

<expr3> ::= <term> <op> <term>

2) Dynamic Structured Grammatical Evolution: For the
dynamic version the lists are generated dynamically, that
is, when the individuals are generated we generate the lists
up to what is needed to complete the individual (all the
generated individuals must be valid from creation). After the
application of crossover and mutation operators, the individual
might stop being valid, in which case when we generate the
phenotype. We will add the needed derivation numbers to the
lists to complete the individual, transforming it in valid. In
case of recursion we could potentially create an individual
that never completes the process of decoding: To avoid this
from happening and avoiding obtaining individuals that are
extremely big, we have added a maximum tree depth to limit
the lenght of individuals. If the depth of the tree becomes
higuer than the number set by the use,r the algorithm only
generates terminal expansions and not recursive ones.

B. Grammar

In Structured GE algorithms, same as in GE, the phenotype
of the individuals is generated using a grammar that deter-
mines what number of the genotype refers to what expression
that forms the final model. The grammar we have chosen to
generate the expressions is show in fig. 1. The expressions
will be composed of a set of if-else statement that can either
return class 0, hypoglycemia, or class 1, not hypoglycemia,
the condition of the if statement can be composed of up
to 3 individual conditions fused together by using ’and’ or
’or’ statements, these are made up of the input variables and
generated numbers.

• Input Variables
The input variables are those that appear in fig 1. as
’getVariable(x,k)’ with x ∈ (0, 100) and have been
measured every 5 minutes.
– Glucose values of the two hours before the time of

prediction t (x ∈ (0, 25) ).
– Heart rate values of the patient of the two hours before

time of prediction t (x ∈ (25, 50) ).
– Amount of steps performed by the patient of the two

hours before time of prediction t (x ∈ (50, 75) ).
– Amount of calories burned by the patient in the two

hours before time of prediction t (x ∈ (75, 100) ).
• Output Variable

– Expected class at 30 minutes after the time of predic-
tion.

As can be observed in fig 1. we have not taken into account
every single possible input to generate the models, we have
only taken values that are less correlated from one another
from each one of the input types, however, the available inputs
that could be used by the grammar are the ones described
above.



Fig. 1. Grammar file.

C. Fitness Function

As with any evolutionary algorithm, we need a fitness
function to determine how good an individual solution is: As
we are dealing with a a classification problem we have chosen
to use weighted accuracy.

WA = 0.5 ∗Accuracy + 0.5 ∗ Fmeasure (1)

Fmeasure =
2 ∗Recall ∗ Precision

Recall + Precision
(2)

where Precision corresponds to the fraction of elements that
we are classifying correctly in the Hypoglycemia class from
the total amount we have classified in this class and Recall to
the fraction of elements that we are classifying correctly from
the total amount of elements in the Hypoglycemia class.
The function will be executed for each data point, since we are
minimizing the evolutionary algorithm and will use 1−WA.

IV. EXPERIMENTAL RESULTS

A. Experimental set-up

To generate the models we have first divided our data into
two subsets: training and test (70% and 30% respectively),
after, we balanced the training model so that the amount
of data for each class is approximately 50%, this must be
performed so that the Fitness Function does not give more
importance to non-hypoglycemic values as they are the most
common. Balancing the training data helps to make the results
less dependent on the partitioning of the data. The tests are
performed without data balancing. We use this process as an
alternative to other methods such as cross validation, which
will be explored in the future.
As a result, we obtain a data file for each patient on which to
execute the algorithm.

For the evolutionary algorithm we have set its parameters
as such:

• Static replacement policy, the worst 2 individuals of the
population

• 200 population size
• 600 generations
• Tournament selection operator with pressure 2
• Uniform crossover operator

– 75% probability
– 25% interchange probability per gene (internal lists)

• Basic mutation of all alleles
– 15% probability

For each type of Structured Grammatical Evolution we
define their respective depths

• Static: 4 recursive depth
• Dynamic: 7 maximum tree depth

These depth values have been elected to be approximately
equivalent, so that the resulting if-else statements we obtain
as results have a similar length.

We will execute 30 runs of the algorithm and obtain 30
models, the tests will be performed on the one with the lowest
fitness (best model during training).

B. Data

The data that we have used to train and test our algorithm
come from a set of persons after signing a informed consent.
The persons are patients of the Hospital Universitario Prı́ncipe
de Asturias, in Alcalá de Henares, in the Region of Madrid
(Spain). The main features of the patients appear in table I. A
total of 11 people contribute, 7 female and 4 male, whose ages
range goes from 20 to 56 years old and that follow 2 different
treatments. 3 patients treat their blood sugar levels through
injecting multiple doses of insulin, and the other 8 wore a
continuous subcutaneal infuser of insulin. Their HBA1c value
ranges from 6.4 to 8.5, this value reflects their average blood-
glucose level for the last 3 months approximately, and can be
a reflection of how good their control has been on average, the



ID Gender Age IMC HBA1c Treatment Years
DMT1

HUPA001 F 56.3 22.76 8.2 ISCI 15.46
HUPA002 M 48.6 23.82 7.1 ISCI 36.47
HUPA003 F 43.4 18.72 7.3 ISCI 12.45
HUPA004 M 41.2 27.16 7.8 ISCI 8.5
HUPA005 F 20.9 22.57 6.9 ISCI 39.5
HUPA007 M 37.6 30.64 6.6 ISCI 10.1
HUPA011 F 35.0 23.92 7.8 ISCI 27.3
HUPA014 F 50.0 25.39 8.5 MDI 12.9
HUPA015 F 43.1 22.33 6.4 MDI 11.2
HUPA016 F 29.9 26.33 6.5 ISCI 20.1
HUPA027 M 26.4 22.21 7.0 MDI 23.7

TABLE I
CHARACTERISTICS OF THE PARTICIPANTS: ID, GENDER (M=MALE;

F=FEMALE), AGE, BMI, HBA1C, TREATMENT (MDI: MULTIPLES DOSES
OF INSULIN; ISCI. INFUSION SUBCUTANEAL CONTINUOUS OF

INSULIN)YEARS OF EVOLUTION OF DMT1.

recommended value is for it to be around 7 or less. However,
this value should not be taken as a reflection of a good control
as it is only an average and does not show the nuances of the
day to day values, which is what we are investigating in this
study.

As stated before, we separate the data into to different
files, one for training the models and the other for testing
the results. A clear difference in the volume of hypoglycemic
data versus non-hypoglycemic data has been observed in most
of the datasets. This is an inevitable reality, since most of the
patients should try to have less that 4% of their data values
falling in hypoglycemia, as a recommendation for a healthy
management of the glucose values. As a result, for some of
the patients we have a very small amount of values on which
train an individual model and for this reason we have tried
(and succeeded) to generate a general model that includes the
data from all the patients and observe how this model differs
from the individual one when testing on the individual patient
data.

Later, to expand on this idea, we have also generated a
general model excluding a couple of patients (HUPA001,
HUPA002 and HUPA003) and tested this one with all the data
from the patients that were not included in the training phase.

C. Results

All of the results shown have been performed over a 30-
minute prediction horizon, an example of a possible model we
might obtain is:

if((biggerThan((101.257-getVariable(1,k)),
20.272/getVariable(16,k)*76.250)

|| biggerThan(getVariable(67,k)/
getVariable(38,k) , 21.816))){

result=0;} else{result=1;}

Where getVariable(1,k) corresponds to Glucose(t), getVari-
able(16,k) to Glucose (t-50), getVariable(67,k) to Steps in (t-
45) and getVariable(38,k) to HeartRate in (t-65).

In table II we show the Mean, Median, Standard deviation
of the fitness and best Individual for the 30 runs for each
patient, for each algorithm used. On average, we can observe

that Dynamic Structured Grammatical Evolution gives slightly
better fitness results than the static one, this can be due to the
fact that the Static SGE contains all the possible values on
their chromosomes, the length is not variable, but a lot of
these alleles will not be used on the final phenotype, even
though they are going through mutation and crossover. On
the other hand, on the Dynamic SGE we have variable length
lists and, even though we might obtain longer lists through
crossover with another individual, that issue is much less
pronounced than with Static SGE. This fact provokes a more
effective evolutionary process and results in a better Mean
for the fitness over the 30 runs. In Fig. 2 and Fig. 3 we can
observe a graphical representation of this table using boxplots,
from the graphs we can infer that there is no significant
statistic variation between the performance of both algorithms.
Likewise, the individual with the best fitness (in training),
is not always found on the Dynamic SGE, and there is not
a significant difference between the performance of the best
individual found by both algorithms, as we will see in the next
table. The last two rows of the table show the values obtained
for the 2 general models we have tested on, the first one (All)
has been trained with the data of all the patients and the other
(All w/o 1,2,3) has been trained with the data of all except
the first 3 patients.

In table III we show the Recall (percentage of well classified
samples for each class over the total for each class) of the best
model obtained for each patient (on training) and the recall of
the general model, over the test data of each patient, the recall
percentage is given for both classes, Hypoglycemia and Not
Hypoglycemia.

Fig. 2. Boxplot for the best fitness of the 30 generations of the patients
HUPA001 to HUPA011.

Fig. 3. Boxplot for the best fitness of the 30 generations of the patients
HUPA014 to HUPA027 and the 2 general models.



TABLE II
STATISTICS: MEAN, MEDIAN, STANDARD DEVIATION AND BEST FITNESS FOR ALL THE MODELS WE HAVE TRAINED

Patient Algorithm Type Mean Median Standard deviation Best Fitness
HUPA001 Static 0.0185 0.0230 0.0070 0.0115
HUPA001 Dynamic 0.0123 0.1041 0.0066 0
HUPA002 Static 0.1023 0.0942 0.0063 0.0870
HUPA002 Dynamic 0.0952 0.0748 0.0063 0.0861
HUPA003 Static 0.0734 0.0739 0.0061 0.0519
HUPA003 Dynamic 0.0738 0.0462 0.0042 0.0651
HUPA004 Static 0.0466 0.0417 0.0068 0.0329
HUPA004 Dynamic 0.0416 0.1112 0.0045 0.0329
HUPA005 Static 0.1101 0.1010 0.0107 0.0869
HUPA005 Dynamic 0.1009 0.0646 0.0056 0.0869
HUPA007 Static 0.0628 0.0608 0.0036 0.0471
HUPA007 Dynamic 0.0569 0.0658 0.0080 0.0409
HUPA011 Static 0.0634 0.0588 0.0116 0.0395
HUPA011 Dynamic 0.0595 0.0354 0.0072 0.0462
HUPA014 Static 0.0363 0.0304 0.0056 0.0218
HUPA014 Dynamic 0.0283 0.0304 0.0050 0.0175
HUPA015 Static 0.0674 0.0686 0.0081 0.0508
HUPA015 Dynamic 0.0581 0.0597 0.0069 0.0417
HUPA016 Static 0.0900 0.0914 0.0068 0.0761
HUPA016 Dynamic 0.0857 0.0881 0.0075 0.0705
HUPA027 Static 0.1169 0.1167 0.0030 0.1117
HUPA027 Dynamic 0.1127 0.1128 0.0038 0.1047

All Static 0.1037 0.1047 0.0056 0.0951
All Dynamic 0.1006 0.0969 0.0056 0.0951

All w/o 1,2,3 Static 0.1042 0.1066 0.0052 0.0926
All w/o 1,2,3 Dynamic 0.0996 0.0969 0.0056 0.0936

TABLE III
COMPARISON OF THE RECALL OF THE INDIVIDUAL AND GENERAL MODEL FOR EACH PATIENT

Patient Algorithm Individual Models General Models
Recall Hypo Recall No Hypo Recall Hypo Recall No Hypo

HUPA001 Static 1. 000 0.9369 0.8824 0.964
HUPA001 Dynamic 0.9412 0.944 0.9412 0.956
HUPA002 Static 0.9067 0.8864 0.9422 0.8172
HUPA002 Dynamic 0.9067 0.8892 0.9644 0.8296
HUPA003 Static 0.9 0.9155 0.925 0.8848
HUPA003 Dynamic 0.8875 0.9184 0.95 0.8656
HUPA004 Static 0.9677 0.9356 0.957 0.9356
HUPA004 Dynamic 0.9677 0.9461 0.957 0.9368
HUPA005 Static 0.9118 0.8317 0.7941 0.9307
HUPA005 Dynamic 0.9706 0.8425 0.9412 0.9181
HUPA007 Static 0.9293 0.9074 0.9697 0.8959
HUPA007 Dynamic 0.9798 0.9131 0.9596 0.9054
HUPA011 Static 0.9032 0.9379 0.9032 0.9379
HUPA011 Dynamic 0.9032 0.9344 0.9032 0.9406
HUPA014 Static 0.9787 0.9195 0.9574 0.9634
HUPA014 Dynamic 0.9574 0.925 0.9574 0.9543
HUPA015 Static 0.9767 0.8654 0.907 0.929
HUPA015 Dynamic 0.9535 0.8986 0.907 0.9392
HUPA016 Static 0.9711 0.8462 0.9422 0.872
HUPA016 Dynamic 0.9595 0.8669 0.9595 0.8184
HUPA027 Static 0.8898 0.882 0.8898 0.8932
HUPA027 Dynamic 0.8857 0.8963 0.9116 0.8815

TABLE IV
COMPARISON OF THE RECALL FOR HUPA001, HUPA002 AND HUPA003 WITH THE GENERAL MODEL WITHOUT THESE PATIENTS AND THEIR

INDIVIDUAL MODELS

Patient Algorithm Individual Model General Model w/o P1 P2 P3
Recall Hypo Recall No Hypo Recall Hypo Recall No Hypo

HUPA001 Static 1. 0.9369 0.9483 0.9582
HUPA001 Dynamic 0.9412 0.944 0.9483 0.9585
HUPA002 Static 0.9067 0.8864 0.9454 0.814
HUPA002 Dynamic 0.9067 0.8892 0.9441 0.8119
HUPA003 Static 0.9 0.9155 0.9358 0.882
HUPA003 Dynamic 0.8875 0.9184 0.9358 0.8803



In Fig. 4 we can observe a graphical representation that
shows the boxplots for the 4 models, in it we can see that there
is no significant statistical variation between the individual
and general models. However, the main advantage of using
a general model in this case is that we can train it with a
lot more data, making it more robust, as some of the patients
don’t have a lot of hypoglycemic values to train with.

Fig. 4. Boxplot for the recall of the general and individual models

Fig. 5. Boxplot for the recall of the general model without HUPA001,
HUPA002 and HUPA003 and their respective individual models

In table IV we expand on the idea that the data from some
patients can be used to generate models that perform well
on other patients, whose data has not been included in the
training. On the table, we can see that the recall percentages
for the model on the three patients whose data we have not
included are not far from their respective Individual Models.
In Fig. 5 we observe once more the boxplots with the recall
of both models. Finally, an example of a convergence graph
over the 30 execution of the dynamic SGE is shown in Fig. 6.

This type of model creation might not work on all patients,
as glucose sensibility and variability can be very different
between people, but it is interesting to study as data to train
this type of models can be scarce due to the patient’s control
of their glucose values.

Fig. 6. Convergence Graph for all the population over the 30 execution of
the dynamic SGE.

V. CONCLUSIONS

In this paper, we investigated the performance of two types
of Structured Grammatical Evolution for the prediction of the
classification of future glucose values on a short prediction
horizon (30 minutes), with input data obtained automatically
(through a smartwatch and a CGM). We have also tested
the creation of a general model that can be applied to all
patients and how this model compares with the individual
ones. The main benefit is that the obtained models are very
understandable as they are comprised of an if-else statement
that performs the classification and uses the input data from
the patient to determine the resulting class.

In the future, we can test the performance of the algorithm
on a longer prediction horizon and perform a classification
with more than 2 classes. The study could also be extended
to predict states other than hypoglycemia based on other data
such as carbohydrates, insulin, stress data, etc. In addition, the
number of experiments can be expanded by adding data from
new patients.
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