
158

CryptOpt: Verified Compilation with Randomized Program

Search for Cryptographic Primitives

JOEL KUEPPER, University of Adelaide, Australia

ANDRES ERBSEN,Massachusetts Institute of Technology, USA

JASON GROSS,Massachusetts Institute of Technology, USA

OWEN CONOLY,Massachusetts Institute of Technology, USA

CHUYUE SUN, Stanford University, USA

SAMUEL TIAN,Massachusetts Institute of Technology, USA

DAVID WU, University of Adelaide, Australia

ADAM CHLIPALA,Massachusetts Institute of Technology, USA

CHITCHANOK CHUENGSATIANSUP, The University of Melbourne, Australia

DANIEL GENKIN, Georgia Institute of Technology, USA

MARKUS WAGNER,Monash University, Australia

YUVAL YAROM, Ruhr University Bochum, Germany

Most software domains rely on compilers to translate high-level code to multiple different machine languages,

with performance not too much worse than what developers would have the patience to write directly

in assembly language. However, cryptography has been an exception, where many performance-critical

routines have been written directly in assembly (sometimes through metaprogramming layers). Some past

work has shown how to do formal verification of that assembly, and other work has shown how to generate

C code automatically along with formal proof, but with consequent performance penalties vs. the best-

known assembly. We present CryptOpt, the first compilation pipeline that specializes high-level cryptographic

functional programs into assembly code significantly faster than what GCC or Clang produce, with mechanized

proof (in Coq) whose final theorem statement mentions little beyond the input functional program and the

operational semantics of x86-64 assembly. On the optimization side, we apply randomized search through the

space of assembly programs, with repeated automatic benchmarking on target CPUs. On the formal-verification

side, we connect to the Fiat Cryptography framework (which translates functional programs into C-like IR

code) and extend it with a new formally verified program-equivalence checker, incorporating a modest subset

of known features of SMT solvers and symbolic-execution engines. The overall prototype is quite practical,

e.g. producing new fastest-known implementations of finite-field arithmetic for both Curve25519 (part of the

TLS standard) and the Bitcoin elliptic curve secp256k1 for the Intel 12Cℎ and 13Cℎ generations.

CCS Concepts: • Software and its engineering→ Source code generation; • Security and privacy→

Public key (asymmetric) techniques; Logic and verification; • General and reference→ Performance;

Measurement; • Theory of computation→ Cryptographic primitives.

Additional Key Words and Phrases: elliptic-curve cryptography, assembly, search-based software engineering

Authors’ addresses: Joel Kuepper, University of Adelaide, Australia; Andres Erbsen, Massachusetts Institute of Technology,

USA; Jason Gross, Massachusetts Institute of Technology, USA; Owen Conoly, Massachusetts Institute of Technology, USA;

Chuyue Sun, Stanford University, USA; Samuel Tian, Massachusetts Institute of Technology, USA; David Wu, University

of Adelaide, Australia; Adam Chlipala, Massachusetts Institute of Technology, USA; Chitchanok Chuengsatiansup, The

University of Melbourne, Australia; Daniel Genkin, Georgia Institute of Technology, USA; Markus Wagner, Monash

University, Australia; Yuval Yarom, Ruhr University Bochum, Germany.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART158

https://doi.org/10.1145/3591272

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3591272

158:2 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

ACM Reference Format:

Joel Kuepper, Andres Erbsen, Jason Gross, Owen Conoly, Chuyue Sun, Samuel Tian, David Wu, Adam Chlipala,

Chitchanok Chuengsatiansup, Daniel Genkin, Markus Wagner, and Yuval Yarom. 2023. CryptOpt: Verified

Compilation with Randomized Program Search for Cryptographic Primitives. Proc. ACM Program. Lang. 7,

PLDI, Article 158 (June 2023), 25 pages. https://doi.org/10.1145/3591272

1 INTRODUCTION

Being a foundational pillar of computer security, cryptographic software needs to achieve three
often-competing aims. First, being security-critical, the software needs to be correct and protected
from implementation attacks. Second, because it is used frequently, it needs to be efficient. Third,
for migration to new architectures, the software needs to be portable. Implementations of crypto-
graphic code, therefore, must strike a trade-off between these needs. Implementations that aim for
portability tend to use high-level languages, such as Java or C. These allow for easy maintenance
and are essentially platform-independent, assuming the existence of suitable development tools
like compilers and assemblers.

At the same time, compiler-based code generation can be a double-edged sword. First, compiler-
produced cryptographic code tends to underperform when compared to hand-optimized code [Bern-
stein et al. 2013, 2014a,b, 2017; Chou 2015, 2016; Chuengsatiansup et al. 2013; Chuengsatiansup
and Stehlé 2019; Kannwischer et al. 2019], typically written directly in the platform’s assembly lan-
guage. Beyond slower performance, compilers are typically not designed for maintaining security
properties. In particular, compilation bugs could result in incorrect code [Erbsen et al. 2019, §V-B],
while overly aggressive optimizations may even strip side-channel protections [Barthe et al. 2018;
D’Silva et al. 2015; Kaufmann et al. 2016].
We note that the difficulties compilers have when operating over cryptographic code are not

caused by high code complexity. In fact, cryptographic code tends to be simpler than a typical
program code, due to its avoidance of data-dependent control flows and memory-access patterns for
reasons of side-channel resistance. Ironically, compiler optimization passes often focus on control
flow, as it offers higher impact than fine-tuning straight-line code [Aho et al. 1986].
Instead, the cause is that such code tends to be simpler than a typical program code, and this

simplicity deprives the compiler of optimization opportunities. At the same time, we observe that
such simplicity may offer opportunities for using strategies not commonly exploited by compilers,
such as reordering arithmetic operations within a basic block or exchanging machine instructions
with semantically equivalent machine instructions. Thus, our work starts from the question:

How can we exploit the simplicity of cryptographic primitives in order to generate efficient and provably

correct implementations of cryptographic functions?

1.1 Our Contribution

We present CryptOpt, a new code generator that produces highly efficient code tailored to the
architecture it runs on. The task is split between finding performant program variants and checking
that they have preserved program behavior. The former works via randomized search, and the latter
works via a formally verified program-equivalence checker that should be applicable even with
other optimization strategies. As a result, the randomized-search procedures need not be trusted,
and, when we compose them with the Fiat Cryptography Coq-verified compiler [Erbsen et al. 2019]
and our new equivalence checker (as shown in Figure 1), we get end-to-end functional-correctness
proofs for fast assembly code – faster than any code demonstrated for the cryptographic algorithms
we study, when compiling automatically from high-level programs as we do.

To find performant machine-code variants, instead of relying on human heuristics, CryptOpt
represents code generation as a combinatorial optimization problem. That is, CryptOpt considers

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

https://doi.org/10.1145/3591272

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:3

a solution space that consists of machine-code implementations of the target function and uses
techniques from the randomized-search domain to seek the best-performing implementation.

Fiat
Cryptography

Field
Parameters

Fiat IR Optimizer

Checker

Assembly

Fig. 1. Integration design. Boxes

represent individual components,

arrows represent data flow, and

filled boxes represent files. Op-

timizer and Checker are results

of this work. Fiat Cryptography

and Checker are formally veri-

fied.

To optimize, CryptOpt first chooses an arbitrary correct im-
plementation of the target function. It then mutates the imple-
mentation by either changing the instruction(s) that implements
a certain operation or changing the order of operations. If the mu-
tated implementation is not worse than the original, the mutated
implementation is kept; otherwise it is discarded.
Instead of trying to predict code performance like in work by

Joshi et al. [2002]; Schkufza et al. [2013], CryptOptmeasures actual
execution time. This approach is important because it avoids inac-
curacies inherent in hardware models and allowsCryptOpt to tailor
produced code to the target processor while treating the processor
itself as an opaque unit. A particular advantage of the approach
is that once manufacturers release new hardware, which changes
e.g. pipelining effects or caching behavior, CryptOpt adapts to it
automatically without requiring manual adaptation of hardware
models. This find-and-optimize approach is implemented by the
Optimizer component in Figure 1.
To check that generated code is correct, CryptOpt integrates

with Fiat Cryptography [Erbsen et al. 2019]. That framework, im-
plemented in Coq, already generates low-level IR programs proven
to preserve behavior of high-level functional programs, and it has been adopted by all major web
browsers and mobile platforms for small but important parts of their TLS implementations, so
there is high potential for impact improving performance further without sacrificing formal rigor.
CryptOpt begins with Fiat IR programs and generates x86-64 assembly code. To avoid needing to
model the randomized-search process, we instead build and prove an equivalence checker, which
can compare programs across Fiat IR and x86-64 assembly. Its two main pieces implement modest
subsets of features known from SMT solvers and symbolic-execution engines. From SMT solvers,
we take an E-graph data structure [Detlefs et al. 2005] to canonicalize logical expressions via
rewrite rules. From symbolic-execution engines, we take maintenance of symbolic states that tie
registers and symbolic memory locations to logical expressions known to the solver. Thanks to
their combined proof in Coq, none of these details need to be trusted. This checking is done by the
Checker component in Figure 1.

We evaluate CryptOpt using finite fields with nine different prime moduli. We use Fiat Cryptog-
raphy to generate the Fiat IR for the multiply and square operations for these fields. We then use
the CryptOpt optimizer to generate x86-64 assembly code for these operations and the equivalence
checker to verify that the code matches the Fiat IR. The produced x86-64 assembly code achieves
a mean speedup of 1.74 compared to GCC 12.1.0 (speedup 1.40 against Clang 15.0.6), across ten
different x86-64 platforms (four AMD, six Intel).
We further evaluate the CryptOpt optimizer as a stand-alone code generator. For that, we

create an input function from the C code of libsecp256k1 [Bitcoin Core 2021], feed it into the
CryptOpt optimizer, and obtain an average speedup of 1.04 against the hand-optimized assembly
code in libsecp256k1. As we do not have Fiat IR code matching libsecp256k1, we cannot use
the equivalence checker to verify the code we produce.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

158:4 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

1.2 Summary of Contributions

In summary, we make the following contributions in this paper:
• We present CryptOpt, a code generator that relies on combinatorial optimization instead of
compiler heuristics for producing highly efficient code (Section 5). This broad approach is shown
to apply to larger routines than past work has tackled successfully, while also being integrated
with formal verification for the first time.
• We demonstrate that a relatively modest Fiat Cryptography extension (Section 6) suffices to
enable integration with a wide range of backend compiler heuristics. We implemented and verified
Coq functional programs with a minimal subset of well-known features from SMT solvers and
symbolic-execution engines, leading to a single extractable compiler that checks assembly files
for semantic equivalence with high-level functional programs. To our knowledge, this is the first
such equivalence checker with mechanized proof from first principles.
• We generate formally verified high-performance cryptographic code optimized for ten CPU
architectures, obtaining considerable speedups over GCC and Clang (Section 7).

The source code for CryptOpt is available at https://github.com/0xADE1A1DE/CryptOpt.

2 BACKGROUND

In this section we present basic background required for the rest of the paper.

2.1 Random Local Search

A combinatorial optimization problem aims to find an optimal solution (e.g. one that minimizes
a given objective function) within a discrete set of candidate solutions. Random Local Search
(RLS) [Auger and Doerr 2011; Doerr and Neumann 2019] is a simple optimization strategy that is
often efficient and effective in finding local optima. A run of RLS starts from a random candidate
solution. It then applies a random mutation to the current candidate solution, generating another
solution within the possible solutions set. If the mutation improves (or does not deteriorate) the
solution, the mutated solution is kept, replacing the current candidate solution. Otherwise, the
mutation is discarded, and the current candidate solution remains unchanged. This mutation and
evaluation repeats until some predefined termination condition is satisfied.
RLS is often highly sensitive to the initial conditions, i.e. the candidate solution it starts from.

To address such erratic behavior, the simple Bet-and-Run heuristic [Fischetti and Monaci 2014;
Weise et al. 2019] turns the sensitivity to the initial conditions into an advantage by employing
multiple runs. A typical use of Bet-and-Run starts with multiple independent runs of RLS, each
optimizing for a predefined number of mutations. After this initialization step, the algorithm selects
the best run and lets this run continue optimizing from that step, stopping when a total number of
mutations is explored.

2.2 Finite-Field Arithmetic for Cryptography

We focus on elliptic-curve cryptography (ECC), which is used widely in Internet standards like TLS.
It involves certain geometric aspects that are orthogonal to our tooling, which supports arithmetic
modulo large prime numbers, otherwise known as finite-field arithmetic (FFA).
Because the FFA is a performance-critical component in the implementations, many tend to

implement it by hand. For instance, targeting different architectures, the ubiquitous cryptographic
library OpenSSL [OpenSSL 2022] has many hand-optimized implementations for Curve25519 and
NIST P-256, which are both well-known instantiations of ECC. The Bitcoin blockchain uses yet
another curve called secp256k1 for their block signatures. Its core library libsecp256k1 contains

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

https://github.com/0xADE1A1DE/CryptOpt

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:5

hand-optimized code for the field arithmetic as well as a C implementation used as a fallback in
architectures for which no optimized version exists.

FFA is not trivial to implement. In particular, a field element is typically represented by multiple
limbs using several CPU registers, and thus every field operation requires multiple CPU cycles.
However, these implementations tend to be straight-line code, heavy on arithmetic rather than
control flow, leading to ineffective optimization by standard compilers. Human experts instead
manually apply simultaneous instruction selection, instruction scheduling, and register alloca-
tion, which, going well beyond capabilities of off-the-shelf C compilers, should take into account
microarchitecture details such as macro-op fusion [Celio et al. 2016; Ronen et al. 2004], cache
prediction [Hooker and Eddy 2013; Lepak and Lipasti 2000; Subramaniam and Loh 2006], cache-
replacement policies [Vila et al. 2020], and other (potentially undocumented) microarchitectural
choices.

2.3 Fiat Cryptography

Erbsen et al. [2019] present the Fiat Cryptography framework, which translates descriptions of
field arithmetic into code with Coq proof of functional correctness. The starting point is a library
of functional programs that are used as templates for generating code for performing operations
in finite fields. These functional programs, which have been proven correct, can be specialized
with a specific prime order for generating an intermediate representation (Fiat IR) of the code that
performs field arithmetic operations for the required field.

In execution, Fiat Cryptography selects the functional program to specialize for the required field
size and produces provably correct Fiat IR. It then uses one of the available backends to process the
Fiat IR code and produce an implementation in one of the supported languages, including C, Java,
and Zig.

2.4 Equivalence Checking

Formally proved compilers are the gold standard to address concerns of optimization soundness.
For instance, CompCert [Leroy 2009; Leroy et al. 2016] was proved as a correct C compiler using
the Coq theorem prover, which we also rely on. However, proving a whole compiler can be very
labor-intensive, and thus it is often appealing to prove a checker for compiler outputs, known as a
translation validator. For instance, CompCert was extended in that way [Tristan and Leroy 2008].
To date, however, the formally proved translation validators have not incorporated reasoning with
algebraic properties of arithmetic, as we found we needed in CryptOpt.
In contrast, translation validation with SMT solvers uses rich reasoning to prove equivalence

between the high-level input program and the obtained low-level output. The Alive project [Lopes
et al. 2021] for LLVM is a good example. Compared to work with formally proved translation
validators, Alive and similar tools include much larger trusted bases, for instance including a full
SMT solver like Z3 [de Moura and Bjørner 2008]. Some SMT solvers have been extended to produce
proofs that can be checked in tools like Coq, as in SMTCoq [Armand et al. 2011].

In our experience, these tools hit performance bottlenecks when working with large bitvectors.
Even if we imagine those issues as fixed some day, there are still benefits to creating a customized
checker, keeping just the relevant aspects of SMT. A benefit of a slimmed-down custom prover is
that it becomes more feasible to prove the prover itself, rather than just a checker for its outputs,
which improves performance and reduces surprise from proof-generation bugs.

2.5 The E-graph

Following SMT-solver conventions [Detlefs et al. 2005], our E-graphs include nodes for equivalence
classes of symbolic expressions, in addition to the edges representing subterm relationships. Each

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

158:6 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

node is configured to present the most compact representation of its equivalence class. For instance,
whenever a node becomes provably equal to a constant, it is labeled with that constant, without
outgoing edges. When a node is most succinctly expressed as a sum, it is labeled with a “+” operator
and has edges to the other nodes being added.

1 Add: G + I + (~ ≫ 9) + ~

2: +(0, 1)
G + ~

0: G 1: ~

3: I
5:≫ (1, 4)
~ ≫ 9

4: 9

2 Add: G + I + (~ ≫ 9) + ~

2: +(0, 1)
G + ~

0: G 1: ~

3: I
5:≫ (1, 4)
~ ≫ 9

4: 9

3 Add: G + I + (~ ≫ 9) + ~

2: +(0, 1)
G + ~

0: G 1: ~

3: I
5:≫ (1, 4)
~ ≫ 9

4: 9

4
6: +(0, 1, 3, 5)

G + I + (~ ≫ 9) + ~

2: +(0, 1)
G + ~

0: G 1: ~

3: I
5:≫ (1, 4)
~ ≫ 9

4: 9

Add:

Fig. 2. Example of operations on an E-graph-style structure

Figure 2 animates a sim-
ple example. It steps through
stages of adding a new node
to the graph, representing the
new symbolic expression: (G +
I + (~ ≫ 9) + ~). Step 1 shows
the initial state. Nodes 2 and 5
are labeled with operators and
IDs of operands. To process the
expression we are evaluating,
we first look up existing graph
nodes for all of its leaf expres-
sions, as Step 2 shows. Then we
proceed bottom-up in the ex-
pression tree, finding an exist-
ing node or building a new one
for each subexpression. In this case, we next need to find a node for ~ ≫ 9, in Step 3. As we
resolved ~ to node 1 and 9 to node 4, we are able to search the DAG for a node already labeled
with operator ≫ and argument nodes 1 and 4, finding node 5. In the final step, Step 4, we need
to find a node for G + I + (~ ≫ 9) + ~. We have node IDs for all four operands of addition, and
we sort them by ID, taking advantage of associativity and commutativity of addition, to find a
canonical description of this node. No existing node has that description, so we add a new one.
The main complication absent from this example is normalization with rewrite rules going beyond
associativity and commutativity; the approach is parameterized on a set of such rules (which must
have proofs in Coq), and they are applied as each node of the input AST is processed.

3 RELATED WORK

With CryptOpt we combine several known techniques to generate fast and formally verified code.
We now sketch related work in the areas of genetic improvement (GI), optimal optimization pass
finding for off-the-shelf compilers, superoptimization, peephole optimization, translation validation
and computer-aided cryptography.

3.1 Genetic Improvement

CryptOpt applies GI, an area within search-based software engineering [Harman and Jones 2001]
that automatically searches out improved software versions. Genetic improvement is a relatively
young research field; its first survey appeared in 2018 [Petke et al. 2018]. Despite its youth, GI has al-
ready had real-world impact: maintainers have accepted GI patches into both open-source [Langdon
et al. 2015] and commercial [Haraldsson et al. 2017] projects.

CryptOpt utilizes GI in the code-generation phase to generate fastest code per-microarchitecture.
To the best of our knowledge, CryptOpt is the first automatic compiler to offer both this level of
microarchitecture-tuned performance (albeit for the limited domain of straight-line crypto code)
and the highest level of formal assurance (Coq verification of all compiler phases that matter for
soundness). However, related work has tackled some of the constituent challenges.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:7

Bosamiya et al. [2020] is most similar to CryptOpt as they also use GI to find fast code per-
architecture while being provably correct. The primary objective is to parse optimized x86-64 assem-
bly and then use verified transformations to transform it back into a clean form, which is then easier
to reason about. From those transformations, they selected the “prefetch insertion” and “instruction-
reordering” transformations and conducted a case study on using GI to find fast implementations
based on OpenSSL’s AES-GCM (which uses AES-NI instructions). Their approach can improve the
performance of existing code and verify the correctness of the produced code. Their starting point is
handwritten assembly code within a relatively shallow metaprogramming framework. In contrast,
we show that randomized search can be used as part of a fully automated pipeline that starts from
high-level functional programs, allowing us to generate fast code for multiple elliptic curves, not
just multiple target architectures from a single algorithm for Bosamiya et al. Generating the code
allows CryptOpt additional flexibility, with support for optimizing register allocation (in particular
spills to memory) and instruction selection. For example, using their reordering transformation,
they cannot substitute an add-using-overflow adox for an add-using-carry adcx, let alone have
those calculate two independent additions in parallel, because they only consider reads and writes
to the flag register in general, rather than the granularity of individual flags (i.e. read CF, write OF
are independent). CryptOpt also benefits from compatibility with Fiat Cryptography, which makes
code generation for finite fields for new primes easy.

3.2 Optimization-Pass Finding

Stephenson et al. [2003] and Peeler et al. [2022] both use GI to select and order existing optimization
passes of off-the-shelf compilers for optimal running time, where the former uses a simulated
running time (Trimaran [Chakrapani et al. 2005]) as the objective function and the latter uses the
actual running time. CryptOpt, however, is not bound by either applying or not applying those
fixed optimization passes from off-the-shelf compilers. Rather, it explores many different variations
for any particular code section and is also able to apply optimizations selectively at certain locations
and avoid using them at others.

3.3 Superoptimization

Massalin [1987] coined the term “superoptimizer” to describe a tool for exhaustive enumeration of
all possible programs to implement a given function. The key idea making this feasible is the use of
a probabilistic test set, which rejects the majority of incorrect candidates. At the time of writing, it
is able to generate programs of 12 instructions after several hours of running (on a 16MHz 68020
computer). Sasnauskas et al. [2017] present Souper, a tool to synthesize new optimizations on
the LLVM IR. Working on the IR, by design, they are unable to generate optimizations to exploit
target-specific code sequences.
Joshi et al. [2002] present Denali, a superoptimizer for very short programs. They model the

architecture of their processor (Alpha EV6) and use solvers to reject conjectures of the form
“No program can compute % in at most 8 cycles.” Combining this framing with a binary-search
algorithm, they end up with the most efficient program. Schkufza et al. [2013] present STOKE, a
superoptimizer which is able to synthesize and optimize programs. It combines correctness indicator
and performance into a cost function and then randomly (1) changes opcodes, (2) changes arguments,
(3) deletes instructions, and (4) inserts nops. By starting from scratch, they can find algorithmically
different solutions, which cannot be found by other superoptimizers. The resulting programs range
up to tens of instructions long. Subsequent work extends STOKE to optimize floating-point kernels
[Schkufza et al. 2014], optimize loops [Sharma et al. 2013], and more aggressively optimize kernels
based on verified runtime preconditions with cSTOKE [Sharma et al. 2015].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

158:8 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

While CryptOpt shares the idea of a randomized search with superoptimization approaches,
there are a few important differences between the two. First, superoptimization approaches, and in
particular STOKE, apply random changes to existing code, whereas CryptOpt aims to generate
the code from a high-level specification. Moreover, unlike superoptimization, CryptOpt only uses
semantics-preserving approaches. This significantly reduces the search space, allowing CryptOpt

to handle functions with hundreds and even thousands of instructions. As shown in Section 7.4,
superoptimizers tend to fail on the inputs that CryptOpt processes. Finally, superoptimizers tend
to use a model of the hardware for which they optimize the code. CryptOpt, in contrast, optimizes
to the actual hardware, allowing it to adapt to new hardware without the need to model the
microarchitecture of the new hardware.

3.4 Peephole Optimization

Peephole optimizers use a sliding window on instructions (the peephole) and replace sets of instruc-
tions with more performant instructions [Aho et al. 1986; Bergmann 2003; Cooper and Torczon
2012]. The replacement is usually done based on a predefined rule set (applying only to short
instruction sequences), which itself is based on heuristics for estimating which set of instructions
is shorter or more performant. Yet another approach is to find and learn good peephole optimiza-
tions automatically: Bansal and Aiken [2006] use machine-learning techniques to characterize
small sections of code. Then, based on those characteristics, they replace a code sequence with
a semantically equivalent one assumed to be more performant. While they only focus on small
sections (on the order of tens of instructions), Pekhimenko and Brown [2010] use machine-learning
techniques to characterize entire methods and then apply certain optimization transformations to
them. Similarly, CryptOpt considers the entire function as a whole, but rather than characterizing,
learning and applying that knowledge to new functions, CryptOpt considers each architecture and
function as a black box and eventually finds a fast implementation.

3.5 Verified Transformations

Instead of proving the correctness of the compiler, translation validation [Pnueli et al. 1998]
does not trust the compiler but verifies that the compiled code preserves the semantics of the
source. Bosamiya et al. [2020], as already mentioned, used their tool to transform optimized
(manually written) assembly code to easily verifiable code. Similarly, TInA [Recoules et al. 2019]
lifts inline assembly to semantically equivalent C code amenable to verification with known
tools. Only targeting the code for Curve25519, Schoolderman et al. [2021] used the Why3 proving
platform [Filliâtre and Paskevich 2013] to verify an 8-bit AVR implementation.

CryptoLine [Chen et al. 2014; Fu et al. 2019; Polyakov et al. 2018; Tsai et al. 2017] is an automatic
verification engine utilizing SMT solvers (BOOLECTOR) and computer-algebra systems (Singular),
applying to their own IR. The approach to validating assembly files is similar to ours. CryptoLine
has only worked via unverified translators from assembly languages to their IR, and the translator
must be trusted, unlike ours, though it likely accepts some correct programs that ours rejects.

Last, Sewell et al. [2013] go further and parse the binary code of the seL4-Linux microkernel and
transform it until they could prove equivalence to the already-verified C code.
We would like to emphasize that those works aim to verify existing implementations, whereas

CryptOpt generates them. Targeting a wide range of microarchitectures for performance optimiza-
tions manually would quickly become practically infeasible.

3.6 Real-World Applications of Computer-Aided Cryptography

Provably correct generated code is already deployed in important projects: all major web browsers
use finite-field code generated by Fiat Cryptography [Erbsen et al. 2019] (via Google’s BoringSSL and

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:9

other libraries), and Firefox includes routines arising from the more comprehensive efforts of Project
Everest [Bhargavan et al. 2017b], including compilation of nonstraightline code to C [Protzenko
et al. 2017], verified metaprogramming of assembly [Fromherz et al. 2019], tying it together in
the EverCrypt library [Protzenko et al. 2020], and even adding protocol verification [Bhargavan
et al. 2017a]. The Everest stack supports many different algorithms for the same functionality
(e.g. AES+GCM or ChaCha20+Poly1305 for authenticated encryption) and for each of those many
different hand-optimized implementations depending on platform and hardware. We already
mentioned the work of Bosamiya et al. [2020] on automatic program search, the only approach to
automatic assembly generation that we have seen in the Everest ecosystem, and it does not seem to
have been applied yet to elliptic curves. CryptOpt also has the usual advantage of proof-assistant
work, that, despite our usage of a stack of domain-specific tools, none of them need be trusted.

Belyavsky et al. [2020] published work on generating prime-agnostic point arithmetic in C using
verified field arithmetic from Fiat Cryptography and claim timing-side-channel-resistant code;
however, there is no formal verification of correctness or constant time.

4 CRYPTOPT OVERVIEW

Our aim is to strengthen Fiat Cryptography to both increase the performance of the produced code
and to decrease the size of the trusted code base. To that end, we implement two novel components
and integrate them with Fiat Cryptography as sketched in Figure 1.
The first component, the CryptOpt optimizer, is a new backend for Fiat Cryptography, which

ingests Fiat IR and produces x86-64 assembly code. A unique and novel property of the optimizer
is that instead of relying on classic compiler-optimization techniques, it draws on techniques from
the domain of evolutionary computation. Specifically, as illustrated in Figure 3, the CryptOpt

optimizer first randomly generates x86-64 assembly code that implements the input function. It
then repeatedly mutates the code and measures the execution time of both the original and the
mutated code, discarding the slower one. The process continues until a predefined computational
budget is used up.

Generate
Initial Code

Mutate

Measure

Worse
Performance?

No

Revert
Mutation

Yes

Fig. 3. Optimizer system archi-

tecture

The second component is a new program-equivalence checker,
which, given an original Fiat IR program and its optimized assem-
bly, is able to verify behavior preservation with no further hints (c.f.
Figure 1). It is codesigned with the CryptOpt optimizer to support
the same set of transformations, significantly reducing the complex-
ity compared to a generic equivalence checker. The checker itself
is implemented and verified in Coq. Thus, only Fiat Cryptography

and the checker are verified, whereas the optimizer itself need not
be trusted. While not trusted, the optimizer is designed to only use
semantics-preserving transforms. Thus, during normal operation,
we expect verification always to succeed.

The combination of these two components allows us to achieve
our aims. As we demonstrate, random search can generate code that
performs as well as hand-optimized code, significantly surpassing
the performance of compiler-produced code. At the same time,
the formally verified checker strengthens the unified theorems of
compilation to cover the whole span from functional programs to
x86-64 assembly instead of Fiat IR, removing the compiler from
the trusted code base.
While designed as a backend for Fiat Cryptography, CryptOpt

can operate as a stand-alone optimizer. To demonstrate this use

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

158:10 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

case, we transform a C implementation of field arithmetic to LLVM IR using Clang. (Specifically,
we use the C implementation of the Bitcoin libsecp256k1 library.) We then use a simple script to
translate the LLVM IR to the input format of CryptOpt and optimize it. Because the C code we use
is not formally verified, we skip the formal-verification aspect in this use case, focusing just on
further evaluation of the randomized optimizer.

Finally, we note that the generated code from Fiat Cryptography utilizes neither secret-dependent
memory accesses nor secret-dependent branching. Consequently, the code follows the constant-
time programming paradigm [Almeida et al. 2016], providing protection against microarchitectural
side-channel attacks [Ge et al. 2018].

Now we are ready to fill in the details of CryptOpt (randomized search in Section 5 and equiva-
lence checking in Section 6) and how we evaluated it (Section 7).

5 RANDOMIZED SEARCH FOR ASSEMBLY PROGRAMS

The first half of our approach is the CryptOpt optimizer, which generates highly performant x86-
64 assembly code that implements an input Fiat IR function. A unique feature of CryptOpt is that
instead of relying on heuristics for generating the code, CryptOpt explicitly casts the problem as a
combinatorial optimization problem. That is, we observe that searching the set of assembly code
sequences that implement a given input function is discrete. Hence, the problem of searching this
set for the assembly code sequence that minimizes execution time is a combinatorial optimization
problem.
For optimization, we employ the RLS strategy with the Bet-and-Run heuristics. Recall that for

RLS, we need to first choose a random solution and then repeatedly mutate the solution. While
RLS is a relatively simple approach for combinatorial optimization, we find that it is effective and,
as we show below, achieves good results. We leave the task of experimenting with more complex
optimization strategies to future work. In the rest of this section we present our approach for
generating and mutating solutions. We start with a description of the input format and then explain
how we generate and mutate code.

5.1 Input Format

Variable G
Binary integer 1

Operand 4 ::= G | 1
Operator > ::= ! | & | ∗ | + | − | << | = | >> | ∼ |

or | addcarryx | cmovznz | mulx |
static_cast | subborrowx

Expression � ::= return 4 | G, . . . , G ← > (4, . . . , 4) ;�

Fig. 4. Fiat IR syntax

Recall (Section 4) thatCryptOpt takes Fiat IR as
an input. This intermediate language is truly a
minimal one (see Figure 4), with the only note-
worthy syntactic twist being that integer con-
stants are presented as binary numbers (clearly
indicating bitwidth), though we will often ab-
breviate them in decimal form, when bitwidth
is clear from context. Operators may in general
take not just multiple operands but also generate multiple results, associated with less common
operators like addition with carry or multiplication producing double-wide results via two output
words.

Input programs contain no branches or explicit memory accesses, just accesses of local variables.
As a result, generated assembly programs will not be too much more complex, avoiding all memory
aliasing and restricting pointer expressions to be constant offsets of either function parameters (for
data structures passed by reference) or the stack pointer (for spilled variables). The assembly we
generate is timing-secure for the same reasons that Fiat IR is timing-secure; we only use primitive
program mutations that either preserve relevant behavior (the trace of program memory accesses
and control-flow decisions) or add new behaviors in ways independent of secrets (all memory

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:11

accesses are to constant offsets from either the stack pointer or arrays that are function parameters),
so by induction the initially secure programs are still secure after optimization.

Algorithm 1: An Ex-
ample Function
input :-,.,/ such that 0 ≤

-,.,/ < 263

output :$ = 264$1 +$0 =

/ 2 + (. + /) ·- + /

function example(-, ., /)
begin

C2, C1 ← Mul1 (/, /)
2∅, C0 ← Add1 (., /, 0)
C4, C3 ← Mul2 (C0, -)
20, C5 ← Add2 (C3, C1, 0)
21, $0 ← Add3 (C5, /, 0)
2∅, C6 ← Add4 (C4, C2, 20)
2∅, $1 ← Add5 (C6, 0, 21)
return$1, $0

end

- . /

Add1 Mul1

Mul2

Add2

Add3Add4

Add5

$1 $0

C0

C3

C1

C4

C2

20 C5

21C6

Fig. 5. Data flow of the running

example in Algorithm 1

Algorithm 1 shows a Fiat IR pro-
gram, which we will use through-
out this paper as a running exam-
ple. The program takes three in-
puts (-,., /) and outputs/ 2+(.+

/) · - + / using two types of op-
erations: Add and Mul. The oper-
ation Add adds two 64-bit num-
bers and one 1-bit carry, then re-
turns the sum as one 64-bit num-
ber and one 1-bit carry. The op-
eration Mul multiplies two 64-bit
numbers, then returns the 128-bit
product as two 64-bit words. For
simplicity, we assume that the ar-
guments are in the range 0 ≤ -, ., / < 263, allowing us to ignore some carries known to be 0. We
mark these carries with 2∅.
In the absence of memory aliasing and control flow, the restrictions on operation evaluation

order in the programs we optimize are captured by the data flow. Figure 5 shows the data-flow
graph of the code in Algorithm 1.

5.2 Code Generation

Mul1

Add1

Mul2

Add2

Add3

Add4

Add5

C0C1

C2C3
C4

C5

20

C6

21

Fig. 6. One ordering. Round

rectangles show the operations,

which are evaluated top-down.

Arrows indicate creation and

consumption of intermediate

values. Vertical bars show the

intervals in which an operation

can be scheduled.

The process of generating those assembly candidates can be under-
stood as split between instruction scheduling, instruction selection,
and register allocation, in that order. Each phase makes certain arbi-
trary decisions that may be changed by a later randommutation. We
summarize the phases here before returning to details of generation
and mutation.

First, for instruction scheduling (see Section 5.3), we use data-flow
analysis to determine the data-flow dependencies between opera-
tions and choose a random topological order of the dependency
graph as the initial order of operations in the code. Then, for in-
struction selection (see Section 5.4), each operation gets assigned
a compatible x86-64 assembly instruction template. Finally, in our
setting, register allocation (see Section 5.5) arises mostly in ensuring
compatibility with operand restrictions of the instruction templates
that were selected. For example, consider the objective to multiply

two values (one single instruction can at most read from one mem-
ory location), in a context where both operands reside in memory.
The relevant dimension of freedom is which value to load into a
register explicitly and into which register. After the decisions of the
three phases have been recorded, it is easy to read off the chosen
assembly program sequentially. Recall that all of these decisions
may be revisited later in random mutations.
To present details of the three phases, we focus on the example

program from Algorithm 1. Figure 6 shows how operations are

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

158:12 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

initially ordered and potential scheduling intervals; the mutations are shown in Figure 7; until
finally we see the emitted code with and without the effects of the mutations in Figure 8. We will
reference those illustrations later as needed.

5.3 Instruction Scheduling

I II

Mul1

Add1

Mul2

Add2

Add3

Add4

Add5

adcx

mulx

mulx

add

add

add

add

Mul1

Add1

Mul2

Add2

Add4

Add3

Add5

mulx

add

mulx

add

add

add

add

V

U

Fig. 7. I : Initial ordering of operations

(colored rounded rectangles) with at-

tached templates (black ellipses); II : Af-

ter two mutations U and V : mutation U

in topological ordering, mutation V in

instruction-template selection. Data-

flow arrows omi�ed; dashed arrows

indicate mutations.

Thanks to the simplicity of Fiat IR, every variable is assigned
exactly once in the straight-line programs that the CryptOpt
optimizer takes as input. Consequently, any operation can be
evaluated whenever all its inputs have been computed. In the
example,Mul2 can be evaluated when C0 and - are computed.

Initial Ordering. To create an initial ordering, the CryptOpt
optimizer simply computes a topological order of the data-
flow graph. Figure 6 shows an example of an initial ordering
for our running example. We would like to emphasize that
the selection does not rely on any heuristic. While this initial
selection does affect the subsequent mutated ordering, our
mutation strategy guarantees that any possible ordering can be
reached from any initial random starting point via a sequence
of mutation steps.

Mutation Step. An instruction-scheduling mutation step
randomly selects one operation in the current ordering. This
operation is moved to a randomly chosen location within the
interval where it would be valid to move: not before the last
assignment responsible for setting a variable that is used here
as an operand, nor after the first assignment that reads the
variable being set here. We begin with the ordering shown in
Figure 6. The vertical colored bars indicate the intervals where
the respective operations can be scheduled. Step U of Figure 7
shows the effect of moving Add4 up one position.

Selecting the position to move an operation to is biased to-
wards larger moves, i.e. further away from the initial position,
in an effort to minimize spills by minimizing distance between
computing a value and using it.

5.4 Instruction Selection

An important property of complex instruction sets such as x86-64 is that there can be multiple
alternative implementations for each high-level operation, each with slightly different semantics
and impact on the processor pipeline. To match machine instructions to operations, the CryptOpt
optimizer uses templates describing the possible implementations for each operation.

Consider, for example, the Add operation, which can be implemented using multiple instructions,
such as add, adcx, or adc. Though semantically equivalent, these choices influence program state
differently. For instance, in the case of no input carry (Add1−3), implementing an Add operation
using an adcx instruction requires clearing the carry flag. The template of the adcx instruction
accounts for that and issues a clear-carry instruction (clc) before the adcx instruction, unless
CryptOpt determines that the carry is already clear. Lines 6 and 7 of Figure 8 show this choice for
Add1.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:13

Initial Template Mapping. When creating the initial code, CryptOpt selects a random template
for each operation as an initial mapping. Figure 7 (I) shows an example of a possible mapping of
templates to the operations of our example function. The figure indicates the operationMul1 is
implemented using the mulx, Add1 uses adcx, and so forth.

Mutation Step. To mutate the instruction selection, CryptOpt chooses an operation at random
and replaces the template for that instruction with one alternative. Mutation V in Figure 7 shows an
example of replacing the template for Add1 to use the add instruction instead of the original adcx.

Flag Spills. The series of additions Add2, . . . ,Add5 show not only the influence of different
orderings on the resulting code but also how a template is used to handle flag spills. Consider
the code in Figure 8a where Add2 results in CF=20. Later on, Add3 needs to write its own CF=21.
Therefore, the current CF needs to be spilled (into another register). In this case, it does so with
setc dl (line 17). Similarly, Add4 then needs to spill 21 (line 22) to avoid overwriting it with its 2∅.

1 ; C2, C1 ← Mul1 (/, /)
2 mov rdx, [Z]

3 mulx r8, r9, [Z]

4

5 ; 2∅, C0 ← Add1 (., /, 0)
6 clc

7 adcx rdx, [Y]

8

9 ; C4, C3 ← Mul2 (C0, -)
10 mov [rsp], r8 ; spill

11 mulx r8, rdx, [X]

12

13 ; 20, C5 ← Add2 (C3, C1, 0)
14 add r9, rdx

15

16 ; 21, $0 ← Add3 (C5, /, 0)
17 setc dl ; dl← 20
18 add r9, [Z]

19 mov [$0], r9

20

21 ; 2∅, C6 ← Add4 (C4, C2, 20)
22 setc r9b ; r9b← 21
23 movzx rdx, dl

24 add rdx, [rsp]

25 add r8, rdx

26

27 ; 2∅, $1 ← Add5 (C6, 0, 21)
28 movzx r9, r9b

29 add r8, r9

30 mov [$1], r8

(a) Code from I (initial

code)

; C2, C1 ← Mul1 (/, /)
mov rdx, [Z]

mulx r8, r9, [Z]

; 2∅, C0 ← Add1 (., /, 0)

add rdx, [Y]

; C4, C3 ← Mul2 (C0, -)
mov [rsp], r8 ; spill

mulx r8, rdx, [X]

; 20, C5 ← Add2 (C3, C1, 0)
add rdx, r9

; 2∅, C6 ← Add4 (C4, C2, 20)

adc r8, [rsp]

; 21, $0 ← Add3 (C5, /, 0)

add rdx, [Z]

mov [$0], rdx

; 2∅, $1 ← Add5 (C6, 0, 21)

adc r8, 0

mov [$1], r8

(b) Code from II (code af-

ter two mutations)

Fig. 8. Emi�ed assembly code. Highlighted lines show

effects from mutations.

At this point (line 23),CryptOpt needs to add
the values of three operands, i.e. C4 + C2 + 20. As
the x86-64 assembly language does not have
a single three-operand addition instruction,
CryptOpt first adds two operands together then
adds the sum to the third one. Note that this
changes the evaluation order from C4 + C2 +20 to
(C2+20)+C4. As theAdd operation is associative
and commutative, any evaluation order main-
tains correctness. The equivalence checker ac-
counts for this change in evaluation order (see
Section 6.3).

Strength Reduction. Some of the templates
we use support limited forms of strength reduc-
tion. For example, we have templates to imple-
ment multiplication by a constant, including us-
ing a left-shift operation (i.e. G ×8 =⇒ G ≪ 3),
a series of multiplications and additions (i.e.
G × 5 =⇒ G × 2 + G), or a combination thereof.
The final template selection is left to the opti-
mizer.

5.5 Register Allocation

The register-allocation step of CryptOpt

achieves two aims. It must both decide which
values are assigned to registers and which registers to spill to memory when running out of registers.
CryptOpt uses randomized search for the former and a deterministic strategy for the latter.

Register Assignment. Registers need to be assigned in two main cases: when computing a new
value and when reading a value from memory, either from the input or following a register spill.
CryptOpt keeps track of the live registers, allocating a free register if one is available. If none
is available, CryptOpt spills the contents of a register to memory and uses the freed register. To
choose the register to spill, CryptOpt scans the future use of all registers and spills the register
whose next use is furthest based on the current operation order.

For example, lines 10–11 in Figure 8 implement the Mul2 operation. (For this example, we
assume that the architecture only has three general-purpose registers: r8, r9, and rdx.) At this

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

158:14 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

Inductive REG := rax | rcx | (∗ ...65 omitted... ∗) | r15b.

Inductive AccessSize := byte | word | dword | qword.

RecordMEM := { mem_bits_access_size : option AccessSize; mem_base_reg : option REG;

mem_scale_reg : option (Z ∗ REG); mem_base_label : option string; mem_offset : option Z }.

Inductive FLAG := CF | PF | AF | ZF | SF | OF.

Inductive OpPrefix := rep | repz | repnz.

Inductive OpCode := adc | adcx | add | adox | and | bzhi | call | clc | cmovb | cmovc | cmovnz | cmp

| db | dd | dec | dq | dw | imul | inc | je | jmp | lea | mov | movzx | mul | mulx | pop | push

| rcr | ret | sar | sbb | setc | seto | shl | shlx | shr | shrx | shrd | sub | test | xchg | xor.

Record JUMP_LABEL := { jump_near : bool; label-name : string }.

Inductive ARG := reg (r : REG) | mem (m : MEM) | const (c : Z) | label (l : JUMP_LABEL).

Record NormalInstruction := { prefix : option OpPrefix; op : OpCode; args : list ARG }.

Fig. 9. Syntax of Coq embedding of x86-64 assembly

point, registers r8, r9, rdx have been used for C2, C1, and C0, respectively. Hence, the need to spill a
register. Observing that C2 is not required until Add4, whereas C0 and C1 are used earlier, CryptOpt
spills r8 (line 10).

Memory Loads. Most arithmetic operations in the x86-64 architecture support instruction formats
that take one argument from memory. When an argument of an operation is in memory, CryptOpt
tries to use such an instruction format. When this is not possible, e.g. when the values of two
arguments are in memory, CryptOpt resorts to loading a value from memory into a register. In the
case of associative operations, such as addition and multiplication, CryptOpt initially randomly
chooses the value to load, though mutations may later alter the choice.

Exploiting Simplicity. Finally, we note that the absence of control flow and avoidance of human
heuristics are key enablers for memory-spill decisions. The former simplifies dependency analysis,
allowing CryptOpt to determine the requirements for downstream operations. The latter allows
CryptOpt to examine the entire function rather than focusing on instructions within a peephole
window, a technique commonly used by off-the-shelf compilers.

5.6 Objective-Function Evaluation

We compare different random program variants by running them on the actual processors of
interest. Controlling noise in running-time measurement is of utmost importance because with
too much noise, randomized search could be driven into unproductive oscillation. We found the
details of such measurement surprisingly difficult to get right. The full version of this paper gives
those details, which rely on running a chosen number of repetitions of the two candidate programs,
interleaved in a random order, then returning the median timing observed per program.

6 CHECKING PROGRAM EQUIVALENCE

Our goal with CryptOpt was to preserve or even strengthen the formal guarantees of Fiat Cryp-
tography. One way to achieve that goal would have been to verify the whole randomized-search
process with Coq, but we wanted to find a simpler strategy that would have the side benefit of also
potentially supporting automatic verification of various handwritten assembly solutions. There-
fore, we decided to write a program-equivalence checker in Coq and verify it. Industrial-strength
translation validation as in Alive [Lopes et al. 2021] is now well-established, but again, proving
such a tool from first principles would be a substantial undertaking. We were curious, instead, how

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:15

far we could get implementing (and proving) our checker from scratch, lifting just those features of
more conventional checkers that turned out to be important in our domain.
Figure 9 shows a nearly complete description of the x86-64 assembly syntax accepted by our

checker. For better error messages, some control-flow opcodes like jmp are included, though they
will always be rejected by the checker. This type of syntax trees is given a very standard semantics,
in the form of an interpreter as a Coq function. The simplicity of syntax and semantics is important,
since both are referenced by the final theorem for any specific compilation, while the syntax and
semantics of Fiat IR drop out of the picture as untrusted.

6.1 Code Verification

The best-performing implementation produced by CryptOpt is assured to be correct through a
formally verified equivalence checker. Specifically, we verify the correctness of CryptOpt’s output
through functional equivalence between programs in the Fiat IR and x86-64 assembly. We developed
simple symbolic-execution engines for the relevant subsets of both languages, producing program-
state descriptions in a common logical format. The next task is to check that function-output
registers and memory locations store provably equivalent values between the two programs. To
that end, we developed a simple equivalence theorem prover that borrows from SMT solvers, using
a similar (E-graph) data structure.
The public API connecting the checker’s two main components is based on the following

definition of expressions:

Integer constants =

Variables G

Operators >

Expressions 4 ::= = | G | > (4, . . . , 4)

The E-graph exposes a function internalize that takes in an expression and returns a variable
now associated with that expression’s value. Importantly, the expression will usually mention
variables that came out of previous calls, which lets us work with exponentially more compact
representations than if we expanded out all variables. The internal E-graph takes advantage of this
sharing for efficiency. Also, crucially, every internalize invocation proactively infers equalities
between previously considered expressions and the new expression and its subterms. Thus, we
may check two expressions for equality simply by verifying that internalize maps them to the
same variable, which becomes a chosen representative of an equivalence class of expressions.

6.2 Symbolic Execution

We built symbolic-execution engines for the two relevant languages, Fiat IR and x86-64 assembly.
The engine for the IR is simpler than for x86-64 assembly. Programs in this IR are just purely

functional sequences of variable assignments with expressions that effectively already match the
grammar we just gave. Thus, to evaluate such a program symbolically, we just maintain a dictionary
associating program variables to logical variables; the latter are effectively handles into the E-graph.
The execution engine for x86-64 assembly is moderately more complicated. Now the symbolic

state associates not program variables but registers and memory addresses with logical variables. We
take advantage of the stylized structure of cryptographic code to simplify the treatment of memory.
The only valid pointer expressions are constant offsets from either function parameters (standing
for cells within data structures passed to the function) or the stack pointer (standing for spilled
temporaries). Thus, it is appropriate to make the symbolic memory a dictionary keyed off of pairs
of logical variables and integers. The logical variable is the base address of an array in memory,
while the integer gives a fixed offset into one of its words.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

158:16 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

With this convention fixed, it is fairly straightforward to march through the instructions in a
program, updating the register and memory dictionaries with the results of internalize calls. The
symbolic executor effectively breaks each (possibly complex) x86 instruction down into multiple
simpler operations on integers. There are multiple operations because many instructions affect
both flags and their explicit destination registers. The explanations of those effects are expressions
from the grammar above, using a relatively small vocabulary of bitvector operators.
At the end of symbolic execution of an assembly function, we pull the output values out of

calling-convention-designated registers and memory locations. These can then be compared against
the explicit return value of a Fiat IR program. Both are expressed as logical variables connected to
a common E-graph, so they should be syntactically equal exactly when the E-graph found a proof
of equality. Importantly, both symbolic states are initialized with common logical variables.

6.3 Equivalence

Algorithm 2: Internalize expression into
the E-graph
input :Op an operator, Args its list of argument variables
output :=, a variable / graph node for the expression’s

equivalence class

function internalize(Op,Args)
begin

if Op is associative then
for argument 0 in Args do

if 0 is also labeled with Op then
Expand 0 in the list into its own
E-graph neighbors

end

end

end

if Op has identity element e then
Remove from Args any variable whose node is
labeled with constant 4 .

end

if Op is LowByte and len(Args) = 1 and Args[0] is labeled

with a constant below 28 then
return Args[0]

end

/* Many other algebraic rewrite rules */

if Op is commutative then
Sort Args by textual variable name.

end

for node = in the E-graph do
if n is labeled with Op and has Args as its edge list
then

return n
end

end

= ← new E-graph node;

=.label← Op;

=.edges← Args;
return =

end

Algorithm 2 presents the internalize algo-
rithm more generally. Without loss of gener-
ality, we assume it is called on an expression
that is an operator applied to a list of variables,
which are used as E-graph node names. To
internalize expressions with constants and/or
deeper nesting of operands, we can simply tra-
verse their trees bottom-up, internalizing each
node to obtain a variable (i.e. E-graph node) to
replace it with. Elided from the figure are ad-
ditional rewrite rules to complement the one
we include, which notices that an operation to
extract the low byte of a constant is extraneous,
when the constant is low enough. The algo-
rithm ends in a linear scan of the E-graph for
existing nodes matching the normalized input,
which perhaps surprisingly turned out to be
more than fast enough for our examples.
The actual implementation includes a gen-

eral range analysis to establish upper bounds
on variable nodes based on bounds on their in-
puts. This feature is used to elide truncations
whenever appropriate and to gate other rewrite
rules: for example, the carry bit resulting from
adding small numbers is always 0, and a sum
of a couple of carry bits fits in a byte.

Here it is interesting to note which standard
features of SMT-based verification tools did not
need to be implemented, saving us from need-
ing to prove their soundness. We incorporated no SAT-style management of case splits, nor did
we need to include specialized cooperating decision procedures for domains like arithmetic on
mathematical integers or bitvectors. It sufficed to stick to congruence-closure-style reasoning in
the theory of equality with uninterpreted functions, augmented with a modest pool of rewrite
rules, as SMT solvers are also often effective at applying. Note also that we omitted a central
complexity of E-graph implementations: merging nodes (usually through union-find algorithms)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:17

as it is discovered that they are equal. Our domain is simple enough that relevant equalities are
always discovered at node-creation time. As for symbolic execution, we avoided the characteristic
complexities of control flow (e.g. merging logical states) and memory access (e.g. flexible-enough
addressing that pointer aliasing is nontrivial to check).

6.4 Proof

We proved the Coq implementation of equivalence checking correct, in the sense that symbolically
executing an assembly (or IR) program produces an expression (E-graph) that would evaluate to
the same output as the original program from all starting states. A fairly direct corollary is our
main theorem: if two programs are symbolically executed with the same (symbolic) inputs and
produce outputs that are represented by the same E-graph nodes, then the programs are equivalent.
We combine the Fiat IR symbolic evaluator with the larger Fiat Cryptography pipeline, and we
verify it against the existing semantics of the IR, before extracting the pipeline to a command-line
program. That program takes as input a choice of cryptographic algorithm, its numeric parameters,
and an assembly file, and it checks that the assembly file matches the behavior of the algorithm, by
comparing it with the Fiat IR code (itself generated by a verified compiler).
It is important that the top-level theorem of the equivalence checker avoids mentioning any

specifics of symbolic execution or E-graphs, as those are relatively complex techniques. Instead,
that theorem refers only to formal semantics of Fiat IR and x86-64 assembly. Slightly more precisely,
we depend on the following preconditions, several of which we formalize using notations borrowed
from separation logic [Reynolds 2002].

• Calling-convention-designated registers hold input values, input-array base pointers, and
output-array base pointers.
• Input-array base pointers point to arrays in memory holding input values.
• Output-array base pointers are valid.
• rsp points to the end of the stack, which must be valid.

Then the main theorem concludes the following postconditions.

• Input-array base pointers are still valid.
• Output-array base pointers point to arrays in memory holding the output values.
• The stack base-pointer address is still a valid pointer to an array of the right size.
• Callee-save registers have the same values as before the code execution.
• All other memory is untouched.

A few other concerns must be stated in the full theorem, including that all source-program initial
variable values fit in machine words, arrays are laid out contiguously (the symbolic-execution
engine allows more flexible specification of memory contexts), and every array has a start address
stored directly in a register.

7 PERFORMANCE EVALUATION

In this section, we evaluate the performance of code produced by CryptOpt. Specifically, we answer
four main questions:
(1) How does optimization progress over time (Section 7.2)?
(2) How does CryptOpt compare with traditional compilation (Section 7.3)?
(3) Is CryptOpt optimization platform-specific (Section 7.5)?
(4) How does CryptOpt-optimized code perform as part of a cryptographic implementation

(Section 7.6)?
We first describe the setup and the procedures we use for the evaluation. We then describe the

experiments we carry out and their results.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

158:18 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

7.1 Experimental Setup

In this subsection, we describe the hardware platforms and discuss the generation of results through
optimization, plus the evaluation of which one is the best of all the results.

Table 1. Overview of target machines used in the

experiments

Name CPU `-architecture

1900X AMD Ryzen Theadr. 1900X Zen 1
5800X AMD Ryzen 7 5800X Zen 3
5950X AMD Ryzen 9 5950X Zen 3
7950X AMD Ryzen 9 7950X Zen 4
i7 6G Intel Core i7-6770HQ Skylake-H
i7 10G Intel Core i7-10710U Comet Lake-U
i9 10G Intel Core i9-10900K Comet Lake-S
i7 11G Intel Core i7-11700KF Rocket Lake-S
i9 12G Intel Core i9-12900KF Alder Lake-S
i9 13G Intel Core i9-13900KF Raptor Lake-S

Hardware Platforms. To compare across multiple
processor architectures, we evaluate CryptOpt on
multiple hardware platforms, summarized in Table 1.
We did not observe differences in optimization be-
havior on machines with SMT enabled or disabled.
We use Ubuntu Server 22.04.1 LTS for all machines,
with all packages up-to-date. Moreover, because per-
formance counters are not available on the efficiency
cores of the i9 12G and i9 13G, we only use the per-
formance cores on those machines.

Generation. Every platform has at least four phys-
ical cores. For a fair comparison, we run the same number of optimization processes in parallel on
all platforms. We pin the optimization processes to cores to reduce noise due to context switching.
We choose to run three optimizations in parallel, keeping one core free for general OS activity.
This results in three assembly files for each primitive per platform, of which we report only the
best-performing. The number of assembly instructions varies from 51 to 1281, depending on the
field, the operation, and how well the optimization went. See Table 2 for details.

Table 2. Instruction count (average

over all eight platforms)

Primitive Multiply Square

Curve25519 173.300 123.333

NIST P-224 226.967 222.233

NIST P-256 206.133 198.600

NIST P-384 580.400 570.300

SIKEp434 968.333 927.833

Curve448 550.133 359.467

NIST P-521 575.233 359.233

Poly1305 73.333 55.633

secp256k1 228.333 223.500

Bet-and-Run. Each optimization process has a budget of 200 000
mutations. In the bet stage, we explore 20 initial candidate so-
lutions, optimizing each for 1 000 mutations. Hence, overall, we
use 20 000 mutations, which are 10% of the total budget, for the
bet part. The remaining 180 000 mutations are used for the run
stage of the Bet-and-Run strategy. With those parameters, the
generation and verification of all of the 18 Fiat IR primitives takes
between 20 and 40 wall-clock hours, depending on the machine.

Code Verification. When combined with Fiat Cryptography,
the optimization process verifies that the code it produces is
equivalent to the Fiat IR code. We perform verification only on
the final output of the optimization. Table 3 shows the time it
takes to verify one assembly implementation as an average over the ten platforms.

Table 3. Verification times (average

over all ten platforms)

Primitive Multiply Square

Curve25519 0.29 B 0.18 B

NIST P-224 2.16 B 1.94 B

NIST P-256 1.07 B 0.95 B

NIST P-384 29.09 B 25.81 B

SIKEp434 315.23 B 284.32 B

Curve448 3.02 B 1.44 B

NIST P-521 3.14 B 1.46 B

Poly1305 0.07 B 0.06 B

secp256k1 1.78 B 1.65 B

Performance Metric. To compare the performance of differ-
ent implementations, we need a stable metric. To reduce system
noise we fix the CPU frequency, disable boosting, and set the
governor to performance. We note that we only apply these
settings when evaluating the performance but not during opti-
mization. For more details on this aspect of our experimental
setup, see the full version of this paper.

7.2 Optimization Progress

The first evaluation question we answer is how the optimization
progresses over time.We include details in the full version of this
paper, but a summary is that optimization progress is roughly
logarithmic in the number of mutations, with some interesting
differences in measurement stability across platforms.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:19

7.3 CryptOpt vs. Off-the-Shelf Compilers

To compare CryptOpt with traditional compilers, we use the implementations of finite-field arith-
metic as produced by Fiat Cryptography. Specifically, we use Fiat Cryptography to produce
implementations of the multiply and the square functions in nine fields. We consider prime fields
of the standardized NIST P curves: Curve P-224, Curve P-256, Curve P-384 and Curve P-521 [NIST
2000]. Moreover, we consider the field of the popular ‘Bitcoin’ curve secp256k1 [Certicom Re-
search 2000], the high-speed de-facto standard Curve25519 [Bernstein 2006], and a high-security
Curve448 [Hamburg 2015]. In addition to elliptic-curve cryptography, we apply our method to
the underlying fields of the post-quantum scheme SIKEp434 [Azarderakhsh et al. 2019] and of the
Poly1305 message-authentication scheme [Bernstein 2005]. It is worth noting that Erbsen et al.
[2019] reported that their generated C code was roughly the best-performing available for all
elliptic curves, up to the usual vagaries of C-compiler optimizers fluctuating in behavior across
versions, so it makes sense to use that C code as our performance baseline.

Table 4. Geometric means of CryptOpt vs. off-

the-shelf compilers.

Multiply Square

Curve Clang GCC Clang GCC

Curve25519 1.25 1.16 1.18 1.17

P-224 1.54 2.52 1.40 2.56

P-256 1.70 2.61 1.63 2.59

P-384 1.45 2.49 1.37 2.51

SIKEp434 1.70 2.43 1.73 2.39

Curve448 1.19 0.98 1.07 1.05

P-521 1.30 0.97 1.35 1.03

Poly1305 1.12 1.22 1.11 1.26

secp256k1 1.80 2.62 1.71 2.54

We run CryptOpt on each of the ten platforms
summarized in Table 1 and select the best result
as described in Section 7.1. Additionally, we com-
pile the equivalent C code, as produced by Fiat

Cryptography, with GCC 12.1.0 [GCC 2022] and
Clang 15.0.6 [Clang 2022]. We use the highest
optimization level the compilers support and en-
able native support using the compilation switches
-march=native -mtune=native -O3.

Table 4 shows a summary of the results. For each
function the table presents the geometric mean per-
formance gain of CryptOpt over GCC and Clang.
The mean is calculated over the different platforms;
see the full version of this paper for the full details.
The table shows that CryptOpt achieves signifi-

cant performance gains in the majority of functions.
The performance gains are somewhat more modest when the produced code does not require
any memory spills, as is the case for operations in the fields of Curve25519 and Poly1305. For the
large fields, as in P-521 and Curve448, CryptOpt is less successful, achieving modest gains for
the square function compared to GCC and slightly underperforming for multiply compared to
GCC. We note that the code produced for these curves is quite large. As an example, the resulting
x86-64 assembly files for Curve448-mul are in the range of 511–602 instructions and for P-521-mul
509–648 instructions depending on the platform. For comparison, Curve25519-mul is in the order
of 160–195 instructions and in the range of 66–83 for Poly1305-mul. We suspect that CryptOpt’s
simple mutations have less impact on the execution time for those big functions than what would
be needed to be measurable and direct the optimizer towards the optimal instruction sequences.
We leave more sophisticated genetic-improvement strategies for future work.

We further evaluated the impact of profile-guided optimization (PGO) on the performance of
code produced by the mainstream compilers. Specifically, we compiled the methods adding the
profiling option (-fprofile-generate in GCC and -fprofile-instr-generate in Clang). We
then ran each function in a tight loop for 10 000 iterations with random input, generating profile
traces. Lastly, to use the profile traces, we added the -fprofile-use switch (including one call to
llvm-profdata merge to create the correct format and the switch -fprofile-instr-use when

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

158:20 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

using Clang) to our compilation options. We then measured the performance of the code generated
from this last compilation.

Using PGO with Clang only changes the position of the code for the Curve25519 and P-521 fields
and only results in negligible performance changes. Using PGO with GCC improves the mean
performance by ∼2% over the whole set of functions. Notably, PGO improves the performance of
the SIKEp434 operations by ∼15%. In all tested functions, CryptOpt significantly outperforms GCC
even when used with PGO.

7.4 CryptOpt vs. Superoptimization

To compare CryptOpt to superoptimizers, we use STOKE [Schkufza et al. 2013]. STOKE supports
two operation modes: synthesize, where it aims to generate new code that performs the function;
and optimize, where it attempts to modify a function to find a faster alternative. Synthesize mode
failed to generate correct code from scratch even though we let it run for more than three days.
This is expected because in synthesize mode, STOKE aims for small kernels, whereas functions for
finite-field arithmetic are on the order of hundreds of instructions.

For the optimize mode, we compile our test functions with Clang 3.4 and GCC 4.9. (STOKE does
not support newer versions of these compilers.) We then try to optimize the assembly code that the
compilers emit.
In four of the prime fields (Curve25519, Poly1305, P-448 and P-521), the code produced by the

compilers uses the shrd instruction, which is not supported in STOKE due to the potential for
undefined behavior. For the remaining fields, in most optimization attempts, STOKE either times out
or emits assembly code that contains either syntactical errors that prevent it from being assembled
or logical errors that result in incorrect code.
We only managed to get results for the square function of secp256k1, when compiled with

GCC 4.9. When optimizing this function, STOKE produces code that is about 6% faster than the
output of compilation with GCC 11. However, the code is still 73% slower than the code that
CryptOpt produces for the same function.

7.5 Platform-Specific Optimization

CryptOpt optimizes the execution time of the function on the platform it executes on. Because
different platforms have different hardware components, the fastest code on one platform is not
necessarily the fastest on another. Surprisingly, sometimes it does pay off to optimize on a different
platform than the target, apparently when the host supports more stable performance measurement.
See the full version of this paper for details.

7.6 Scalar Multiplication

So far we have focused on the optimized functions in isolation. In this section, we investigate
the use of the field operations within the context of elliptic-curve cryptography. Specifically, we
investigate implementations of two popular elliptic curves: Curve25519 and secp256k1. We compare
the performance of 15 implementations of these curves, four of which use CryptOpt code for field
operations. In Table 5, we summarize the implementations we investigate.

State of the Art. For Curve25519, the SUPERCOP benchmark framework [Bernstein and Lange
2022] provides us withmany implementations: sandy2x [Chou 2015], amd64-51 and amd64-64 [Chen
et al. 2014], as well as donna and donna-c64 [Langley 2022]. OpenSSL [OpenSSL 2022] provides three
implementations: a portable C implementation that we identify as O’SSL, and two assembly-based
implementations, based on amd64-51 and amd64-64, which we identify as O’SSL fe-51 and O’SSL
fe-64, respectively. At runtime, OpenSSL chooses which implementation to use, opting by default

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:21

for O’SSL fe-64. Additionally, Project Everest [HACL 2022] provides an assembly implementation
in which the computations of two field operations are interleaved to achieve better utilization of
the CPU pipeline.
For secp256k1, we use two implementations from the libsecp256k1 library [Bitcoin Core 2021],

one hand-optimized assembly and the other portable C.

Table 5. Performance of Scalar Multiplication

(Geometric Mean).

Curve25519

Implementation Lang Cycles

sandy2x [Chou 2015] asm-v 486k

amd64-64 [Chen et al. 2014] asm 542k

amd64-51 [Chen et al. 2014] asm 546k

donna [Langley 2022] asm-v 972k

donna-c64 [Langley 2022] C 577k

O’SSL [OpenSSL 2022] C 530k

O’SSL fe-51 [OpenSSL 2022] asm 530k

O’SSL fe-51+CryptOpt asm 524k

O’SSL fe-64 [OpenSSL 2022] asm 455k

O’SSL fe-64+CryptOpt asm 461k

HACL* fe-64 [HACL 2022] asm 452k

secp256k1

Implementation Lang Cycles

libsecp256k1 [Bitcoin Core 2021] asm 547k

libsecp256k1 [Bitcoin Core 2021] C 530k

libsecp256k1+CryptOpt (Fiat) asm 527k

libsecp256k1+CryptOpt (Opt) asm 528k

CryptOpt-Based Implementations. For the com-
parison, we use four implementations with Crypt-

Opt-optimized code. Specifically, for Curve25519,
we replace the field operations in O’SSL-fe51 and
in O’SSL-fe64 with CryptOpt-optimized field op-
erations. We call these implementations O’SSL fe-
51+CryptOpt and O’SSL fe-64+CryptOpt, respec-
tively.

For secp256k1 we use two implementations. The
first, libsecp256k1+CryptOpt (Fiat), uses the scalar
multiplication code from libsecp256k1 with the
field operations as produced by Fiat Cryptography

and optimized with CryptOpt.
Additionally, to demonstrate the use of the Crypt-

Opt optimizer as a stand-alone tool, we use Clang
to compile the field operations of the portable
implementation of libsecp256k1 into LLVM IR,
which we convert to the input format of the Crypt-
Opt optimizer. We then use the latter to opti-
mize the code, replacing the field operations with
the optimized code. This implementation is called
libsecp256k1+CryptOpt (Opt).

Evaluation. We use the SUPERCOP benchmark framework [Bernstein and Lange 2022] to measure
the performance of the evaluated implementations. For each implementation, SUPERCOP tries
multiple combinations of compilers and compiler options and reports the execution time (for two
base-point multiplications and two variable-point multiplications) of the fastest compiler setting.
We evaluate each implementation on the ten hardware platforms (c.f. Table 1) and report the
geometric mean (rounded to the nearest 1000 cycles) in Table 5. (See the full version of this paper
for the full details.)

Results. Comparing CryptOpt with the similarly structured hand-optimized implementations
of OpenSSL fe-51 and fe-64, we find that the performance with and without CryptOpt is similar.
On average, CryptOpt generates slightly faster implementations for fe-51 and slightly slower
implementations for fe-64. Manual optimization of code requires significant expertise and a large
time investment, which needs to be repeated for each finite field. In contrast, using CryptOpt is
fairly straightforward and only requires moderate computing resources to achieve similar results.
CryptOpt also underperforms highly optimized implementations that use a different API (HACL*),
which we do not support yet.

For secp256k1, the libsecp256k1+CryptOpt (Fiat) implementation beats the performance of the
hand-tuned assembly, slightly outperforms the C compiled code, and provides verified formal
correctness. The libsecp256k1+CryptOpt (Opt) implementation achieves higher performance than
both the state-of-the-art and our verified implementation albeit slightly slower than the version
based on Fiat Cryptography.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

158:22 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

We leave the tasks of verifying the implementation for secp256k1 and emitting field operations
similar to the HACL* API to future work.

CryptOpt on New Hardware. When looking at the results on specific machines (more details in
the full version of this paper), we see thatCryptOpt excels on the i7 11G, i9 12G, and i9 13G platforms,
providing the overall fastest implementations for fe-64-based field operations. On these platforms,
CryptOpt-based implementations of Curve25519 and secp256k1 are the fastest, outperforming hand-
optimized implementations, including those that use advanced processor features, such as vector
instructions. The 12Cℎ generation of Intel processors is a major update of the microarchitecture.
We believe that CryptOpt’s automated search allows it to exploit the benefits of the new design
automatically. In contrast, prior implementations and mainstream compilers need to change to
adapt to these new features. We anticipate that in due course, implementations will be adapted to
the new design, and hand-tuned implementations will outperform CryptOpt. However, CryptOpt
does not require manual effort to adapt to new designs.

7.7 Artifacts

The artifact, on which the evaluation was done, is available at: https://zenodo.org/record/7710435,
with the DOI 10.5281/zenodo.7710435. The artifact includes instructions to reproduce the claimed
results in this paper. As of April 2023, the most up-to-date version of Fiat Cryptography can be
found in their repository at https://github.com/mit-plv/fiat-crypto, and up-to-date versions of
CryptOpt at https://github.com/0xADE1A1DE/CryptOpt.

8 CONCLUSION

We presented CryptOpt, a tool that brings a perhaps-surprising confluence of improving perfor-
mance and increasing formal assurance. It tackles the distinctive simplifications and complexities of
straight-line cryptographic code. We showed empirically that certain simplifications to established
techniques suffice to set new performance records for important routines on some relevant plat-
forms. In generation of fast code, we developed a simple set of transformation operators that make
genetic search effective. In checking of fast code with foundational mechanized proofs, we followed
SMT solvers and symbolic-execution engines, while avoiding their most complex aspects, like
arithmetic decision procedures or nontrivial pointer-aliasing checks. We hope that these techniques
can be generalized to other domains of compilation.

ACKNOWLEDGMENTS

Input from many anonymous reviewers has helped shaping this paper. We are grateful to all for
their work and valuable comments. In particular, we thank our shepherd, Yaniv David, for the
careful reading, guidance, and support.

This research was supported by the Air Force Office of Scientific Research (AFOSR) under award
number FA9550-20-1-0425; the Australian Research Council projects DE200101577, DP200102364
and DP210102670; the Blavatnik ICRC at Tel-Aviv University; CSIRO’s Data61; the Deutsche
Forschungsgemeinschaft (DFG, Germany’s Excellence Strategy) under Germany’s Excellence Strat-
egy EXC 2092 CASA - 390781972; the National Science Foundation under grants CNS-1954712
and CNS-2130671; the National Science Foundation Expedition on the Science of Deep Specifica-
tion (award CCF-1521584); the Phoenix HPC service at the University of Adelaide; and gifts from
Amazon Web Services, AMD, Facebook, Google, Intel and the Tezos Foundation.

Part of this work was carried out while Chitchanok Chuengsatiansup, Markus Wagner, and Yuval
Yarom were affiliated with the University of Adelaide, and while Chuyue Sun was affiliated with
the Massachusetts Institute of Technology.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

https://zenodo.org/record/7710435
https://github.com/mit-plv/fiat-crypto
https://github.com/0xADE1A1DE/CryptOpt

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:23

REFERENCES

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. 1986. Compilers: Principles, Techniques, and Tools. Addison-Wesley. 2, 8

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael Emmi. 2016. Verifying Constant-

Time Implementations. In USENIX Security. 53–70. https://www.usenix.org/conference/usenixsecurity16/technical-

sessions/presentation/almeida 10

Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and Benjamin Werner. 2011. A Modular

Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In CPP. 135–150. 5

Anne Auger and Benjamin Doerr (Eds.). 2011. Theory of Randomized Search Heuristics: Foundations and Recent Developments.

Series on Theoretical Computer Science, Vol. 1. World Scientific. 4

Reza Azarderakhsh, Matthew Campagna, Craig Costello, Luca De Feo, Basil Hess, Amir Jalali, Brian Koziel, Brian LaMac-

chia, Patrick Longa, Michael Naehrig, Geovandro Pereira, Joost Renes, Vladimir Soukharev, and David Urbanik. 2019.

Supersingular Isogeny Key Encapsulation – Submission to the NIST Post-Quantum Standardization Project, round 2.

https://sike.org 19

Sorav Bansal and Alex Aiken. 2006. Automatic generation of peephole superoptimizers. In ASPLOS. 394–403. 8

Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. 2018. Secure Compilation of Side-Channel Countermeasures: The

Case of Cryptographic “Constant-Time”. In CSF. 328–343. 2

Dmitry Belyavsky, Billy Bob Brumley, Jesús-Javier Chi-Domínguez, Luis Rivera-Zamarripa, and Igor Ustinov. 2020. Set It

and Forget It! Turnkey ECC for Instant Integration. In ACSAC. 760–771. 9

Seth D. Bergmann. 2003. Compilers. In Encyclopedia of Information Systems. 141–170. 8

Daniel J. Bernstein. 2005. The Poly1305-AES Message-Authentication Code. In FSE. 32–49. 19

Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In PKC. 207–228. 19

Daniel J. Bernstein, Tung Chou, and Peter Schwabe. 2013. McBits: Fast Constant-Time Code-Based Cryptography. In CHES,

Vol. 8086. 250–272. 2

Daniel J. Bernstein, Chitchanok Chuengsatiansup, and Tanja Lange. 2014a. Curve41417: Karatsuba Revisited. In CHES.

316–334. 2

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Peter Schwabe. 2014b. Kummer Strikes Back: New DH

Speed Records. In ASIACRYPT. 317–337. 2

Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Christine van Vredendaal. 2017. NTRU Prime: Reducing

Attack Surface at Low Cost. In SAC. 235–260. 2

Daniel J. Bernstein and Tanja Lange. 2022. eBACS: ECRYPT benchmarking of cryptographic systems. http://bench.cr.yp.to/

supercop/supercop-20221005.tar.xz 20, 21

Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. 2017a. Verified Models and Reference Implementations for

the TLS 1.3 Standard Candidate. In IEEE SP. 483–502. 9

Karthikeyan Bhargavan, Barry Bond, Antoine Delignat-Lavaud, Cédric Fournet, Chris Hawblitzel, Catalin Hritcu, Samin

Ishtiaq, Markulf Kohlweiss, Rustan Leino, Jay Lorch, Kenji Maillard, Jianyang Pang, Bryan Parno, Jonathan Protzenko,

Tahina Ramananandro, Ashay Rane, Aseem Rastogi, Nikhil Swamy, Laure Thompson, Peng Wang, Santiago Zanella-

Béguelin, and Jean-Karim Zinzindohoué. 2017b. Everest: Towards a Verified and Drop-in Replacement of HTTPS. In Proc.

SNAPL. https://project-everest.github.io/assets/snapl2017.pdf 9

Bitcoin Core. 2021. libsecp256k1 - Optimized C Library for ECDSA Signatures and Secret/Public Key Operations on Curve

secp256k1. https://github.com/bitcoin-core/secp256k1/blob/9526874d1406a13193743c605ba64358d55a8785/src/field_

5x52_int128_impl.h 3, 21

Jay Bosamiya, Sydney Gibson, Yao Li, Bryan Parno, and Chris Hawblitzel. 2020. Verified Transformations and Hoare Logic:

Beautiful Proofs for Ugly Assembly Language. In VSTTE. 106–123. 6, 8, 9

Christopher Celio, Palmer Dabbelt, David A. Patterson, and Krste Asanovic. 2016. The Renewed Case for the Reduced

Instruction Set Computer: Avoiding ISA Bloat with Macro-Op Fusion for RISC-V. arXiv 1607.02318. 5

Certicom Research. 2000. SEC 2: Recommended elliptic curve domain parameters, version 1.0. http://www.secg.org/SEC2-

Ver-1.0.pdf. 19

Lakshmi N. Chakrapani, John Gyllenhaal, Wen-mei W. Hwu, Scott A. Mahlke, Krishna V. Palem, and Rodric M. Rabbah.

2005. Trimaran: An Infrastructure for Research in Instruction-Level Parallelism. In Languages and Compilers for High

Performance Computing. 32–41. 7

Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and

Shang-Yi Yang. 2014. Verifying Curve25519 Software. In CCS. 299–309. 8, 20, 21

Tung Chou. 2015. Sandy2x: New Curve25519 Speed Records. In SAC. 145–160. 2, 20, 21

Tung Chou. 2016. QcBits: Constant-Time Small-Key Code-Based Cryptography. In CHES, Vol. 9813. 280–300. 2

Chitchanok Chuengsatiansup, Michael Naehrig, Pance Ribarski, and Peter Schwabe. 2013. PandA: Pairings and Arithmetic.

In Pairing, Vol. 8365. 229–250. 2

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://sike.org
http://bench.cr.yp.to/supercop/supercop-20221005.tar.xz
http://bench.cr.yp.to/supercop/supercop-20221005.tar.xz
https://project-everest.github.io/assets/snapl2017.pdf
https://github.com/bitcoin-core/secp256k1/blob/9526874d1406a13193743c605ba64358d55a8785/src/field_5x52_int128_impl.h
https://github.com/bitcoin-core/secp256k1/blob/9526874d1406a13193743c605ba64358d55a8785/src/field_5x52_int128_impl.h
http://www.secg.org/SEC2-Ver-1.0.pdf
http://www.secg.org/SEC2-Ver-1.0.pdf

158:24 Kuepper, Erbsen, Gross, Conoly, Sun, Tian, Wu, Chlipala, Chuengsatiansup, Genkin, Wagner, Yarom

Chitchanok Chuengsatiansup and Damien Stehlé. 2019. Towards Practical GGM-Based PRF from (Module-) Learning-with-

Rounding. In SAC. 693–713. 2

Clang. 2022. Clang: a C language family frontend for LLVM. https://clang.llvm.org 19

Keith D. Cooper and Linda Torczon. 2012. Chapter 11 - Instruction Selection. In Engineering a Compiler (Second Edition).

597–638. 8

Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS. 337–340. 5

David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: a theorem prover for program checking. J. ACM 52, 3 (2005),

365–473. 3, 5

Benjamin Doerr and Frank Neumann. 2019. Theory of evolutionary computation: Recent developments in discrete optimization.

Springer. 4

Vijay D’Silva, Mathias Payer, and Dawn Xiaodong Song. 2015. The Correctness-Security Gap in Compiler Optimization. In

IEEE SP Workshops. 73–87. 2

Andres Erbsen, Jade Philipoom, Jason Gross, Robert Sloan, and Adam Chlipala. 2019. Simple High-Level Code for Crypto-

graphic Arithmetic - With Proofs, Without Compromises. In IEEE SP. 1202–1219. 2, 3, 5, 8, 19

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where Programs Meet Provers. In ESOP. 125–128. 8

Matteo Fischetti and Michele Monaci. 2014. Exploiting Erraticism in Search. Operations Research 62, 1 (2014), 114–122. 4

Aymeric Fromherz, Nick Giannarakis, Chris Hawblitzel, Bryan Parno, Aseem Rastogi, and Nikhil Swamy. 2019. A verified,

efficient embedding of a verifiable assembly language. In POPL. 63:1–63:30. 9

Yu-Fu Fu, Jiaxiang Liu, Xiaomu Shi, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. 2019. Signed Cryptographic

Program Verification with Typed CryptoLine. In CCS. ACM, 1591–1606. 8

GCC. 2022. GCC, the GNU Compiler Collection. https://gcc.gnu.org 19

Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2018. A survey of microarchitectural timing attacks and counter-

measures on contemporary hardware. J. Cryptogr. Eng. 8, 1 (2018), 1–27. 10

HACL. 2022. HACL. https://github.com/hacl-star/hacl-star 21

Mike Hamburg. 2015. Ed448-Goldilocks, a new elliptic curve. IACR Cryptology ePrint Archive 2015 (2015), 625. 19

Saemundur O. Haraldsson, John R. Woodward, Alexander E. I. Brownlee, and Kristin Siggeirsdottir. 2017. Fixing bugs in

your sleep: how genetic improvement became an overnight success. In GECCO (Companion). 1513–1520. 6

Mark Harman and Bryan F. Jones. 2001. Software engineering using metaheuristic innovative algorithms: workshop report.

Inf. Softw. Technol. 43, 14 (2001), 905–907. 6

Rodney E. Hooker and Collin Eddy. 2013. Store-to-load forwarding based on load/store address computation source

information comparisons. US Patent 8533438. 5

Rajeev Joshi, Greg Nelson, and Keith H. Randall. 2002. Denali: A Goal-directed Superoptimizer. In PLDI. ACM, 304–314. 3, 7

Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. 2019. Faster Multiplication in Z2< [G] on Cortex-M4 to Speed

up NIST PQC Candidates. In ACNS. 281–301. 2

Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay, and Karine Villegas. 2016. When Constant-Time Source Yields

Variable-Time Binary: Exploiting Curve25519-donna Built with MSVC 2015. In CANS. 573–582. 2

William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark Harman. 2015. Improving CUDA DNA Analysis Software

with Genetic Programming. In GECCO. 1063–1070. 6

Adam Langley. 2022. Curve25519-donna. https://github.com/agl/curve25519-donna 20, 21

Kevin M. Lepak and Mikko H. Lipasti. 2000. On the value locality of store instructions. In ISCA. 182–191. 5

Xavier Leroy. 2009. A Formally Verified Compiler Back-end. J. Autom. Reason. 43, 4 (2009), 363–446. 5

Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and Christian Ferdinand. 2016. CompCert

— A Formally Verified Optimizing Compiler. In ERTS. 5

Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. 2021. Alive2: bounded translation

validation for LLVM. In PLDI. 65–79. 5, 14

Henry Massalin. 1987. Superoptimizer - A Look at the Smallest Program. In ASPLOS. ACM Press, 122–126. 7

NIST. 2000. FIPS PUB 186-2: Digital signature standard. 19

OpenSSL. 2022. OpenSSL. https://www.openssl.org/ 4, 20, 21

Hannah Peeler, Shuyue Stella Li, Andrew N. Sloss, Kenneth N. Reid, Yuan Yuan, and Wolfgang Banzhaf. 2022. Optimizing

LLVM Pass Sequences with Shackleton: A Linear Genetic Programming Framework. arXiv 2201.13305. 7

Gennady Pekhimenko and Angela Demke Brown. 2010. Efficient Program Compilation Through Machine Learning

Techniques. In Software Automatic Tuning, From Concepts to State-of-the-Art Results. Springer, 335–351. 8

Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon, David Robert White, and John R. Woodward.

2018. Genetic Improvement of Software: A Comprehensive Survey. IEEE Trans. Evol. Comput. 22, 3 (2018), 415–432. 6

Amir Pnueli, Michael Siegel, and Eli Singerman. 1998. Translation Validation. In TACAS. 151–166. 8

Andy Polyakov, Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. 2018. Verifying Arithmetic Assembly Programs in

Cryptographic Primitives (Invited Talk). In CONCUR (LIPIcs, Vol. 118). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

https://clang.llvm.org
https://gcc.gnu.org
https://github.com/hacl-star/hacl-star
https://github.com/agl/curve25519-donna
https://www.openssl.org/

CryptOpt: Verified Compilation with Randomized Program Search for Cryptographic Primitives 158:25

4:1–4:16. 8

Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel, Marina Polubelova, Karthikeyan Bhargavan,

Benjamin Beurdouche, Joonwon Choi, Antoine Delignat-Lavaud, Cédric Fournet, Natalia Kulatova, Tahina Ramananandro,

Aseem Rastogi, Nikhil Swamy, Christoph M. Wintersteiger, and Santiago Zanella Béguelin. 2020. EverCrypt: A Fast,

Verified, Cross-Platform Cryptographic Provider. In IEEE SP. 983–1002. 9

Jonathan Protzenko, Jean Karim Zinzindohoué, Aseem Rastogi, Tahina Ramananandro, Peng Wang, Santiago Zanella

Béguelin, Antoine Delignat-Lavaud, Catalin Hritcu, Karthikeyan Bhargavan, Cédric Fournet, and Nikhil Swamy. 2017.

Verified low-level programming embedded in F*. Proceedings of the ACM on Programming Languages 1 (2017), 1 – 29. 9

Frédéric Recoules, Sébastien Bardin, Richard Bonichon, Laurent Mounier, and Marie-Laure Potet. 2019. Get Rid of Inline

Assembly through Verification-Oriented Lifting. In 2019 34th IEEE/ACM International Conference on Automated Software

Engineering (ASE). 577–589. https://doi.org/10.1109/ASE.2019.00060 8

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. 17

Ronny Ronen, Alexander Peleg, and Nathaniel Hoffman. 2004. System and method for fusing instructions. US Patent

6675376B2. 5

Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen Ketema, Jubi Taneja, and John Regehr. 2017. Souper: A

Synthesizing Superoptimizer. CoRR abs/1711.04422 (2017). 7

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic superoptimization. In ASPLOS. ACM, 305–316. 3, 7, 20

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic optimization of floating-point programs with tunable

precision. In PLDI. ACM, 53–64. 7

Marc Schoolderman, Jonathan Moerman, Sjaak Smetsers, and Marko C. J. D. van Eekelen. 2021. Efficient Verification of

Optimized Code - Correct High-Speed X25519. In NFM. 304–321. 8

Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. 2013. Translation validation for a verified OS kernel. In

PLDI. 471–482. 8

Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, and Alex Aiken. 2013. Data-driven equivalence checking. In OOPSLA.

ACM, 391–406. 7

Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, and Alex Aiken. 2015. Conditionally correct superoptimization. In

OOPSLA. ACM, 147–162. 7

Mark Stephenson, Una-May O’Reilly, Martin C. Martin, and Saman P. Amarasinghe. 2003. Genetic Programming Applied to

Compiler Heuristic Optimization. In EuroGP. 238–253. 7

Samantika Subramaniam and Gabriel H. Loh. 2006. Fire-and-Forget: Load/Store Scheduling with No Store Queue at All. In

MICRO. 273–284. 5

Jean-Baptiste Tristan and Xavier Leroy. 2008. Formal verification of translation validators: a case study on instruction

scheduling optimizations. In POPL. 17–27. 5

Ming-Hsien Tsai, Bow-Yaw Wang, and Bo-Yin Yang. 2017. Certified Verification of Algebraic Properties on Low-Level

Mathematical Constructs in Cryptographic Programs. In CCS. ACM, 1973–1987. 8

Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. 2020. CacheQuery: learning replacement policies from hardware

caches. In PLDI. 519–532. 5

Thomas Weise, Zijun Wu, and Markus Wagner. 2019. An Improved Generic Bet-and-Run Strategy with Performance

Prediction for Stochastic Local Search. In AAAI. 2395–2402. 4

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 158. Publication date: June 2023.

https://doi.org/10.1109/ASE.2019.00060

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Summary of Contributions

	2 Background
	2.1 Random Local Search
	2.2 Finite-Field Arithmetic for Cryptography
	2.3 Fiat Cryptography
	2.4 Equivalence Checking
	2.5 The E-graph

	3 Related Work
	3.1 Genetic Improvement
	3.2 Optimization-Pass Finding
	3.3 Superoptimization
	3.4 Peephole Optimization
	3.5 Verified Transformations
	3.6 Real-World Applications of Computer-Aided Cryptography

	4 CryptOpt Overview
	5 Randomized Search for Assembly Programs
	5.1 Input Format
	5.2 Code Generation
	5.3 Instruction Scheduling
	5.4 Instruction Selection
	5.5 Register Allocation
	5.6 Objective-Function Evaluation

	6 Checking Program Equivalence
	6.1 Code Verification
	6.2 Symbolic Execution
	6.3 Equivalence
	6.4 Proof

	7 Performance Evaluation
	7.1 Experimental Setup
	7.2 Optimization Progress
	7.3 CryptOpt vs. Off-the-Shelf Compilers
	7.4 CryptOpt vs. Superoptimization
	7.5 Platform-Specific Optimization
	7.6 Scalar Multiplication
	7.7 Artifacts

	8 Conclusion
	Acknowledgments
	References

