Evolutionary Algorithms for the Design of Quantum Protocols

Walter O. Krawec¹ Stjepan Picek² Domagoj Jakobovic³

1: Department of Computer Science & Engineering, University of Connecticut, Storrs CT 06269, USA

- 2: Cyber Security Research Group, Delft University of Technology, Mekelweg 2, Delft, The Netherlands
- 3: Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

Quantum Key Distribution (QKD)

- Allows two users Alice (A) and Bob (B) to establish a shared secret key
- Secure against an all powerful adversary
 - Does not require any computational assumptions
 - Attacker bounded only by the laws of physics
 - Something that is not possible using classical means only
- Very practical technology today...!
 - And in the future will play an even more important role.

QKD in **Practice**

- Several companies produce commercial QKD equipment
 - Qubitekk, ID Quantique, Toshiba, Quintessence Labs

QKD in **Practice:** Freespace

Bob

http://spie.org/newsroom/5189-free-space-laser- 4 system-for-secure-air-to-ground-quantumcommunications

Our Work

- Typically, QKD protocols are designed and then analyzed to determine which channels they are secure over
 - e.g., six-state BB84 can tolerate up to 12.6% error on a symmetric channel
- But none of these protocols are necessarily optimal for certain attacks
- What happens if you invest in this technology, and find the quantum channel is "too noisy" to support standard protocols?

Our Work

- We propose a system that creates optimized protocols for a given channel
- Start with a particular quantum channel
 - Measure its noise though standard quantum tomography to produce a noise signature
 - This noise signature helps identify the type of attack being launched – or just natural noise

Our Work

- We propose a system that creates optimized protocols for a given channel
- Start with a particular quantum channel
 - Measure its noise though standard quantum tomography to produce a noise signature
 - This noise signature helps identify the type of attack being launched – or just natural noise

7

- Then, use an evolutionary algorithm to design a secure QKD protocol **optimized** to run over this channel
- Users then configure their devices to implement the protocol

(B) The result is equal to or better than a result that was accepted as a new scientific result at the time when it was published in a peer-reviewed scientific journal.

We find different protocols **equaling** the human-made BB84 on symmetric channels.

(D) The result is publishable in its own right as a new scientific result — independent of the fact that the result was mechanically created.

We find new protocols with different elements **achieving** the **optimal result**.

(E) The result is equal to or better than the most recent human-created solution to a long-standing problem for which there has been a succession of increasingly better human-created solutions.

We find asymmetric noise protocols that **outperform** the humanmade designs.

Noise signature	Our solutions	s BB humai	84 (Optimal n–made desig	ŋn)		
1%	.864	.864				
5%	.497	.497	Channel #) # دما	Our	BB84
10%	.152	.152	C1·	066	ulions	0 (Abort)
12%	.035	.035		.000		O(Abort)
			CZ.	'OTO'		

(F) The result is equal to or better than a result that was considered an achievement in its field at the time it was first discovered.

Our solutions are at least as good as state of the art protocols and **better** on certain asymmetric channels.

(G) The result solves a problem of indisputable difficulty in its field.

Designing efficient QKD protocols along with **constrained** gate sets is an **extremely difficult** problem.

Noise signature	Our solutions	s BB84 human–	1)		
1%	.864	.864			
5%	.497	.497	Channel #	Our	BB84
10%	.152	.152	<u>C1</u> .		O(Abort)
12%	.035	.035		000	U (ADUIT)
			C2: .	018	0 (Abort)

Closing Remarks

- We showed how evolution strategies may be used to evolve QKD protocols as circuits
 - Our algorithm can take into account user-specified restrictions (e.g., gate set available and aux. wires)
- Our method finds protocols matching the optimal BB84 on symmetric channels
- We also find protocols that can operate over channels where ordinary, **human designed**, protocols simply fail