
Introduction
Our Approach

Results
Conclusion

Evolving Algebraic Constructions for Designing
Bent Boolean Functions

Stjepan Picek and Domagoj Jakobovic

KU Leuven, ESAT/COSIC and iMinds, Belgium

Faculty of Electrical Engineering and Computing, Croatia

6th July 2016

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Outline

1 Introduction
Introduction
Motivation

2 Our Approach
Designing constructions

3 Results
Human competitive results
Perspectives

4 Conclusion

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Introduction
Motivation

Relevance of the problem

Boolean functions are widely used in cryptography, sequences,
and coding theory.

Obtaining new functions as well as new constructions is an
interesting problem.

Since the search space is very large (22n) exhaustive search is
virtually impossible for sizes larger than five.

From the practical perspective we are interested in much
larger functions (in cryptography, at least 13 inputs).

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Introduction
Motivation

Relevance of the problem

There are algebraic constructions, random search, and
heuristics.

Furthermore, all constructions are either primary or secondary.

There exists only a few algebraic constructions for generating
(bent) Boolean functions.

The last such construction was introduced around 2006.

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Introduction
Motivation

Motivation

The evolutionary community has been very interested in the
problem of obtaining Boolean functions of certain sizes and
properties.

For smaller sizes of Boolean functions, EC is extremely
competitive when compared with algebraic constructions.

However, for larger sizes the search space is too big and the
usual encodings too inefficient to obtain top results.

Therefore, we aim to combine the best of the algebraic
constructions and heuristics worlds.

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Designing constructions

Relevance of the problem

Instead of evolving bent Boolean functions, we evolve
algebraic constructions that result in bent functions.

Completely novel approach.

To that end, we use Genetic Programming technique.

Simple fitness functions, small function set.

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Human competitive results
Perspectives

Comparison with other approaches

Our technique offers extremely fast generation of a large
number of bent Boolean functions.

With our approach the problem is “easy”, i.e., it scales for any
size, which is not the case with the random search and other
heuristics.

Our approach on average requires only several thousands of
evaluations in order to reach good construction.

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Human competitive results
Perspectives

Comparison with other approaches

To generate bent Boolean functions with 16 inputs we require
less than one minute on a single computer core.

To generate bent Boolean functions with 18 inputs we require
several minutes on a single computer core.

PPSN 2014 paper (Humies 2014 bronze award) for 16 inputs
bent Boolean functions requires on average around 600
seconds on a 40-node parallel environment.

Furthermore, the authors state that their approach is able to
find 18 inputs bent Boolean functions.

We used our approach for finding bent Boolean functions up
to 30 inputs.

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Human competitive results
Perspectives

Comparison with other approaches

To generate bent Boolean functions with 16 inputs we require
less than one minute on a single computer core.

To generate bent Boolean functions with 18 inputs we require
several minutes on a single computer core.

PPSN 2014 paper (Humies 2014 bronze award) for 16 inputs
bent Boolean functions requires on average around 600
seconds on a 40-node parallel environment.

Furthermore, the authors state that their approach is able to
find 18 inputs bent Boolean functions.

We used our approach for finding bent Boolean functions up
to 30 inputs.

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Human competitive results
Perspectives

Comparison with other approaches

To generate bent Boolean functions with 16 inputs we require
less than one minute on a single computer core.

To generate bent Boolean functions with 18 inputs we require
several minutes on a single computer core.

PPSN 2014 paper (Humies 2014 bronze award) for 16 inputs
bent Boolean functions requires on average around 600
seconds on a 40-node parallel environment.

Furthermore, the authors state that their approach is able to
find 18 inputs bent Boolean functions.

We used our approach for finding bent Boolean functions up
to 30 inputs.

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Human competitive results
Perspectives

Comparison with other approaches

To generate bent Boolean functions with 16 inputs we require
less than one minute on a single computer core.

To generate bent Boolean functions with 18 inputs we require
several minutes on a single computer core.

PPSN 2014 paper (Humies 2014 bronze award) for 16 inputs
bent Boolean functions requires on average around 600
seconds on a 40-node parallel environment.

Furthermore, the authors state that their approach is able to
find 18 inputs bent Boolean functions.

We used our approach for finding bent Boolean functions up
to 30 inputs.

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Human competitive results
Perspectives

Comparison with other approaches

To generate bent Boolean functions with 16 inputs we require
less than one minute on a single computer core.

To generate bent Boolean functions with 18 inputs we require
several minutes on a single computer core.

PPSN 2014 paper (Humies 2014 bronze award) for 16 inputs
bent Boolean functions requires on average around 600
seconds on a 40-node parallel environment.

Furthermore, the authors state that their approach is able to
find 18 inputs bent Boolean functions.

We used our approach for finding bent Boolean functions up
to 30 inputs.

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Human competitive results
Perspectives

Comparison with other approaches

Table: Comparison among construction techniques for bent Boolean functions.

Construction Advantages Disadvantages Human competitiveness

Human-made Provably correct Very hard to design Truly human competitive
Limited number of solutions

Other metaheuristics Large number of solutions Inefficient for larger sizes Not really (trivial for small
sizes, poor for larger)

Very slow
Affine-equivalent solutions?

Our approach Very fast Affine-equivalent solutions? Overcomes disadvantages of
other approaches

Large number of solutions As good as human-made
Scalable

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Human competitive results
Perspectives

Future Perspectives

A tool how to obtain balanced Boolean function with high
nonlinearity.

A tool to obtain primary algebraic constructions.

Inspiration point for completely new constructions.

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Conclusion

We investigate relevant, real-world problem that is very
difficult due to a huge search space size.

The results show that our novel technique is extremely fast
and powerful.

As far as we are aware, for realistic sizes, no other heuristics is
able to compete even by far.

Since we are able to obtain many constructions, we can
produce many Boolean functions, which is not the case with
algebraic (human-made) constructions.

GECCO 2016, Denver, Colorado



Introduction
Our Approach

Results
Conclusion

Thank You for Your attention.

GECCO 2016, Denver, Colorado


	Introduction
	Introduction
	Motivation

	Our Approach
	Designing constructions

	Results
	Human competitive results
	Perspectives

	Conclusion

