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ABSTRACT
The evolution of Boolean functions that can be used in cryp-
tography is a topic well studied in the last decades. Previous
research, however, has focused on evolving Boolean func-
tions directly, and not on general methods that are capable
of generating the desired functions. The former approach
has the advantage of being able to produce a large number of
functions in a relatively short time, but it directly depends
on the size of the search space. In this paper, we present
a method to evolve algebraic constructions for generation
of bent Boolean functions. To strengthen our approach, we
define three types of constructions and give experimental re-
sults for them. Our results show that this approach is able
to produce a large number of constructions, which could in
turn enable the construction of many more Boolean func-
tions with a larger number of variables.

Keywords
Boolean Functions; Cryptography; Genetic Programming;
Algebraic Constructions; Evolution; Secondary Construc-
tions

1. INTRODUCTION
Boolean functions play an important role in several areas

like coding theory, sequences, and cryptography. Cryp-
tography can be defined as a science of secret writing with
the goal of hiding the meaning of a message [21]. To ensure
that goal (note there exist other relevant goals like authen-
ticity or integrity, but they are out of scope in this research)
one uses cryptographic algorithms, commonly known as ci-
phers. When all parties that participate in a secure com-
munication use the same key (i.e., the parameter that deter-
mines the functional output of a cipher), we talk about sym-
metric key cryptography [15]. To encode a message (com-
monly known as plaintext) into a ciphertext, one uses en-
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cryption transformation and to revert the ciphertext back
to plaintext one uses decryption transformation.

Symmetric key cryptography is usually divided into block
ciphers and stream ciphers. The main difference between
block ciphers and stream ciphers is in the way how they
encrypt/decrypt the data. In block ciphers, encryption and
decryption transformation is difficult while in stream ciphers
that transformation is easy and changes for every symbol [8].

We concentrate now on stream ciphers. Stream ciphers
usually work by producing a keystream that is added modulo
two (XOR) with plaintext bits. To obtain such a keystream,
one well researched way is to employ linear feedback shift
register (LFSR). However, the output from an LFSR is linear
and there exist easy cryptanalysis techniques against it [17].
To add nonlinearity to the cipher (and consequently make
the cryptanalysis more difficult) one can for instance add one
or more Boolean functions. Two well explored approaches
are to use combiner or filter generators. In a combiner gen-
erator, outputs from several LFSRs serve as an input to a
Boolean function. In a filter generator, the output is ob-
tained by a nonlinear combination of a number of positions
in one longer LFSR [5].

For a Boolean function to be useful in such constructions,
it needs to satisfy a number of properties. One such prop-
erty is the nonlinearity where the higher the value the more
nonlinearity there is. Informally speaking, the nonlinearity
property tells us how far is a function from all affine func-
tions and therefore how difficult is to conduct the cryptanal-
ysis. Boolean functions that have maximal nonlinearity are
called bent functions. Although they are not balanced (i.e.,
their truth tables do not have the same number of zeros
and ones) and therefore not suitable for cryptography, there
are methods how to transform bent Boolean functions into
balanced Boolean functions with high nonlinearity [5].

To build Boolean functions one has on his disposal three
options: algebraic constructions, heuristics, and random se-
arch [25]. Naturally, it is also possible to combine the afore-
said techniques [25].

In this paper, we present a novel approach how to evolve
bent Boolean functions that combines heuristics and alge-
braic constructions. Instead of evolving Boolean functions
(e.g., their truth tables), we evolve algebraic constructions
that are then used to generate bent Boolean functions. There-
fore, here we evolve “generators” of Boolean functions. Such
generators when provided with the adequate input, result
in new bent Boolean functions that have larger number of



variables. We note that we believe this technique can be
extended to evolution of different types of algebraic con-
structions and Boolean functions with different properties.

In order to evolve algebraic constructions, we employ evo-
lutionary algorithms (EAs), and more precisely Genetic Pro-
gramming (GP). We show that this approach has many ad-
vantages, the main one being the ease of generation of larger
Boolean functions. As such, we expect to open a new line of
research on the evolution of Boolean functions for cryptog-
raphy.

1.1 Motivation and Contributions
When considering heuristics, and more specifically evolu-

tionary algorithms (EAs) to build Boolean functions with
properties desirable for cryptographic usages, there exist a
plethora of works as presented in Sec. 3. However, as far as
we are aware, there exist no research up to now that con-
siders evolving algebraic constructions of Boolean functions.
We clarify the difference briefly. Evolutionary algorithms
start with a number of individuals (Boolean functions) and
evolve them in order to obtain properties as given in the
fitness function. The expected end result is one or more
Boolean functions that have good cryptographic properties.
The examples from literature point us that this principle
works very well. In fact, it is not difficult to observe that in
most of the instances the results for heuristics are as good
as those obtained with algebraic constructions.

However, heuristic approach has some drawbacks. These
drawbacks are the search space size (coupled with the usual
solution representation as a string of bits) and the evaluation
cost. To better understand the size of the search space, we
note that for a Boolean function with n inputs there are
in total 22n Boolean functions. Furthermore, to present a
Boolean function as a string of bits we need a vector of size
2n.

We can see that the search space size grows exponentially
and it becomes difficult to work even with Boolean func-
tions with a moderate number of inputs. However, there
are some algorithms that are better suited for such large
problems and there is no reason why not to use them. Fur-
thermore, if the memory or the computational complexity is
too high, one can use a single solution-based metaheuristics
instead of the population-based metaheuristics [29]. Next,
when the encoding of solutions in the truth table form be-
comes impractical (i.e., too large), one can use for instance
Genetic Programming (GP) or Cartesian Genetic Program-
ming (CGP) since the encoding is much more efficient in
those cases. Therefore, although significant, the aforesaid
problems can be resolved with a more appropriate choice of
algorithms or encodings.

However, the evaluation cost of the fitness function is a
problem that cannot be easily solved. If we consider only
the nonlinearity property and a Boolean function with eight
inputs, then to evaluate it we need up to a few milliseconds.
If we want to evaluate the same property for a Boolean func-
tion with 16 inputs, this can now take several hundred mil-
liseconds. Finally, if we evaluate a Boolean function with 24
inputs, it will last around 10 seconds.

One can ask if it is realistic to use such large Boolean func-
tions. We consider it is, since it is known that to be able
to withstand some cryptanalytic attacks, a Boolean func-
tion needs to have at minimum 13 inputs [5]. If the evalua-
tion lasts several seconds, this still represents no problem for

modern computers. However, let us now consider some more
computationally complex properties – the algebraic immu-
nity and the fast algebraic immunity properties [1,7], which
are properties one must consider when using Boolean func-
tions in stream ciphers. Those properties for larger Boolean
functions can easily take from several minutes to even several
hours on a modern computer (for these measurements we
used a PC with Intel i5 3470 processor and 6 GB of RAM).
Therefore, if we try to evolve a Boolean function that has
realistic size and good cryptographic properties (including
the aforesaid two properties), the evaluation part will be of-
ten a bottleneck that is impossible to surpass. To conclude,
to evolve such functions would be an extremely difficult and
long process.

Therefore, in this work we aim to evolve algebraic con-
structions, which we believe is an approach with a number
of benefits. Furthermore, to succeed in our investigation, we
devise a model how to encode solutions and the appropriate
fitness function.

Finally, we define several types of constructions that we
believe can help in future research in order to better evaluate
the efficiency of this technique.

1.2 Outline of the Paper
This paper is organized as follows. In Section 2, we first

discuss how to represent Boolean functions and calculate
the properties of interest. Furthermore, we elaborate on
different types of constructions of Boolean functions (with
an emphasis on bent Boolean functions). In Section 3, we
give a short list of related work. Section 4 gives details about
the GP approach we use and Section 5 presents the results of
our experiments. In Section 6, we discuss the ramifications
of our approach and we offer a possible roadmap for future
work. Finally, in Section 7, we give a short conclusion.

2. ON BOOLEAN FUNCTIONS
In this section, we start with the background informa-

tion on Boolean functions representations and properties
and later we discuss various construction possibilities. How-
ever, first we give the notation we use in the rest of the
paper.

Let n,m ∈ N. The set of all n-tuples of the elements in
the field F2 is denoted as Fn

2 . Here, F2 represents the Galois
field with two elements. The set Fn

2 represents all binary
vectors of length n [5]. The inner product of vectors ~a and
~b is denoted as ~a ·~b and it equals ~a ·~b = ⊕n

i=1aibi with “⊕”
being addition modulo two.

The Hamming weight (HW ) of a vector ~a, where ~a ∈ Fn
2 ,

is the number of non-zero positions in the vector. An (n,m)-
function is any mapping F from Fn

2 to Fm
2 where Boolean

functions represent m = 1 case.

2.1 Boolean Function Representations
There are several unique representations of Boolean func-

tions where each one has its advantages and drawbacks.
Here, we are interested in two unique representations, namely,
the truth table representation and the Walsh-Hadamard rep-
resentation.

A Boolean function f on Fn
2 can be represented by a truth

table (TT), which is a vector (f(~0), ..., f(~1)) that contains
the function values of f , ordered lexicographically [5].

A Boolean function f can be represented by the Walsh-
Hadamard transform Wf . The Walsh-Hadamard trans-



form measures the correlation between f(~x) and the linear
function ~a · ~x [5, 11]. The Walsh-Hadamard transform of a
Boolean function f equals:

Wf (~a) =
∑
~x∈Fn2

(−1)f(~x)⊕~a·~x. (1)

2.2 Boolean Function Properties
A Boolean function with n inputs is balanced if the Ham-

ming weight of its truth table equals 2n−1. Alternatively, a
Boolean function f is balanced if the Walsh-Hadamard spec-
trum of a vector ~0 equals zero [27]:

Wf (~0) = 0. (2)

A Boolean function should lie at a large Hamming dis-
tance from all affine functions and the nonlinearity Nf of
a Boolean function f is the minimum Hamming distance
between the function f and affine functions [5]. The non-
linearity Nf of a Boolean function f expressed in terms of
the Walsh-Hadamard coefficients equals [5]:

Nf = 2n−1 − 1

2
max~a∈Fn2 |Wf (~a)|. (3)

A Boolean function is bent if it has maximal nonlinearity
that equals [5, 9, 28]:

Nf = 2n−1 − 2
n
2
−1. (4)

Alternatively, a Boolean function is bent if its Walsh-
Hadamard spectrum is flat, i.e., if the spectrum has a value
of 2

n
2 for all ~x ∈ Fn

2 . Bent functions are never balanced
and they exist only if n is even. Since the values of bent
functions are not uniformly distributed, they are not appro-
priate for direct usage in cryptography. However, as already
mentioned, it is possible to transform bent functions into
balanced Boolean functions with high nonlinearity [5].

To provide an insight on the number of bent Boolean func-
tions, we give expressions for lower and upper bound. Note
that in general, there are no known efficient bounds for an
n-variable bent Boolean function. The lower bound equals:

lower bound = 22
n
2

+log2(n−2)−1

, (5)

and the upper bound equals [5]:

upper bound = 2
2n−1+ 1

2 ( n
n/2). (6)

It is easy to calculate those values where we see that bent
functions present only a small fraction of the whole solution
space. For further information about Boolean functions, we
refer interested readers to [5, 6, 9, 10].

2.3 Construction Techniques
Recall, there are three options how to generate Boolean

functions: algebraic constructions, random search, and he-
uristics (and their combinations).

The main strength of algebraic constructions is that it can
be proved they will generate functions with certain proper-
ties and is in general equally easy to construct functions of
any dimension. The main drawback lies in the fact that
they always result in the same functions (since they are de-
terministic) which means one is limited in a number of dif-
ferent functions one can obtain. A more general drawback
is that it is usually quite difficult to devise a good algebraic

construction, i.e., one that results in Boolean functions with
desired cryptographic properties.

The main advantages of random search are that it pro-
duces an abundance of different Boolean functions and is a
relatively fast method. However, the quality of such func-
tions (with regards to their cryptographic properties) is most
often suboptimal.

Finally, when discussing heuristic methods, they are usu-
ally positioned somewhere between the two aforesaid ap-
proaches: they generate a large number of good results in
a relatively short time. However, as explained in Sec. 1.1,
there are some drawbacks when considering the search space
size and the evaluation cost.

It is also possible to divide construction techniques into
primary constructions and secondary constructions. In
primary constructions, one obtains new functions without
using known functions. In secondary constructions, one uses
already known functions to construct new functions [5].

Algebraic constructions can be either primary or secondary
constructions. One example of a primary algebraic construc-
tion technique is the Maiorana-McFarland (M) class [6].
There, (Fm

2 )2 → F2 of the form f(~x, ~y) = ~x · ~y⊕ h(~y), where
h is any Boolean function with m inputs.

As an example of a secondary algebraic construction, we
give the Rothaus construction [6, 10]. Let h1, h2, and h3 be
three bent functions with n inputs. Next, h1⊕h2⊕h3 must
give a bent function also. Then, to generate a bent function
in n + 2 variables one needs to calculate:

f(~x, xn+1, xn+2) = h1(~x)h2(~x)⊕ h1(~x)h3(~x) (7)

⊕h2(~x)h3(~x)⊕ [h1(~x)⊕ h2(~x)]xn+1

⊕[h1(~x)⊕ h3(~x)]xn+2 ⊕ xn+1xn+2.

For more details about primary and secondary algebraic
constructions of bent Boolean functions, we refer interested
readers to [3, 4, 10].

When discussing random search, we see it is a primary
construction technique since it is not possible to start with
some already generated functions.

On the other hand, heuristics are more complicated to
classify despite the fact that it is usually considered they
can serve both as the primary and the secondary construc-
tion technique [24]. For the sake of the simplicity, let us con-
sider evolutionary algorithms as a representative of heuristic
techniques. Since EAs always start with a population of so-
lutions, they are in fact secondary construction techniques.
Naturally, one can argue that it is just a set of random indi-
viduals where it is not important what properties those in-
dividuals have and from that perspective, we could include
EAs as some sort of primary construction techniques. In the
scenarios where the initial population for EAs is not ran-
domly selected, but contains previously defined individuals,
then EAs are for sure secondary construction techniques.

In this paper, we use the Rothaus construction as a moti-
vation for our approach, where we aim to evolve secondary
algebraic constructions that use four n-inputs bent Boo-
lean functions to produce one n+2-input bent Boolean func-
tion.

Note that we use four bent functions without any addi-
tional constraints on those functions instead of three bent
functions where their addition modulo two results in a bent
function (as in the Rothaus method). We follow the former
approach since it is easier to generate bent functions without



the constraint that the result of the exclusive OR operation
is also a bent function.

3. RELATED WORK
As already mentioned, there is a plenitude of papers deal-

ing with heuristic generation of Boolean functions. However,
since none of those papers aim to find algebraic construction
methods for Boolean functions, we consider them related
only with regards to the final goal, but not with regards to
the construction techniques used. Therefore, here we give
a subset of relevant work that investigates the evolution of
(bent) Boolean functions with EAs.

We note that the first paper, as far as we know, that em-
ploys evolutionary algorithms to evolve cryptographic Boo-
lean functions dates back to 1997. There, Millan et al. ex-
perimented with genetic algorithms (GAs) to evolve Boolean
functions with high nonlinearity [18].

Millan, Clark, and Dawson used GAs to evolve Boolean
functions that have high nonlinearity [19]. They used a com-
bination of a GA and hill climbing together with a resetting
step in order to find Boolean functions with high nonlinear-
ity for sizes of up to 12 inputs.

Millan, Fuller, and Dawson proposed a new adaptive strat-
egy for a local search algorithm for the generation of Boolean
functions with high nonlinearity [20]. Additionally, they in-
troduced the notion of the graph of affine equivalence classes
of Boolean functions.

Izbenko et al. used a modified hill climbing algorithm
to transform bent functions to balanced Boolean functions
with high nonlinearity [14].

Picek, Jakobovic, and Golub experimented with GA and
GP to find Boolean functions that possess several optimal
properties [22]. As far as the authors know, this is the first
application of GP for evolving cryptographically suitable
Boolean functions.

Hrbacek and Dvorak used CGP to evolve bent Boolean
functions of sizes up to 16 inputs [13] where the authors
experimented with several configurations of algorithms in
order to speed up the evolution process. They did not limit
the number of generations and they succeeded in finding
bent function in each run for sizes between 6 and 16 inputs.

Mariot and Leporati used GAs where the genotype con-
sists of the Walsh-Hadamard values in order to evolve semi-
bent (plateaued) Boolean functions [16].

A detailed analysis of the efficiency of a number of evolu-
tionary algorithms when evolving Boolean functions satisfy-
ing different criteria is given in [23].

4. GENETIC PROGRAMMING APPROACH
In this section, we describe two approaches for generat-

ing Boolean functions with GP; the first one using only the
Boolean variables as inputs (Sec. 4.1), and the second one
which relies on the predefined Boolean functions as parts
of the construction (Sec. 4.2). In all experiments, we use
a configuration with Intel i5 3470 processor and 6 GB of
RAM.

4.1 Evolving General Boolean Functions
Genetic Programming has already been extensively used

in the evolution of Boolean functions as indicated in Sec. 3.
Furthermore, GP and its variants (most notably Cartesian
Genetic Programming) have been proven to be able to pro-

duce human-competitive results in this domain. In this
work, we use GP to evolve a function in the form of a tree.
Each tree is evaluated (e.g., for the nonlinearity property)
according to the truth table representation it produces. The
terminal set is in this case comprised of a given number of
Boolean variables, which we denote v0, v1, ..., vn.

The function set consists of several Boolean primitives
necessary to represent any Boolean function. Here, we use
the following function set: OR, XOR, AND, XNOR, and
AND with the second input inverted, each of which take
two input arguments. It is of course possible to use only a
subset of those, but here we do not impose any implemen-
tation constraints.

4.2 Evolving Boolean Constructions
A slightly different approach is taken to evolve construc-

tions with GP. Here, we presume the existence of a certain
number of predefined Boolean functions which are included
in the terminal set. In our experiments, four predefined Boo-
lean functions are available as terminals, which are denoted
with f0, f1, f2, and f3 (input functions). Additionally, the
terminal set includes two Boolean variables, v0 and v1, while
the function set remains the same.

With these parameters, if the number of variables of pre-
defined input functions is n, the resulting construction (a
GP tree) represents a new Boolean function with n+ 2 vari-
ables. With the goal to obtain a bent function of size n+ 2,
the input functions are presumed to be bent themselves.

To be able to use this approach, the initial input functions
must be given or evolved with the general GP method. In
this paper, we obtain the initial set of bent functions with
the general method (see Sec. 4.1), starting with a low num-
ber of variables (e.g., four variables), which is trivial to find.
Then, the input functions are used to build constructions
for a larger number of variables (e.g., six variables). The
evolved constructions can be decoded and stored as a truth
table. In each subsequent step, the outputs of the current
stage in the form of a truth table may then be used as input
functions in the next stage.

4.3 Fitness Function
With the goal of maximizing the nonlinearity property,

the simplest approach is just to use the actual nonlinear-
ity value Nf (see Eq. (3)) as the fitness function. However,
this value represents only the single maximal value of the
whole Walsh-Hadamard spectrum, and consequently there
exist many different Boolean functions, with radically dif-
ferent Walsh-Hadamard spectra, that have the same non-
linearity value. This fact makes it more difficult for any
optimization algorithm to move from one nonlinearity level
to the next one.

Therefore, we use fitness function in a way that adds more
information about the quality of a certain solution with re-
gards to the Walsh-Hadamard spectrum:

fitness1 = 2n − freq(|Wf (~a)|), (8)

where freq(|Wf (~a)|) is the number of times the Walsh-

Hadamard coefficient Wf (~a) value differs from the n
n
2 value.

We see that in the case of a bent Boolean function, the fitness
value equals 2n.

The above fitness function aims to maximize the nonlin-
earity, and it is the function we use for evolving bent Boolean
functions directly, with the approach in Sec. 4.1. However,



when evolving Boolean constructions, we also aim to obtain
a more general construction which will be able to produce
a new bent function for every combination of input bent
functions of lower order. For this purpose, we evaluate the
constructions with several groups of input bent functions,
which in each group define the values of terminals f0 − f3.

In our experiments, we use four groups of four input func-
tions, where for each group i the value of Eq. (8) is calculated
with the same tree. The resulting fitness for the evaluated
construction is simply the sum of obtained values for each
group:

fitness2 =

4∑
i=1

fitness1,i. (9)

The optimal value a construction can attain is the maxi-
mum value of fitness1 multiplied by four, which means that
the construction produced a bent function of n+2 bits with
every group of input bent functions of size n. This approach,
of course, does not guarantee that the evolved construction
will be general, i.e., that it will produce a bent function for
every set of input bent functions. However, in all our exper-
iments and in all subsequent analysis with different input
groups, this has always shown to be true.

Finally, we note that when evolving constructions, the
obtained trees with maximal fitness always include the two
Boolean variables v0 and v1, but not necessarily the whole
set of input functions f0− f3. Since we said that we take as
an inspiration the Rothaus construction (see Sec. 2.3), we
need to ensure that there are indeed all four input functions
in every construction. Therefore, we add a third configu-
ration, in which a construction is penalized if it does not
include all the input terminals. This fitness function is rep-
resented with the following equation:

fitness3 =
fitness2

1 + missing terminals
, (10)

which simply equals to fitness2 divided by the number of
missing input terminals.

5. EXPERIMENTAL RESULTS
In this section, we present the results of our experiments.

In the first part, we illustrate the difficulty of evolving bent
Boolean functions of different sizes, while the second part
presents the results for evolution of constructions with the
same goal.

The GP parameters were the same for all configurations,
and are based on our previous experiments as well as guide-
lines for the similar problems in the existing literature. The
GP population size is 500 individuals and the stopping cri-
teria is set to either 500 000 evaluations or to reaching the
known optimal fitness value. The selection process is de-
scribed in the Algorithm 1, where k equals 3 and the indi-
vidual mutation probability is set to 0.5. The variation oper-
ators are simple tree crossover with 90% bias for functional
nodes [26] and subtree mutation. If not stated otherwise,
every experiment is repeated 30 times. For evolving general
Boolean functions, we use a tree depth of 7 and for evolving
constructions our experiments show that a tree depth of 5
is sufficient.

5.1 Evolving Bent Boolean Functions
The first part of the results only illustrates the increasing

difficulty of the direct evolution of bent Boolean functions

Algorithm 1 Steady-state tournament selection

randomly select k individuals;
remove the worst of k individuals;
child = crossover (best two of the tournament);
perform mutation on child, with given individual muta-
tion probability;
insert child into population;

Table 1: Direct evolution of bent functions with GP.

Boolean variables 8 12 16 18
Maximal Nf 120 2 016 32 640 130 816

Success rate 100 % 100 % 0 % 0 %
Max. fitness 120 2 016 32 336 130 072
Avg. fitness 120 2 016 32 305.25 130 047

with increasingly larger number of variables. This section is
not intended to provide a detailed performance evaluation,
but rather to give some intuition on the difficulty of the
problem.

Here, the approach in Sec. 4.1 is taken with a terminal
set v0, v1, ..., vn where n is the number of Boolean variables.
The results are given in Table 1; we calculate fitness as in
Eq. (3) with the values in table showing the corresponding
nonlinearity values.

The task is relatively simple for smaller sizes of Boolean
functions (e.g., eight inputs), where GP is able to reach the
optimal solution in under 10 000 evaluations. However, the
situation changes drastically with increasing size: already
for 16 inputs the success percentage drops to zero, since no
optimal solution was found in 30 runs.

The outcome is the same for the 18 bits size, where we
note it takes over 30 hours on a single processor to complete
500 000 evaluations. In fact, obtaining maximal nonlinearity
already for 16 bits required about 600 seconds on a 40-node
parallel environment employing distributed CGP evaluation,
which is considered a human competitive result [13]. This
shows us that it is possible to evolve bent Boolean functions
even for larger dimensions, but the problem is difficult and
requires a large number of evaluations.

5.2 Evolving Secondary Algebraic Construc-
tions

In this section, we use secondary algebraic constructions
to obtain bent Boolean functions in n+2 variables from four
bent Boolean functions in n variables. First, we shorty dis-
cuss the construction types we expect to obtain from EAs.
For the sake of simplicity, all construction types we denote
as SEC which stands for Secondary Evolutionary Construc-
tion. By a correct result, we consider any bent Boolean
function that has correct number of variables.

Definition 1. Weak SEC is any construction that out-
puts the correct result for a specific input. However, Weak
SEC will not output correct results for different inputs or
Boolean function sizes.

Definition 2. Strong SEC Type I is any construction
that outputs the correct results for an arbitrary number of
different input combinations. Strong SEC Type I will not
output correct results for different dimensions of Boolean
functions.



Definition 3. Strong SEC Type II is any construction
that outputs the correct results for an arbitrary number of
different inputs and an arbitrary dimension of Boolean func-
tions.

As we can see, each following construction type has more
constraints and represents a more difficult target to evolve.
Ideally, we are interested in the Strong SEC Type II.

We start with only four Boolean variables, for which one
can easily generate optimal solutions (i.e., bent Boolean
functions). These are then randomly selected as input func-
tions in evolving constructions leading to increasing number
of bits (6, 8, etc.).

First, we briefly discuss what kind of constructions are de-
sirable from a mathematical perspective. Note that instead
of constructions, we can also consider the resulting Boolean
functions.

The first criterion is that they must not be “trivial”, i.e.,
the resulting Boolean functions cannot differ only by affine
functions. The second and more important criterion is whe-
ther such functions are new, i.e., not constructed before with
different algebraic constructions. We see that the fist crite-
rion is a necessary one, but not a sufficient one, while the
second criterion is sufficient for our purpose (since Boolean
functions that differ only in affine function are known, and
therefore cannot be new). Unfortunately, there is no easy
(e.g., automatic) way of checking whether a construction is
new, but one needs to compare the results with the results
from other constructions.

We emphasize that the simpler construction we can evolve,
the better it is, naturally maintaining the criteria we men-
tioned. Indeed, simpler constructions are easier to prove
and faster to implement. Finally, their “simplicity” does not
make any difference for the quality of underlying Boolean
functions since those constructions generate a bent Boolean
function, which is the only requirement we set.

The first test configuration uses only a single group of four
input functions, i.e., with fitness as in Eq. (8), which aims to
find at least weak constructions. We immediately note that
the task of combining terminals as Boolean variables v0 and
v1 with input bent functions f0 − f3 is next to trivial for
GP, because it always succeeds in evolving a construction
of a bent function. This result is achieved with under 1 000
evaluations in every run and seems not to be dependent on
the actual Boolean function size (e.g., constructing from 16
to 18 bits is as easy as going from 4 to 6 bits).

The constructions obtained in this way, however, are guar-
anteed to produce a bent function only with the same four
input functions, and are consequently able to give only a
single new solution. An example of such solution is, for
instance: (((v1 AND2 v0) XOR f3) XOR (f0 XOR f1)),
which provably results in a bent function only for certain
input functions. Therefore, this belongs to the weak con-
structions, but is probably neither a strong construction of
Type I nor Type II.

In the second configuration, we employ the fitness2 as the
objective and for each stage we use four different groups of
input functions. Only if a construction (a GP tree) is able to
produce a new bent function of size n+2 with each group of
input functions of size n, it is considered optimal. Therefore,
in this scenario we aim to reach strong constructions of at
least strong SEC Type I.

Again, in this case we note that the GP is able to reach
an optimal solution in every run (out of 30), and an optimal

construction is always found within 10 000 evaluations. An
example of such a construction from four to six bits is: ((v1
AND2 v0) XOR f0), which produces a bent function for
each input group. Although we do not prove that this is
actually a strong construction of type I, this solution was
able to produce a bent function with every input group it
was subsequently tested with.

Finally, in the third configuration we use fitness3 to en-
sure each optimal construction includes all the input termi-
nals. The GP was again able to find an optimal construction
in every run, and an example of such a solution is: ((((v0
AND2 v1) XOR f0) XOR (f1 XOR f1)) XOR ((f2 AND f3)
AND (v0 AND2 f2))).

However, notice that although presented solution has all
terminals, the input function f1 appears only in the subex-
pression f1 XOR f1, which results in a value of zero. There-
fore, although officially conforming to our condition that a
construction needs to use all input terminals, such construc-
tion cannot be accepted for further evaluation.

To counter this problem, in every evaluation we check
whether there are such expressions (f XOR f , f XNOR
f , etc.) in the tree and if there are, we do not count input
terminals appearing there. Finally, one example of the third
configuration where we also check the validity of subexpres-
sions is ((((v1 XNOR f0) OR (f3 AND f0)) XOR ((f1 XOR
v0) XNOR v1)) AND2 ((v0 AND2 f2) AND2 ((f0 XNOR
f3) XOR (f1 AND2 v1)))).

We proceed with this approach to evolve constructions for
bent functions of up to 20 variables with both fitness2 and
fitness3. Note that it is not possible to apply the evolu-
tion of constructions for 20 bits without having previously
defined input functions of 18 bits. That is why for every
even number of variables (at each stage), we use the result-
ing constructions to obtain at least four groups of four bent
functions (all 16 different) to use as input functions for the
next stage. This turns out to be an easy task, because at
each stage we complete 30 runs and have 30 optimal con-
structions; since each of them was evaluated on four input
groups, there are 120 resulting functions to choose from.

We also make sure the selected functions are different;
here we note that although it is impossible to predict which
functions will be obtained, there is a very high percentage
of unique functions among those (over 95%) at each stage.

The cumulative effort to reach the bent functions of 20
variables is therefore dependent on the previous stages. Since
in each stage the observed success rate was 100%, this is a
very promising way of obtaining solutions for large number
of variables. The average computational effort is illustrated
in Table 2, where the maximal recorded time needed to ob-
tain an optimal solution in a single run is shown. Although
the number of evaluations is roughly the same, there is an
unavoidable increase in computation time due to increasing
sizes of the truth table representation, which is needed for
the evaluation of each potential solution.

Therefore, the total time to obtain a bent function of 20
bits is at least the sum of times in the appropriate column of
Table 2. Compared to the regular approach which addition-
ally exhibits a very poor success rate, this is an enormous
improvement.

6. DISCUSSION AND FUTURE WORK
The results of the previous section point us to the unmis-

takable advantage of the construction method when com-



Table 2: Computational effort for evolving optimal
constructions.

Boolean
variables

fitness2:
max. eval

fitness2:
max. time

fitness3:
max. eval

fitness3:
max. time

6 5 000 <1s 6 000 <1s
8 5 000 <2s 6 000 <2s
10 5 000 4s 6 000 4s
12 5 000 4s 6 000 4s
14 5 000 6s 7 000 12s
16 5 000 30s 7 000 40s
18 5 000 42s 8 000 100s
20 5 000 90s 8 000 220s

pared with the general method. The computational effort
needed to obtain a certain number of variables is negligible
when compared with the time needed for a general method
to reach an optimal solution. However, we only show that
this is applicable for a certain objective, and that is the
evolution of bent functions.

In the proposed method, one should not forget that exist-
ing bent functions of a smaller size n are needed to construct
functions of size n + 2. We show that those are easily ob-
tained, but we are ultimately limited with the number of
unique bent functions that can be generated in this way. In
a single run, one construction can be obtained, but in our
experiments at least four bent functions are needed to reach
the solution. Performing multiple runs can of course increase
the diversity of the obtained solutions, at the cost of addi-
tional computation time. There is also the question of how
the initially chosen/evolved input bent functions limit the
type of the resulting constructions. However, as long as we
are interested only in obtaining a solution with the desired
properties, this does not seem to pose a problem.

Finally, although we are able to easily produce different
bent functions, the question remains to which type do the
evolved constructions belong. The solutions definitely ex-
ceed the weak construction type, and probably satisfy the
strong Type I requirement, but the Type II is not verified
during the evolution in our experiments.

Therefore, in the subsequent analysis, we take a randomly
selected 3 out of 30 evolved constructions from each number
of bits (6 to 20) and apply the same construction to check
whether it will produce a bent function with four groups
of input functions, for every number of Boolean variables
from 6 to 24. The results show that every tested construc-
tion, either evolved using fitness2 or fitness3, succeeds in
producing a bent function of up to 24 variables. This is a
promising result, since it indicates that the evolved construc-
tions belong to the Strong Type II, and may consequently
be used with arbitrary input bent functions for an arbitrary
number of variables.

If this is correct, one does not need to evolve new con-
structions for each larger number of variables at all; instead,
a single set of evolved constructions may be used to gen-
erate bent functions, say of size n. Then the same set of
constructions may be used with input bent functions of size
n to acquire different bent functions with n + 2 variables,
etc.

In general, the main question is whether this approach can
be used to find constructions with different objectives. The
first approach would be to try to evolve secondary construc-

tions that for instance take as inputs balanced Boolean func-
tions in n variables and with high nonlinearity and produce
as an output balanced Boolean functions in n + 2 variables
with high nonlinearity. A more difficult approach would be
to try to evolve primary algebraic constructions, i.e., those
that do not use already constructed functions as input val-
ues. This approach is interesting both for bent and balanced
Boolean functions.

From the evolutionary perspective, the natural extension
of this work is the application of related evolutionary algo-
rithms that can be also used to represent a construction.
Here, as the most promising candidate we see the Self Mod-
ifying Cartesian Genetic Programming [12].

From the mathematical perspective, this work opens sev-
eral research fronts. The first one is to prove whether such
constructions are valid for infinite class or at least infinite
number of solutions [2]. Finally, it would be interesting
to explore what constructions produce equivalent Boolean
functions [5].

7. CONCLUSIONS
In this paper, we propose a novel way of evolution of Boo-

lean functions. Instead of the direct evolution of Boolean
functions (e.g., their truth tables), we evolve algebraic con-
structions that can be used to generate Boolean functions.
Here, we concentrate on secondary constructions that pro-
duce bent Boolean functions. Our results show that this
approach is highly successful and is independent of the Boo-
lean function size one needs to find.

To better formalize our results, we also give definitions
of several constructions types one can expect to find with
evolutionary algorithms. The obtained results suggest it is
possible to find all construction types, where even the one
with the most constraints seems to be easily reachable.

We consider this work only as a first step in a new re-
search direction when considering the evolution of Boolean
functions for cryptography.
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