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Abstract
The removal of 123 pieces of debris from the Sun-
synchronous LEO environment is accomplished by a
10-spacecraft campaign wherein the spacecraft, flying
in succession over an 8-yr period, rendezvous with a
series of the debris objects, delivering a de-orbit pack-
age at each one before moving on to the next object by
means of impulsive manoeuvres. This was the GTOC9
problem, as posed by the European Space Agency. The
methods used by the Jet Propulsion Laboratory team are
described, along with the winning solution found by the
team. Methods include branch-and-bound searches that
exploit the natural nodal drift to compute long chains
of rendezvous with debris objects, beam searches for
synthesising campaigns, ant colony optimisation, and a
genetic algorithm. Databases of transfers between all
bodies on a fine time grid are made, containing an easy-
to-compute yet accurate estimate of the transfer ∆V .
Lastly, a final non-linear programming optimisation is
performed to ensure the trajectories meet all the con-
straints and are locally optimal in initial mass.

1 Introduction
The 9th Global Trajectory Optimisation Competition
(GTOC9) considered the problem of debris removal
from the Sun-synchronous, Low-Earth-Orbit environ-
ment [1]. In this paper we describe the methods devel-
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oped at the Jet Propulsion Laboratory to tackle the prob-
lem in the short, one-month competition timeframe.
We also present the results obtained, both the submit-
ted winning solution which removed all 123 debris ob-
jects in a campaign of ten missions, and results obtained
shortly after the close of the competition.

An initial rough sizing of the problem was performed
to understand the dynamics, estimate the ∆V sensitiv-
ities, and characterise the effect of number of missions
on the cost function. The range of inclinations of the
debris object orbits (about 96◦ – 101◦) and semi-major
axes (about 600 – 900 km larger than the Earth’s radius)
were sufficient to result in considerable variation in the
drift rate of the ascending nodes (0.75◦/day – 1.3◦/day);
the eccentricity, ranging from about 0.02 down to al-
most zero provided only a second order effect on the
drift rate. The drift rate must of course be exploited
in the transfers, because the ascending nodes are spread
over the full circle and the cost of large plane changes is
prohibitive (about 1.3 km/s per ten degrees). Drift-rate
changes of about 0.1◦/day can be achieved for about
100 m/s ∆V ; for larger drift-rate changes, above about
0.2◦/day, changing inclination is increasingly more ef-
fective (per unit ∆V ) than raising apoapsis in affect-
ing the node rate, and also permits an increase in the
node rate, not just a decrease. The ∆V cost of match-
ing the phasing and argument of periapsis of the debris
was deemed of secondary importance.

Initial estimates of the number of missions that would
be required were difficult to make, a fact reflected in the
initial range of estimates that were made — from about
5 to 20. The base cost of a mission was comparable
to the mass-dependent cost of a fully fueled spacecraft.
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Thus the trade-off between few missions with large ∆V
requirements versus many missions with low ∆V re-
quirements had to remain in play. This tradeoff was
captured graphically a few days into the competition as
shown in the Results section.

It was also realised early on that using the debris
dynamics to propagate the spacecraft trajectory, rather
than the full, unaveraged, J2 dynamics, would be suffi-
ciently accurate for good preliminary solutions. A va-
riety of methods were then used to develop databases
of body-to-body transfers, chains of bodies comprising
a single mission, and complete campaigns of missions.
The remaining sections of the paper describe these main
facets of our solution methods, followed by a section on
our results.

2 Propagation
A variety of spacecraft propagation methods were used,
depending on the specifics of the broad-search method
and the accuracy required. In the initial broad search,
the debris dynamics, which correspond to the averaged
J2 dynamics, were used as an approximation of the
spacecraft dynamics. In later searches, a correction to
the mean motion, n, was incorporated [2]:
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When phase is relevant, it is important both to use
the correction term to the mean motion and to prop-
agate from initial values for the elements that are ob-
tained from computing the mean orbital elements rather
than from the osculating element values at a particu-
lar epoch. Doing so results in relatively small errors
of about 5 to 50 km in position after ten days. An
asymptotic solution to the main problem was also im-
plemented but not extensively used. For full accuracy,
the spacecraft equations of motion were directly inte-
grated using the Gragg-Bulirsch-Stoer extrapolation, ei-
ther in their given Cartesian form or in equinoctial el-
ements. Since some broad searches used the accurate
integrations, some effort was spent to optimise the inte-
gration speed.

For final optimisation (see Final Optmisation), a sim-
ple, 8-th order Runge-Kutta integrator was used for
propagating the dynamics (via Cartesian states). Other
dynamical models such as equinoctial elements or the
averaged equations were considered but deemed not as
convenient, accurate, or robust.

3 Body-to-Body Transfers
A number of body-to-body transfer techniques and
databases were developed to approximate chains so that
they could be more easily computed, or so that bodies
could be easily added to existing chains using simple
database lookups. These databases grew in accuracy
and size as different methods were developed through-
out the competition.

Transfer techniques
One method for estimating the body-to-body ∆V was
coded in a subroutine called AF2. The goal of AF2 was
to find debris-to-debris candidate transfer opportunities
below a user defined ∆V threshold, for a range of de-
parture and transfer times. The algorithm estimated to-
tal transfer ∆V by selectively adding or taking the root-
sum-square of individual ∆V s required for matching
node, inclination, periapsis, apoapsis, argument of peri-
apsis and approximate phase change. Actual propaga-
tions in full J2 dynamics were done (for node matching)
to capture the effect of varying transfer time on ∆V .
After refinements, the ∆V estimates from AF2 were
found to be within 5% of the actual optimised transfer
cost for most of the cases.

Another technique was based on the debris dynamics
and provided an analytic estimate of the ∆V needed to
match the semi-major axis, node angle, and inclination
of the target debris in a specified transfer time. The ∆V
was split between an initial ∆V to change the drift rate
and a final ∆V to match the semi-major axis, node and
inclination. The ∆V was split optimally between the
two manoeuvres such that a linear combination of ∆V s
needed to change each of those three elements individ-
ually was optimised.

A final technique involved making a quadratic fit
of the plane-change ∆V as a function of time of the
manoeuvre, which means that this simplified solution
space needs little information to describe it. The actual
departure and arrival time can be optimised later with
relatively small adjustments to fix phase.

Databases
Throughout the competition, the team created many
databases for quick lookups for estimating the ∆V for
transfers between bodies. One of the first databases pro-
vided estimates of the transfer ∆V between all body
pairs at one day intervals assuming debris dynamics and
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transfer durations of approximately one day. This es-
timate did not exploit changing the node rate, but in-
tended to capture transfers between bodies whose orbit
planes naturally drifted close to each other. The esti-
mation included primarily a plane change at the relative
node and one or two further impulses to change the ec-
centricity vector and semi-major axis. About 340,000
such transfers were found below 400 m/s.

Another database was also developed early in the
competition that provided ∆V -optimal, full-phase
transfers based on two-impulses using the full J2-
dynamics. At discrete times and for a set of discrete
flight times, multi-revolution Lambert arcs were used
as initial guesses to seed optimisation with Matlab’s
fmincon. (A similar database of optimal single-impulse
transfers was also computed based on JPL optimisation
software.)

The final database, named the GIGABASE, was per-
haps the most reliable database created by the team
during the competition. The GIGABASE was created
roughly halfway through the competition and further
developed in the final weeks. Transfers in the GIGA-
BASE exploited the possibility of changing the node
rate using ∆V and also matched phase, overall provid-
ing a good estimate of the optimal ∆V .

To quickly estimate the ∆V and flight time needed
to transfer between debris objects, the GIGABASE as-
sumed the spacecraft followed the dynamics of the de-
bris. First derivatives (with respect to inclination and
semi-major axis) of the nodal drift rate and the argu-
ment of latitude (= ω + θ) rate were used to approxi-
mate the required changes in inclination (δi) and semi-
major axis (δa) for transfers with a given transfer time,
a given integer number of revolutions, and with a given
propulsive change in the right ascension of the ascend-
ing node, Ω. These simple equations require only solv-
ing a two-dimensional linear system of equations.

These initial δi and δa values are then differentially
corrected to satisfy the full dynamics. The ∆V s to ef-
fect the differentially corrected initial δi and δa as well
as the given change in Ω are computed assuming two-
impulses. Subsequently, after the given transfer dura-
tion, another pair of impulses matches a, i and Ω of the
debris (also θ has at this point drifted into alignment).
Within the next orbit, the final two impulses match ec-
centricity and argument of periapsis of the debris.

Since the method is simple and fast, it is possible to
loop over all possible number of integral revolutions
and choose the lowest ∆V for each transfer. Further-
more, the simplicity of the computations allows looping

over transfer times discretised in a fine grid, target bod-
ies, departure times and departure bodies. Thus, a large
database (the GIGABASE) was made with the follow-
ing spacings: Debris, from every object to every object
(1232 = 15,129 options); departure epoch, 2-day spac-
ing (1477 options); transfer time, 1 to 25 days, steps of
2 days (13 options). The resulting database contained
about 290 million rows of data.

In order to facilitate the conversion of broad-search to
detailed solution, a script called the decoderRing was
created to reproduce more accurately the actual ma-
noeuvre times and ∆V vectors approximated in the GI-
GABASE as a (good) initial guess into the final opti-
misation process. The inputs to this function were the
bodies, departure epoch, transfer time, intermediate a, i
and Ω values computed using the approximate method
and stored in the GIGABASE. These were sufficient
to allow analytic computation of all six manoeuvres,
and a final one-dimensional corrections scheme added
the missing secular term to the spacecraft J2 dynam-
ics. The decoderRing was only used when transitioning
from campaign-level search to local optimisation and
therefore did not need to be particularly fast.

4 Chain Building

Branch-and-bound

To construct low-∆V chains (and sets of compatible
chains), early in the competition a heuristic was devel-
oped that only considered plane change manoeuvres.
Starting from an initial debris object at time t0 a set
of unvisited near-co-planar (to a tolerance) debris was
identified. The minimum node difference was com-
puted numerically, and a transfer of 1 – 2 days was ini-
tiated at the minimum. The following three cases were
considered for when the minimum occurs: (i) within the
feasible time interval, ∆V done to match inclination;
(ii) before the feasible time interval (moving apart),
immediate inclination change to alter the drift rate to
match node in two days, and a second manoeuvre to
match inclination; and (iii) after the feasible time inter-
val (moving together), long stay at the initial debris ob-
ject, apply drift rate change manoeuvre, and manoeuvre
to match inclination two days later.

A branch-and-bound algorithm was used to build
good chains of varying length with the heuristic ∆V .
A grid of starting epochs and the set of unvisited de-
bris initialised chain construction. A chain was deemed
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complete when there were no further targets, or when
it ran up against the maximum time constraint. Filter-
ing (bounding) was applied to chain length (minimum),
total fuel, and average ∆V . The branch-and-bound al-
gorithm was parallelized to quickly yield a database of
low-∆V chains over all epochs, with chain lengths from
3 – 22. The longest were used as backbones to seed
building of campaigns.

Ant Colony Optimisation
A previous investigation applied Ant Colony Optimisa-
tion (ACO) to the removal of debris objects [3]; modifi-
cations were made to this to accommodate J2 drift and
the constraint that missions cannot overlap in epoch.
Briefly, the ACO algorithm seeds “agents” at starting
debris objects, where these agents then build chains of
encounters by interspersing random steps and the di-
rected following of “pheromone” trails laid by previ-
ous generations. When an agent reaches the defined
propulsive limits for an individual mission, it resets by
“launching” to a new debris object and begins again,
repeating this behavior until a complete mission set is
generated. At the end of each generation, the mission
sets are evaluated using the GTOC9 cost function, with
the best performing agents chosen to lay pheromones
along the routes they followed. In order to differenti-
ate among the multiple possible transfers between any
debris object pair, the GIGABASE solution giving

min ∆tξ∆V

was selected, where ξ is a tuning parameter and ∆t
is the time interval between arrivals at the respec-
tive debris objects (prior to the GIGABASE, an ear-
lier database was utilized in a similar manner). Time-
varying aspects of the problem were addressed by seed-
ing objects and initial chain epochs based on debris
clustering information that created groups of common
orbital elements at differing epochs across the available
mission window. By the end of the competition, two
main variants of ACO were employed: i) a “subset”
routine that searched among a limited set of remain-
ing debris objects and available launch windows in or-
der to complete an existing set of missions, and ii) a
“full” search that began at the end of the mission win-
dow and worked forward to build mission sets eliminat-
ing as many debris objects as possible. Throughout the
competition, the “subset” approach reliably discovered
the minimal set of additional launches to remove all re-
maining objects, with the complete sets then fed into

the genetic algorithm and other refinement methods; by
the end of the competition, the “full” ACO was reliably
generating mission sets removing nearly all 123 objects
for roughly 950 MEUR using 10-13 launches.

ACM

Built upon the ∆V estimation capability of AF2,
ACM’s primary task was to rapidly build chains us-
ing an algorithm which preserves diversity while pre-
venting exponential increase in the number of solutions.
This was achieved by using a hash-function based chain
identification algorithm which kept equal proportions of
best-in-time and best-in-∆V solutions during the chain
building process. Randomized additions were also done
with a 1% chance of being accepted to the next length
level. After tuning, ACM was able to generate hundreds
of thousands of chains of length greater than 10 and up
to 23 in a matter of few seconds.

5 Campaign Building

Campaign Beam Search

Starting with a backbone (or two), typically from
the branch-and-bound method, partial campaigns were
built using a Beam Search variant [4] with probabilistic
mixing. Every generation (or depth) adds a new mis-
sion (chain), and the starting epochs for chain building
are selected randomly from the currently valid time in-
terval sets. After each highly-parallel generation evalu-
ation, a subset of solutions are maintained for the next
generation based on minimizing the heuristic campaign
cost:

h = J + hα
J

D
(123 −D)

where J is the running GTOC cost function, hα is a
constant weight (scaling cost to go), and D is the num-
ber of de-orbited debris. Various knobs are available to
ensure diversity and to prevent an overly greedy algo-
rithm.

The chains and partial campaigns were advantageous
in seeding combinatorial algorithms (e.g. ACO and
GA), since they represent quality populations with an
inherent reduction in the degrees-of-freedom (relative
to the initial problem).
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Chain Recombination
Given a database of body-to-body transfers or a
database of chains, a directed graph was created where
the nodes were defined by the debris object ID and
time, and the edges indicated a transfer to a new ob-
ject. Edges contained information like transfer time
and ∆V . Chains were created by traversing the graph
following different criteria: minimum ∆V , maximum
chain length, mission time interval, whether or not the
mission should contain a particular debris object, etc.

Given a database of chains, an undirected graph
was created where the nodes contained a mission (i.e.,
chain) and the edge indicated that two missions were
compatible. A standard algorithm was used to search
for cliques (a subset of nodes that are totally connected,
that is, a subset of chains that are compatible). Only
the cliques with the maximum number of debris were
reported.

Chains visiting the same debris object at similar
times would be connected in the directed graph, allow-
ing “mixing-up”. In this way, the graph can be traversed
following an existing chain and at the common node it
can transfer to another existing chain, creating in the
process a new chain. “Re-jiggering” was often used to
find better alternatives to a given mission: A directed
graph was created with only the given chain and then
populated with compatible transfers from the GIGA-
BASE. The graph becomes very dense, allowing several
permutations of debris objects and transfer times. Once
the directed graph is created, we can traverse it with the
above criteria.

Manual Completion of Campaigns
Two dedicated tools were implemented to insert miss-
ing bodies automatically using a ∆V database (nor-
mally the GIGABASE or the single-impulse database),
or AF2. The tool looks for long sitting times in a chain
(> 7 d) and time gaps between missions (> 36 d) and
computes the ∆V -optimal insertion point for each de-
bris.

Anchor Bodies
Late in the competition the idea of anchor bodies was
developed. These bodies are ones that will likely not
appear in the same chain with each other due to having
generally unfavourable relative geometry. For exam-
ple, bodies 74, 102, 109 have not only very high ∆V
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Figure 1: Minimum body-to-body transfer ∆V .

to transfer between any pair of them, but also compar-
atively high ∆V to transfer to all of the other bodies.
This is clearly visible in Fig. 1 which shows the mini-
mum ∆V , over the entire 8.1-yr launch period, needed
to transfer from a body to any other body in 25 days or
less, computed by scanning the GIGABASE. Each col-
umn corresponds to a different departure body, IDs 0
through 122 left-to-right, while each row corresponds
to an arrival body, IDs 0 through 122 bottom-to-top.
The plot is nearly symmetric. The three bright stripes in
each direction correspond to bodies 74, 102, 109, whose
inclinations and node rates of 100.98◦,101.07◦, 96.24◦,
and 1.28◦/day, 1.30◦day, 0.75◦/day, make them outliers
by at least 0.4◦ and 0.06◦/day (body 74), 0.01◦/day
(body 109).

Converse to the idea of anchor bodies, but relevant in
that chains would have to be built around them, are the
following two observations, facilitated by the GIGA-
BASE. First, the minimum ∆V over all possible trans-
fers from a departure body over the whole launch pe-
riod is less than 90 m/s for all departure bodies, and
about 40 m/s when averaged over all departure bodies.
Second, the “mode” of the distribution of the minimum
body-to-body ∆V s shown in the matrix plot of Fig. 1 is
about 125 – 225 m/s. This mode is seen in Fig. 2 which
provides a histogram of the ∆V s, binned in 25 m/s bins.

In an attempt to build chains and complete campaigns
around these anchor bodies at a suitable epoch, a tool
called AMM was created based on the tools and al-
gorithms developed in ACM and AF2. The main mo-
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tivation behind AMM was to force the chain building
process to maintain long, campaign-compatible chains
with near equal lengths. The tool was developed late
in the competition and therefore did not have sufficient
time to mature to produce results that could be used.
The utility of the anchor bodies would thus have been
to reduce the dimension of the search space, allowing a
fuller search to be conducted in the same time.

Rare bodies
A variation on the Anchor Body concept was also con-
sidered late in the competition but not fully explored
due to time constraints. Using the quadratic-fit ∆V
estimates, the minimum ∆V for a given sequence of
debris objects is readily found as a quadratic program-
ming problem (almost always convex with inequality
constraints on time between manoeuvres). An attempt
at building a campaign (i.e., a complete set of missions)
begins by tallying how many times each debris occurs
in the entire pool of debris sequences. We pull out the
subset of missions that include the “rarest” debris and
permute that set with the set of missions containing the
object with the second fewest occurrences. This way
the most difficult objects are built into the mission sets
early in the design process. After each permutation, the
set is filtered by cost per unique object and number of
“difficult” objects deorbited.

6 Campaign Re-Adjustment

Genetic Algorithm
Early in the contest, campaigns were assembled by
piecing together locally-optimised missions spanning
different bodies and different epochs. About halfway
through, a need for campaign-level, global optimisation
was identified as critical to improving our score. One

approach, and the one which was ultimately used for
the remainder of the contest, was to pose the problem
as a single-traveling-salesman formulation of the cam-
paign. A customised genetic algorithm (GA), named
GIGA, was written in Matlab, based on the generic GA
of Kirk [5]. The problem was represented as a list
of nodes, visited sequentially and separated by a ma-
noeuvre time. The key breakthrough in formulating the
problem was the inclusion of both the debris objects and
launch offsets (time from end of prior mission to start
of next mission) as nodes, as opposed to keeping sepa-
rate lists of debris and absolute epochs for each launch.
This problem is similar to the Time-Dependent Travel-
ling Salesman Problem (edge costs depend on order),
but with an added dimension of an associated choice
variable (manoeuvre time) at each edge.

The problem was encoded into a genome which took
discrete values. Each genome was an ordered list of
debris and launch offsets, each of which had an asso-
ciated time code which mapped into a time-between-
nodes that considered different values for debris and
launch offsets (Fig. 3). In constructing the problem this
way, only complete and time-feasible campaigns were
modelled and produced. This eliminated the need to
have any constraints enforced numerically (the 5000 kg
propellant limit manifested itself strongly enough in
the cost function that an explicit constraint was not re-
quired), other than the total campaign time constraint
which was enforced with a barrier function of a 10%
cost increase per day above the maximum time.

The fitness of each genome was a near-instantaneous,
full evaluation of the campaign cost function using
∆V s from the GIGABASE. Being able to directly and
rapidly optimise the campaign cost function was essen-
tial to this approach. The selection of which genomes
advanced to the next generation was accomplished us-
ing a deterministic tournament of size 4 and tournament
players were selected randomly. Other sizes were ex-
plored, but 4 was found to be a good balance between
flexibility and selectiveness. The winner of the deter-
ministic tournament advanced without modification to
the next generation and was selected for 3 replications.

Because the node list had to be unique (non-
repeating), a simple crossover was not implemented
due to the possibility of generating infeasible genomes.
Thus mutation is the only mechanism for improving a
genome. Each mutation is constructed by first select-
ing two genes, say I and K, from each genome. A
few factors were used for selecting the genes: Random;
propellant mass fraction of that node (average of trans-
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Figure 3: Encoding of the Campaign for the Genetic Algorithm

fers to and from); propellant mass fraction compared
to full mission (launch fraction of the whole mission);
distance between I and K. By the end of the contest,
there were 13 different mutations of roughly six types:
(i) Swap, switches the list position and/or time code of
node I and node K, (ii) Slide, puts node K next to
node I and slides all the nodes and/or times between
I and K over by 1, (iii) Flip, reverses the order of all
nodes and/or times between I andK, (iv) Time Mutate,
randomises the time code of nodes I and K, (v) Net-
Zero Time Mutate, randomises the time code of node I ,
then changes K by the inverse amount, and (vi) Inser-
tion (Net-zero Time Slide), puts node K between node
I and I + 1 and adjusts the times of I , I + 1, K, and
K−1 so as to minimize the perturbations of the epochs
of the rest of the campaign. The net-zero operators were
invented because, although a certain slide or mutation
would help locally, it would perturb the epochs of many
other bodies, ultimately causing the overall cost to in-
crease. Near the end of the contest, 15 heuristic combi-
nations of weighting values for gene selection and mu-
tation types were implemented, and one was selected
randomly in each run. For instance, one combination
focused on inserting high-mass-fraction nodes into low-
mass-fraction missions while others focused on opti-
mising the time only (without reordering nodes).

Random initialisation of GIGA did yield feasible
campaigns, but they were not cost-competitive with
human-generated campaigns. However, when seeded
with a human-generated campaign, GIGA was able to
significantly improve that campaign’s cost. Therefore,
initialisation was accomplished by encoding a previous
campaign, then mutating it 10–30 times to introduce
sufficient randomness in the initial population without
totally destroying the good seed campaign. One prob-
lem with this implementation was its propensity to lose

diversity. To partially correct this, if no improved cam-
paigns were found within a certain number of iterations,
an additional 10 mutation steps were introduced with-
out selection.

A single-threaded GA could run through tens of thou-
sands of iterations with a population of a few hundred
genomes in under an hour on a typical PC. In the last
days of the contest, GIGA was parallelized and running
on 12 nodes of a cluster (total of 144 threads). Each call
of GIGA would search stored solutions for the globally
best solution for initialisation and attempt to improve
it using a random heuristic setting. By the end of the
contest, approximately 6,400 full GIGA runs had been
completed, based on the initial inputs of about 30 seeds,
which means approximately 1011 campaigns were eval-
uated, or approximately 1013 body-to-body transfers.

Human-Guided Adjustments
If or when GIGA gets stuck in a local optimum, it
can be advantageous to provide new, slightly varied
initial solutions as a “kick” in hopes that subsequent
runs may find new, lower-cost solutions. To construct
new initial guesses, the cost-contour plot (Fig. 6) was
used extensively to identify ∆V -infeasible missions
and the worst-performing missions in terms of mission
cost. Debris involved in high-∆V transfers were typ-
ically removed from their respective chains and added
to shorter, low-scoring missions, either by prepending,
appending, or inserting. The GA could often improve
considerably on the new initial guesses even if one or
two of the new transfers had high ∆V .

These same techniques were also leveraged to reduce
the number of missions in a given campaign. For ex-
ample, the initial 10-mission and 9-mission solutions
provided to the GA were created by starting with 11-
and 10-mission campaigns, respectively, disbanding the
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shortest mission entirely, and distributing those bodies
across the remaining missions.

7 Final Optimisation
The local optimiser used for individual missions was
based on the OPTIFOR framework [6]. The complete
trajectory is decomposed into different legs, which fa-
cilitates the modeling of rendezvous constraints and
makes the process less sensitive to the control variables
(multiple shooting formulation). A forward-backward
strategy is implemented to reduce sensitivity with re-
spect to the initial guess. Additionally, each leg is dis-
cretized into multiple segments, where a segment corre-
sponds to an impulsive ∆V followed by a propagation
of the full J2-spacecraft dynamics. If no manoeuvre
is needed at the beginning of a segment, the optimiser
drives the corresponding ∆V to zero. The optimisation
of the number of impulses as well as their respective
locations is therefore automatically resolved. A total
of 10 manoeuvres per revolution were considered to al-
low sufficient variety in the manoeuvre locations. Ini-
tial mass was minimized, while the final mass was con-
strained to be equal to the dry mass. Initial guesses were
ballistic during the first part of the competition, then
initial guesses from the decoderRing (see Databases)
were used when available. The resulting discrete prob-
lem is solved using SNOPT [7]. Smooth convergence
after 2,000 iterations was observed for most missions
(the number of iterations can probably be decreased by
changing some step-size parameters and better scaling
of variables and constraints). The HDDP solver [8] was
also tested on long debris-to-debris transfers, but it was
found to be generally slower to converge.

8 Putting it all together
As described in this paper, the team had a variety of
methods for estimating body-body ∆V and creating
databases of body-body transfers and chains. Thus
the human-in-the-loop was an essential part of the
workflow and eventual finding of the winning solu-
tion (see Fig. 4). The most important contributions
to attaining competitive solutions was the use of the
branch-and-bound search, the associated beam search
and campaign-completion strategies (manual and ACO)
to feed GIGA, which in turn fed promising solutions to
the final optimisation step. After the creation of GIGA

was completed in the final week of the competition,
GIGA became the primary mechanism for global op-
timisation at the campaign level. GIGA was very good
at making large numbers of significant changes to ex-
isting solutions, but had difficulty in finding truly new
global optima due to the extremely strong local optima
in this problem, and sometimes missed “obvious” sin-
gle changes. So, human analysts focused on: creating
qualitatively different input seeds for GIGA (including
reducing the number of launches), and could even in-
clude launches which grossly violated the propellant
mass limit (by 10,000+ kg); manually modifying GIGA
outputs to make an obvious swap or insertion, or to in-
ject some desirable features, such as trying to even out
the number of debris in each launch or “smash” smaller
chains together. Results coming out of GIGA were
either directly optimised and submitted to Kelvins, or
were further refined by human adjustment and then opt-
mised and submitted, as showing in Fig. 4.

9 Results

Figure 5 provides a summary of all the complete
missions sets submitted by JPL during the competi-
tion, including the team’s winning final submission of
731 MEUR. In general, cost decreases as the number of
missions decreases, and flattens near 10 missions. Also
depicted on this graph are 10-mission solutions found
by JPL, completed shortly after the competition ended,
costing 720 MEUR and 711 MEUR. Although a fea-
sible 9-mission campaign was found, the best cost, at
750 MEUR, was worse than the best 10-mission cam-
paigns.

Figure 6 shows cost contours for various ∆V s per
transfer and rendezvous per mission. Overlayed on the
contour plot is our initial 20-mission solution, the solu-
tion we submitted on April 27 when JPL occupied the
top of the leaderboard for the first time (labeled ‘Inter-
mediate Set’), and our final submitted solution (num-
bered in white by mission number). As our solutions
improved they moved from the top-left to the bottom-
right side of the contour plot. For the final submitted
solution, the smallest chain has nine rendezvous and the
largest has 21.

A complete summary of the final submitted solution
is provided in Tables 1 and 2. Every mission ends with
mdry = 2000 kg.
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Figure 4: Workflow process.

Table 1: Campaign Overview, UTC submission times on 01 May 2017 indicated.
Start End Launch Number

Mission MJD2000 MJD2000 Mass, kg of objects Debris ID UTC
1 23557.18 23821.03 5665.38 14 23,55,79,113,25,20,27,117,121,50,95,102,38,97 20:17
2 23851.08 24024.53 4666.15 12 19,115,41,26,45,82,47,85,7,2,11,77 20:17
3 24057.47 24561.49 6589.58 21 72,107,61,10,28,3,64,66,31,90,73,87,57,35,69,65,8,43,71,4,29 21:42
4 24637.26 24916.44 5679.10 11 108,24,104,119,22,75,63,112,37,32,114 20:18
5 24946.47 25232.94 4906.59 14 84,59,98,1,40,51,36,67,62,99,54,122,76,15 20:18
6 25262.95 25455.15 5062.74 10 101,48,53,5,12,39,58,13,60,74 20:18
7 25485.20 25682.33 4082.33 10 49,9,70,93,105,46,88,118,18,91 20:18
8 25712.38 25915.53 3725.73 9 86,34,100,30,92,6,110,96,81 20:19
9 25946.06 26237.29 4897.35 12 33,68,116,106,14,52,120,80,16,94,83,89 20:19
10 26267.80 26416.00 3438.62 10 44,111,56,78,0,17,109,103,42,21 20:19
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Figure 5: Evolution of score during competition.

10 Conclusions

The debris rendezvous problem posed for this edi-
tion of the GTOC series was a challenging problem
of interdependent and time-dependent combinatorics.
The insights into the problem dynamics, which read-

ily yielded a plethora of low-∆V chains of trans-
fers between debris objects, coupled with a tuned
beam search to build near-complete multi-spacecraft
campaigns, fed into grid-search-based and ant-colony-
optimisation-based design phases to complete the cam-
paigns. Complete campaigns then benefited greatly
from a judiciously genomed genetic algorithm, as indi-
cated by the drop in cost annotated in Fig. 5. However
it must be stressed that the genetic algorithm required
very good initial-seed sets to manipulate, as well as it-
erations with human-guided searches, synergies which
were key to yielding the winning solution, and the rea-
son behind the centrality in Fig. 4 of the “Human super-
vised, aggressive chain modification” box.

The JPL team thanks the Advanced Concepts Team
of the European Space Agency, in particular the team
lead Dario Izzo, for posing this fascinating and relevant
problem, for making the logistics of problem dissemi-
nation and solution verification almost trivial, and for
introducing the excitement of real-time solution rank-
ing.
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Table 2: Mission Characteristics.
Mission Rendezvous Duration, days

1 5.00,5.00,5.04,5.01,5.01,5.03,5.00,5.00,5.00,5.03,5.03,5.04,5.04,5.00
2 5.00,5.02,5.02,5.00,5.04,5.00,5.05,5.02,5.07,5.03,5.02,5.00
3 5.00,5.06,5.01,5.02,5.07,5.02,5.04,5.02,5.01,5.02,5.01,5.07,5.06,5.02,5.01,5.01,5.06,5.01,5.02,5.04,5.00
4 5.00,6.01,6.01,6.03,6.05,6.05,6.04,6.01,6.06,6.04,5.00
5 5.00,5.02,5.07,5.04,5.01,5.01,5.02,5.06,5.06,5.02,5.06,5.01,5.07,5.00
6 5.00,5.02,5.01,5.04,5.07,5.02,5.01,5.02,5.02,5.00
7 5.00,5.00,5.06,5.06,5.04,5.06,5.04,5.06,5.03,5.00
8 5.00,5.01,5.03,5.00,5.01,5.04,5.07,5.02,5.00
9 5.00,5.51,5.53,5.53,5.53,5.55,5.54,5.53,5.54,5.55,5.52,5.00
10 5.00,5.54,5.50,5.50,5.52,5.52,5.54,5.53,5.52,5.00

Mission Transfer Duration, days
1 24.86,24.98,22.42,24.99,0.29,10.63,25.00,2.70,1.51,1.41,24.67,24.31,5.86
2 24.93,0.28,0.73,0.39,17.07,1.61,22.42,2.39,15.88,24.97,2.49
3 14.16,24.94,2.87,8.10,9.00,23.13,23.09,23.09,22.83,24.98,24.98,24.93,24.94,9.10,13.44,24.99,24.94,24.99,24.98,24.96
4 23.96,6.48,16.72,23.97,23.95,23.95,23.96,23.99,23.94,23.96
5 0.45,3.17,24.93,10.34,12.53,7.11,13.44,24.94,24.94,24.98,22.19,24.99,22.01
6 24.91,0.30,18.39,3.08,20.24,24.96,24.85,24.97,0.28
7 15.69,0.50,9.83,24.94,24.90,24.48,20.87,24.91,0.66
8 10.03,24.00,2.83,24.99,24.99,24.96,21.19,24.98
9 22.69,4.24,24.47,24.46,24.47,24.44,24.46,24.46,24.46,18.54,9.22
10 0.81,11.59,7.66,1.11,17.46,6.47,20.47,24.47,3.99

Mission ∆V , m/s
1 161.8,139.2,65.8,208.2,115.2,300.1,564.9,78.3,105.0,233.3,453.5,340.4,300.8
2 659.0,301.1,252.1,143.8,146.8,68.6,40.6,84.2,105.3,448.5,148.0
3 219.1,80.8,105.2,55.2,140.2,85.5,95.0,237.6,205.9,149.9,245.2,71.6,197.3,160.4,132.2,240.0,161.2,364.3,230.4,232.5
4 86.1,103.1,62.6,222.9,709.1,553.9,219.9,233.9,739.0,232.6
5 129.6,45.2,172.9,52.6,160.7,280.8,221.1,163.5,98.2,115.7,164.8,674.8,291.1
6 156.0,198.0,305.8,71.2,194.4,920.5,314.1,353.0,272.8
7 400.6,173.6,211.3,374.4,109.6,171.2,145.1,194.3,233.0
8 287.9,111.9,112.2,144.5,540.0,260.1,198.8,82.7
9 83.3,148.1,495.9,464.9,405.2,285.9,254.8,62.3,156.6,36.5,174.9
10 189.4,112.9,110.0,121.3,117.9,280.1,300.4,120.6,70.2
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Figure 6: Cost-contour plot with final solution, num-
bered by mission; base cost: 55 MEUR.

This research was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Ad-
ministration.
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