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Summary

The problem of designing new peptides that possess specific properties, such as bactericidal activity, is of wide in-
terest. Recently, attention has focused on the use of Computer-Aided Molecular Design techniques in parallel with
more traditional ‘synthesise and test’ methods. These techniques may typically use Genetic Algorithms to optimise
molecules based on Neural Network models that predict activity. In this paper we describe a successful application
of this Molecular Design methodology that has resulted in novel bactericidal peptides of real value. A key issue
for commercial utilisation of such results is the ability to protect the intellectual property rights associated with
the discovery of new molecules. Typically peptide patents use structural templates of amino acid hydrophobicity-
hydrophilicity that define highly regular peptide patent spaces. In an extension of established patenting practice we
describe a patent application that uses a Neural Net predictive model to define the regions of peptide space that we
claim within the patent. This formalism makes no a priori assumptions about the regularity of the patent space. A
preliminary comparative investigation of the shape and size of this and other bactericidal peptide patent spaces is
conducted.

Introduction

Bactericidal peptides are of special interest for a
wide range of industrial, pharmaceutical and med-
ical purposes. Recently significant progress has been
made in the use of Computer-Aided Molecular Design
(CAMD) techniques for the design of novel mole-
cules possessing desired properties, e.g. polymers with
glass transition, resistivity and conductivity [1, 2] or
mechanical and shrinkage [3] properties; peptides or
proteins with folding [4–6], binding [7–9] or cleavage
[10] properties. There are a number of good reviews
of this general field [11–13].

The approach is best used in parallel with more
traditional ‘synthesise and test’ methods and typically
relies on two stages:

(1) Forward Modelling: The use of non-linear
modelling methods such as Neural Networks (NN) to
predict molecular properties, often called Quantita-
tive Structure Activity Relationships (QSARs). These
methods build predictive models based on experimen-

tal data. They may use molecular parameters derived
from the 3-D structure of the peptide, or a structural
description of the molecule [1, 14].

(2) Model Inversion / Optimisation: The use of op-
timisation algorithms to invert the QSAR models to
find new molecules of high activity. The inversion is
generally one-to-many, e.g. there are many molecules
that have the same activity, and so the inversion is
more reasonably treated as an optimisation problem
in the space of all molecules of the particular class.
Genetic Algorithms [15, 16] have been found to be a
successful way of designing molecules in this way.

This paper reports on a successful application that
has resulted in novel peptides with experimentally
demonstrated bactericidal activity. The experimenta-
tion validates the forward modelling, and the CAMD
methodology generates many ‘virtual’ peptides with
high-predicted bactericidal activity. These peptides
may have commercial value, and hence there is a need
to protect the intellectual property rights associated
with them. In an extension of established patenting
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Figure 1. Primary Loop: Conventional synthesise and test method-
ology draws on a theoretically based hypothesis for the mechanism
of action (1) to generate a set of peptides which may prove or dis-
prove the hypothesis (2). A selection of these are synthesised and
tested for activity (3).

Figure 2. Secondary Loop: Descriptive molecular parameters based
on the mechanism of action are selected or created, and together
with data generated by the experimental synthesise and test loop are
used to build a quantitative predictive model (4). Optimal peptides
are generated using optimisation techniques (5), and a selection of
these (2) are synthesised and tested (3).

practice we have framed a patent that uses the Neural
Net QSAR model to define the regions of peptide
space that we claim within the patent [17]. The Neural
Net predictive QSAR model is not itself patented, it
is fully disclosed, as are the methods of deriving the
molecular parameters, so that anyone ‘skilled in the

art’ may reproduce the results and models we have
obtained. What the patent seeks to protect is the set
of peptides obtained by application of CAMD tech-
niques. This patent has a priority date of 9 March 1995
and was published by the European Patent Office on
19 September 1996.

Design cycle

A conventional ‘synthesise and test’ methodology
starts with a hypothesis, generates a number of can-
didate peptides to test, conducts experiments on a
selection of these peptides, and uses the results to
confirm or falsify the hypothesis. Figure 1 shows this
‘primary’ loop. A CAMD approach puts in place a sec-
ondary loop of modelling and optimisation, where the
two steps of forward modelling and model inversion
form part of a total cycle of activity (Figure 2):

(1) Develop / Refine theoretically-based hypothe-
ses for the mechanism(s) of actions.

(2) Generate candidate peptides (initially based on
theory/hypothesis).

(3) Perform Experiments: synthesise and test a
selection of candidate peptides.

(4) Develop a Quantitative Model: build a correla-
tion model between peptide and activity, e.g. based on
selected molecular parameters.

(5) Optimise Peptides using Model: generate can-
didate peptides based on quantitative model.

Once the primary loop has generated a suffi-
cient quantity of data for modelling, the secondary
modelling loop may commence, generating candidate
peptides based on the experimental data. Note that
the models and the results of the optimisation may
also be used to influence the refinement of the the-
oretically based hypotheses. This process is similar
to the hypothetico-deductive scientific process, and
makes a compelling argument for placing computer
aided design techniques firmly alongside traditional
‘synthesise and test’ methods.

Hypothesis: mechanism of action

Peptides that are capable of broad spectrum bacte-
ricidal activity should possess the ability to traverse
a cell wall or outer cell wall membrane and disrupt
or disintegrate cell membranes, in particular the cy-
toplasmic membrane which is a selective barrier that
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Figure 3. Side view of an amphiphilic and laterally amphipathic
peptide with one face of the helix displaying hydrophobic residues,
while the opposite face displays hydrophilic residues (red= hy-
drophobic, blue= hydrophilic).

restricts entry and exit of solutes. This results in irre-
versible osmotic-colloidal interactions which kill the
bacteria by dramatically altering the proton motive
force, i.e.1pH +19 (membrane potential). The pep-
tides suitable for this purpose should be capable of
forming ion channels in membranes by aggregation
(pseudoionophores) and insertion in order to span the
membranes [18–20]. The minimum length to span a
membrane 2.5–4.0 nm (depending on lipid composi-
tion) is at least 15 amino acid residues [21, 20]. The
peptides should be alpha-helical to be transmembrane
[22–24]. They should also be amphiphilic and lat-
erally amphipathic (one face of the helix displaying
hydrophobic residues, while the opposite face displays
hydrophilic residues), in order to form hydrophilic ion
channels or pores and at the same time remain in con-
tact with the hydrophobic components, e.g. fatty acyl
moieties [25, 26] (Figures 3 and 4). A number of po-
lar, acidic or basic amino acids are required within
the peptide to impart suitable solubility characteristics
[27].

Transmembrane pores or channels may arise from
the insertion of monomeric peptides, where the pore
is part of the secondary structure of the monomer,
or from aggregated monomers which form oligomeric
peptides, in which case a ‘barrel-stave’ type of pore
is formed [28] (Figure 5). The ‘barrel-stave’ type of
pores may arise by direct insertion of an oligomer
into the membrane or by monomer insertion followed
by lateral coalescence. Our peptides are designed as
lateral amphipathic rods, which favour ‘barrel-stave’
type of pores.

These theories of mechanism of action form a set
of ‘design rules’, which can be used to design peptides
that should be active. The CAMD approach formalises
the design rules in a quantitative model, that given a

Figure 4. Space-filling view of the peptide in Figure 3, looking
down the helical axis.

Figure 5. Space-filling view of an aggregation of six peptides show-
ing a ‘barrel-stave’ pore which may form an ion channel in the cell
membrane, orientation as in Figure 4.

particular peptide will predict its activity with a high
degree of accuracy. We have pursued both routes in
parallel.

Experimental measures

Test bacteriaStaphylococcus aureusATCC 6538
and Escherichia coli ATCC 11229 were cultured
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overnight, harvested and suspended in Ringer’s solu-
tion to obtain appropriate initial cell numbers (106–
108). The bacteria were incubated with the designed
test peptides (various concentrations) aseptically in 96
well microtitre plates and relevant controls taken. The
bactericidal activity (bacterial killing) was measured
by a total viable counts (TVC) technique after an in-
cubation period of 2 h with the test peptides, and the
results expressed as log bacterial kill. The log bacterial
kill is calculated as the difference in log scale of bac-
teria initially present and the number of bacteria still
viable after incubation with peptides.

Modelling techniques

Over the period of study, a total of 29 peptides were
synthesised and tested for the bactericidal activity, and
a further 5 were synthesised and tested based on the
model predictions (cf. Appendix 1). We present here
in detail the modelling of bactericidal activity against
S. aureus, the case againstE. coli runs in a similar
vein. In this study, we adopt a two-stage approach
to modelling: the first step is to generate a number
of molecular descriptors based mainly on the 3-D
structure of the peptides, and the second step is to
find a relationship between these parameters and the
bactericidal activity (Figure 6).

Molecular modelling

Based on the mechanism of action, 39 molecular pa-
rameters were selected or created (using the TRIPOS-
Sybyl software [29]), that might decribe the key as-
pects of the peptides structure that are responsible for
its activity againstS. aureusandE. coli (cf. Appen-
dix 2). Given an appropriate peptide length of greater
than 15 amino acid residues, we assume:

bactericidal activity= f(diffusion, aggregation)

where the ability to diffuse and aggregate is described
by two groups of parameters: general molecular pa-
rameters and amphipathic descriptors. General mole-
cular parameters include molecular weight, charge,
size and shape parameters. An example of an amphi-
pathic parameter is the hydrophobic dipole moment,
a property analogous to the standard electrostatic di-
pole moment but using hydrophobicity of the amino
acids instead of atomic point charges. Thex, y, andz
components of the dipole are derived by orienting the
peptides withz down the centre of the alpha helix of

the peptide with origin (z = 0) at the midpoint; the
y-axis defined as being in the direction of the vector
sum over all hydrophobic residues6HiCi, where Hi
is the hydrophobicity value of Eisenberg [22, 23] and
Ci is the co-ordinates of the Cα atom of amino acid i.
Electrostatic dipole moments are calculated in a simi-
lar manner, using all atoms within the peptide instead
of just the Cα atoms.

For a peptide to be laterally amphipathic, hy-
drophobicity should be periodic along the sequence
of amino acids, with period∼3.6, the circumference
of a turn in the alpha-helix. Two parameters were de-
vised to approximate to this, the closeness of fit of
hydrophobicity to a sine wave, ssin, and the closeness
of fit to a square wave, ssqr. These parameters are given
by ‘least-squares’ equations:

ssin= Minθ{6N
i [Hi − sin(100i− θ)]2}/N,

ssqr= Minθ{6N
i {0.5∗ [sign(Hi)−

sign(sin(100i− θ))]2}},
where N is the number of amino acids in the peptide,
i is the position along the amino acid sequence,Hi is
normalised such that the largest positive and largest
negative value of hydrophobicity for the residues are
set at 1 and−1 respectively,θ is an offset that is varied
to find minimum value.

Neural networks

To build an effective NN model, we employed the
following steps: initial data exploration (including lin-
ear modelling), parameter selection, choice of model
architecture, model training with cross-validation and
blind testing.

Of the 39 initial parameters a smaller subset was
selected. The auto-correlation between the input pa-
rameters highlighted clusters of similar parameters.
Together with the coefficients of the input parameters,
calculated by a step-wise linear regression, six key
variables were identified that made sense given the
mechanism of action:
• Sum of the negative charge (1).
• Sum of the hydrophobic and hydrophilic values

(2).
• closeness of fit to ‘sine’ wave and ‘square’ wave (3

and 4).
• x andy components of the charge dipole (5 and 6).

These represent a selection of general molecular and
amphiphilic parameters, i.e. of diffusion and aggrega-
tion parameters.
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Figure 6. The first step of Molecular Modelling generates a number of molecular parameters based on the general characteristics and the 3-D
structure of the peptide. These parameters are used as input to a Neural Network to give a prediction of the bactericidal activity.

Figure 7. Results of linear regression, showing predicted log kill ofS. aureusagainst measured values. The error bars calculated by the QR
method are not good estimates of the true error. The R-squared is 0.628.

Linear regression on these six variables gives a fit
with anR2 value of 0.63 with error bars calculated by
the QR method (regress function in Matlab [30]). The
predicted against measured plot in Figure 7 shows a
large amount of variance in the data that has not been
captured by the linear model. The plot of residuals in
Figure 8 shows some possible structure that may be
due to non-linearities in the data.

A visualisation of the activity may be obtained by
projecting the input parameters onto a 2-dimensional
Kohonen self-organising feature map, an unsupervised
form of Neural Network [31]. The co-ordinates on the

Kohonen map are smoothed across the nodes by taking
a mean inverse distance to the three nearest nodes:

(x, y) = w

sum(w)
· C,

wherew= [1/d1, 1/d2, 1/d3] are the inverse distances
of a point toC= [(x1,y1); (x2,y2); (x3,y3)], the three
nearest nodes. The third dimension, or height above
the map is set to be activity and a surface is obtained by
triangle based linear interpolation (griddata function in
Matlab [30]). The surface plotted in Figures 9 and 10
shows a degree of regularity, indicating that there may
well be a (non-linear) relationship between molecular
parameters and activity.
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Figure 8. Plot of the residuals of the linear regression fit, showing the residual against the measured log kill ofS. aureus. The trend in the
residuals is indicative of non-linearity in the data.

Multi-Layer Perceptron (MLP) Neural Networks
are described as universal non-linear approximators
and have the ability to model arbitrary non-linearities
[32], i.e. may be used to find non-linear correlations
between inputsx to outputsy. For a univariate output
y, this has a general form:

y =
∑
j

(wj · (f (
∑
i

wij xi + bi))+ bj),

where:xi are the inputs (general molecular and am-
phiphilic parameters);wij are the weights between the
input layer and the ‘hidden’ layer;wj are the weights
between the ‘hidden’ layer and the single output node;
bi andbj are the bias weights, or offsets;f is a non-
linear transfer function, in this case the hyperbolic
tangent tanh, though it may a sigmoid function or a
Gaussian.

Classically, training an MLP consists of setting the
weightsw, such that the mean squared error6(tn −
yn)2 is minimised over n, an index to all the data
points. This was done using the delta-bar-delta train-
ing algorithm in Neural Works Professional II [33]. A

Neural Network with 6 hidden nodes was found to give
the best results.

As the data set was very small (29 data points), a
leave-one-out cross-validation technique was used to
ensure the validity of the model. Gathering the predic-
tions across all 29 points, it is possible to deriveR2

values for the cross-validation, as well as meanR2 for
the 29 models (Figure 11)

MeanR2 over 29 models 0.968,

Cross-validatedR2 for S. aureus 0.905.
Recent results suggest that weighted combinations

of models may outperform any single model [34, 35].
With no a priori reason to preferentially weight any
one of the models, the predicted activity was taken to
be the mean of the predictions of the 29 models.

Optimisation

Genetic Algorithms (GA) [15, 16] are currently of
great interest as general-purpose optimisation tools.
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Figure 9. Projection of the 6 input molecular parameters for the 29
peptides projected onto a Kohonen map with 25 nodes. The projec-
tion is smoothed between the three nearest nodes. The height above
the map is given by the measured log kill ofS. aureus, and this is in-
terpolated between the nodes to give an approximate ‘landscape’ of
activity, equivalent to the contours in Figure 10. This enables an easy
visualisation of the degree of regularity within an approximation to
the true landscape.

Their use in peptide design is particularly apt due
to the natural extension of biological evolutionary
operators to amino acid representations of peptide
sequences [4].

There are three main aspects to be determined in
the devising of a Genetic Algorithm: the representa-
tion of the problem; the fitness function or ‘chance
of survival’; and the genetic operators, or method of
mating. The problem is naturally represented by the
sequence of amino acids, using single letter symbols:
LLKALL. . . , etc. The fitness function, or method
by which ‘survival’ of any individual is determined,
is simply the Neural Net predictive model: ‘virtual’
peptides which are predicted to be good bactericides
survive to produce offspring for later populations. As
the peptides had to be effective against both bacteria,
the fitness value assigned to a peptide was the lower of
theS. aureusandE. coli predicted log Kill scores.

For this study standard operators: roulette wheel
selection, mutation, and two-point crossover were
used. Following a number of short tests on a simplified
model, it was noted that the success of the algorithm
in finding large numbers of potentially active peptides
was robust to the setting of the GA parameters. For a
full run, the parameters were set as follows: population
size 100, size of elite 25, probability of cross-over 0.6,
and probability of mutation 0.033.

Table 1. Efficiency comparison of the
Genetic Algorithm against other stan-
dard optimisation techniques. The GA is
an order of magnitude more efficient

Method Efficiency

GA > 90/1250= 7.2%

Monte Carlo 1/200= 0.5%

Random 4 / 52000= 0.008%

Table 2. Experimental measures of log kill ofS. Aureusfor pep-
tide sequences that were generated by the Genetic Algorithm

Peptide sequence Predicted Measured
log kill log kill

AASKAAKTLAKLLSSLLKLL 7.22 > 5.06
LLKKLLRAASKALSLL 7.13 > 5.90
AAKKLSKLLKTLLKLL 7.35 > 5.76
KALKKLLKLASSLLTAL 7.04 5.90
AASKALRTASRSLLTLL 7.03 > 5.85

Results

For an average GA run, after 50 generations, 90 out
of 100 peptides in the final population were found to
be acceptable, i.e. with predicted log kill>7 to both
S. aureusandE. coli, given a total of 50∗ 25= 1250
evaluations. This compares very favourably with ran-
dom generation of peptides, 4 hits out of 52 000
evaluations, and Monte Carlo optimisation, 200 evalu-
ations, averaged over 95 runs, to result in a single pep-
tide. Note this efficiency is a minimum comparison:
once the GA converged to a region of high activity,
approximately 50% of new peptides generated by the
algorithm were found to be active. Comparative results
are given in Table 1.

Using the Genetic Algorithm, over 400 potentially
active ‘virtual’ peptides were generated. Five of the
400 were selected to be synthesised by determining
the Principal Components of the six chosen molecular
descriptors of the 400, and selecting 5 peptides that
maximised the diversity. The diversity in molecular
properties is also reflected in the diversity of the amino
acid sequences. The bactericidal properties of these
five were measured and are given below:

The measured log kills given in Table 2 are given
as lower bounds due to a threshold in the measurement
sensitivity that is dependent on the initial cell numbers
of S. aureusbacteria in the test innoculum.
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Figure 10. Projection of the 6 input molecular parameters for the 29 peptides projected onto a Kohonen map with 25 nodes. The projection
is smoothed between the three nearest nodes. The radius of each circle represents the measured log kill ofS. aureusof each peptide, and the
contour lines interpolate that activity across the map. The regularity of the shape of the contours indicates that there is likely to be regularity in
the pattern of bactericidal activity with regard to the molecular parameters.

Patent application

To be patentable an invention must be novel, useful
and non-obvious. In addition, it should be understand-
able by a person, or group of people, ‘skilled in the
art’. Typically a patent application ends with a num-
ber of separate but related claims. The claim sets out
what is covered by the patent, i.e. the particular intel-
lectual property that is protected. There are a number
of typical conventions in framing patents concerning
peptides. A common method is to frame a claim as
consisting of a list of individual peptides as given
by their amino acid sequences, e.g. Ala-Leu-Thr-. . . .
or by abbreviation LLLKLKKALL. . . ., etc. A wider
form of patent claim is based on the structural form
of the peptide and defines templates in which amino
acids may be substituted. A claim may read: peptides
of the form ‘R1-R2-R2-R1-R3- . . . etc.’ where the R-
groups may be defined as hydrophilic amino acids,
hydrophobic amino acids, basic hydrophobic, neutral
hydrophilic, etc. [17, 36–38].

A typical example is found in Claim 1 of [37]:
‘[we claim. . . ] a biologically active amphiphilic pep-
tide, said peptide including the following basic struc-

ture x, wherein x is:
R1-R1-R1-R3-R5-R1-R1-R1-R1-R1-R2-R2-R1-R1-R3-
R1-R4-R 1-R3-R4-R1-R1
Wherein R1 is a hydrophobic amino acid, R2 is a
basic hydrophilic amino acid, and R3 is a neutral
hydrophilic amino acid, R4 is a hydrophobic or ba-
sic hydrophilic amino acid, and R5 is a hydrophobic,
basic hydrophilic, or neutral hydrophilic amino acid’

The scientific justification for this claim is given by
experiments conducted on 7 peptides:

GVLSNVIGYLKKLGTGALNAVL
GVLSKVIGYLKKLGTGALNAVL
GVLSQVIGYLKKLGTGALNAVL
GVLSFVIGYLKKLGTGHLNHVL
GVLSNVIGYLKKLGTGKLNKVL
GVLSFVIGYLKKLGTGKLNKVL
GVLSKVIGYLKKLGTGKLNKVL

where these peptides have been shown to be active
bactericides, and an implicit inference is made that this
bactericidal property will extend to other peptides with
a similar hydrophobic – hydrophilic structure.

Let us compare this with [17]. The patent text
states:
‘We have determined that effective peptides are dis-
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Figure 11. Results of the cross-validation of the Neural Network showing cross-validated prediction of log kill ofS. aureusagainst measured
value, circles (o) indicate the cross-validation set of 29 peptides, and the asterisks (∗) indicate the 5 ‘computer-designed’ peptides. The results
lie reasonably close to the line of identity with anR-squared of 0.905.

criminated from ineffective peptides by means of an
equation relating certain properties of the peptides
to their biological activity against specific micro-
organisms. . . and have demonstrated that a strong cor-
relation is shown between those peptides which satisfy
this rule and those which have effective antimicrobial
properties. Conversely, it appears that the majority
of the peptides which exhibit properties outside the
scope of this rule do not show effective antimicrobial
properties.’

As publishing 29 Neural Net models would be
somewhat cumbersome, for simplicity of publication
in the patent, a single Neural Net model was generated
that approximated the same function as the mean of the
29 Neural Nets. An artificial data set was generated by
creating a lattice of 76 = 117,649 data points with
‘observed values’ given by the mean of the 29 Neural
Net models. This artificial data was used to train a

single Neural Net model withR2 = 0.982 over the
artificial data set (Figure 14). This final model was
published in the patent application: Claim 3 of [17]
claims the peptides with specific bactericidal ability to
S. aureus:
‘Antimicrobial peptides having a length of 10–30
amino acid residues wherein the predicted log kill to
S. aureus ATCC 6538, (LS. aureus) is greater than 5,
LS. aureus being given by the equation. . . ’
and there follows several pages of simple algebraic ex-
pressions of the Neural Network, written in a form that
may easily be turned into a computer programme.

While the Neural Network, and the necessary
derivations of the input parameters to the Neural Net-
work are disclosed in their entirety, the object of the
patent is to protect the peptides that the NN predicts to
have an activity higher than a specified value. In effect
the patent states that we have determined a relationship
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Figure 12. By using the Neural Net predictive model to define the
scope of a patent claim, we have added a sixth step to the Computer
Aided Molecular Design process, the interplay between modelling
and patenting.

between peptide 3-D structure and bactericidal activ-
ity. This rule is given by the Neural Network model,
and is validated by both positive and negative exam-
ples. The generalisation from specific examples to a
wider range of peptides is explicit and is demonstrated
to be based on a combination of scientific under-
standing and experimental evidence. Furthermore it
is substantiated by the success in predicting new pep-
tides, the sequences given in the results, that are indeed
active againstS. aureus. Many thousands of active
peptides may easily be found using the Model In-
version / Optimisation techniques described here and
elsewhere. It is important to note that the Neural
Network isnotpatented or claimed in any way.

In effect we have added a sixth step to the process
of Computer-Aided Molecular Design – the close
interplay of the modelling step with the patenting
process (Figure 12).

Comparing patent spaces

Whether a patent is written in any of the available
forms [17, 36–38], a peptide patent claim may be
viewed as defining a region in peptide space, this may
be called the ‘patent space’. It is instructive to analyse
the shape and size of a patent space for a particular

Figure 13. Schematic of a regular sub-space of a Peptide Space
of trimers based on an amino acid alphabet of {A, B, C}. The
sub-space is defined by R1-R1-R2 where R1= {A,B}, and R2 =
{B,C}.

claim or patent as well as the spread of illustrative
examples through this space, and compare across
patents. A small example may help to illustrate this
point. For a ‘toy’ peptide system consisting of trimers
with an amino acid alphabet of {A,B,C} the peptide
space consists of a fully connected three-dimensional
hyper-cube. If we take as a hypothetical case a peptide
patent that claims R1-R1-R2 where R1= {A, B} and
R2= {B, C}. The full set of sequences in this patent
space is AAB, ABB, BAB, BBB, AAC, ABC, BAC,
BBC, and they occupy a connected sub-cube of the
complete space (Figure 13).

For [36–38] the shape of the patent space will
be a fully connected hyper-cube nestling within the
complete peptide space. The ‘landscape’ defined by
a Neural Network model is more complex, and ap-
proaches to studying these are given in [7–9, 39, 40].
We wish to compare estimates of the relative extent
of the experimental space (the diversity of the syn-
thesised peptides) with the extent of the patent spaces
claimed. A crude measure of the extent of a peptide
(sub-) space is the average hamming distance between
the peptides of the region, where the hamming dis-
tance between sequences S1 and S2 is the smallest
number of amino acid substitutions or additions nec-
essary to transform S1 into S2. The average hamming
distance between the points of such a regular sub-
space may easily be calculated. For a given sequence
N amino acids long, with A possible amino acids, the
peptides that are s steps away involve (A-1)s changes,
for which there areNCs permutations. Summing from
0 to N, D the average hamming distance of the space
is given by:
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Figure 14. Plot of Neural Network model predictions based on the initial 29 synthesised peptides. The results lie very close to the line of
identity with anR-squared of 0.98.

D = 1

T

N∑
s=0

s.Ns C(A− 1)s,

whereT = AN is the total number of peptides in the
space. For [36–38], A was estimated at 10, half the
typical alphabet of 20 amino acids. For [17] as there
are no structural templates it was (over-)estimated at
20.

H, the average hamming distance between exper-
imental examples was calculated directly from the
examples for [17, 37, 38]. For [36],H was estimated
by the substitution method of generating the example
peptides described in the patent text.

Table 3 shows the comparison of the average ham-
ming distance between the synthesised peptides given
as examples and the average hamming distance of the
patent space they fall within, wheren = the number
of example peptides within the patent space of the par-
ticular claim. The final column gives the comparison
between the diversity of the synthesised peptides, and
the diversity of the patent space claimed. This value
gives a rough measure of the extent to which the exper-
imental results extend across the patent space claimed,

Table 3. The results of a comparison of the relative spread of
synthesised peptides within the patent spaces claimed.

Patent Claim n H N A D 100∗H/D

[36] 5294605 7 41 2.03 27 10 16.2 12.5

[37] 92_20358 1 7 2.7 24 10 21.6 12.5

[38] 92_17197 1 15 9.45 26 10 24.3 38.9

[17] 96_28468 3 14 13.2 30 20 28.5 46.3

n = the number of example peptides within the patent space
of the particular claim; H= the average hamming distance be-
tween experimental examples; A= an estimate of the number
of possible amino acids in each position in the peptide se-
quence; D= the average hamming distance between peptides
in the peptide patent space. The last column gives an indication
of the relative spread within the claim.

and may be used as justification for the claim. It can
be seen that our patent [17] is at least comparable, if
not more substantial, in its spread.

Structurally based patents assume that peptide ac-
tivity will be distributed in a highly regular manner
through peptide space. In contrast a Neural Net based
definition of patent space makes no prior assumptions
about the shape of the claimed region. It is quite possi-
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ble that there are disconnected regions or even isolated
peptides. A more detailed study of the characteristics
of these spaces is left to a further study.

Discussion and conclusions

Computer-Aided Molecular Design has taken a large
leap forward in recent years by the use of algorithms
such as Neural Networks for the prediction of prop-
erties of interest, and Genetic Algorithms that use
the Neural Network models in the discovery and de-
sign of new peptides. This study shows how we have
successfully used these techniques to design novel
bactericidal peptides. Neural Net equations have been
determined on the basis of a sound theoretical hypoth-
esis of bactericidal activity, 29 experimental measures,
carefully chosen molecular parameters and the devel-
opment of a predictive model based on these aspects.
Furthermore, this relationship has been validated by
its use in computer-aided peptide design, i.e. new pep-
tides have been designed by Genetic Algorithm that
were predicted to be active, and synthesis and experi-
mentation on these new peptides have been in accord
with the predictions.

The patent aspects of the work have identified sev-
eral legal issues. It appears reasonable to assume that
where new and useful compounds are produced by a
method involving intensive computation, those who
set up the problem, rather than the computer itself, are
the ‘inventors’ of the compounds, despite the fact that
the precise nature of the compounds could not have
been predicted in advance. We describe how we have
used the Neural Net equations to define the scope of
a patent claim. A justification for this approach lies
within the context of the well-documented method of
Computer Aided Molecular Design. It remains to be
seen whether such a mathematical approach will rest
easy with the Patent Offices around the world who
must approve the patent for grant.

In the same way that any patent discloses the scien-
tific understanding of a particular scientific endeavour,
so we have disclosed the model in full, as well as
the precise method for development of the model, so
that it may contribute to the body of scientific knowl-
edge in this domain. The mental act of formulating
the claims of a patent, which identifies its scope, has
always involved the definition of a broad space within
which the examples and many other potential com-
pounds lie. We have begun to show how the diversity
of this space can be explored with mathematical tools.

In a simple comparison with other patents on bacteri-
cidal peptides, we show that in our case the diversity
of the synthesised peptides is extremely high. The
residues vary in every position, and this paper presents
some evidence to show that they have a relatively wide
range within the space of all peptides. While these re-
sults are very interesting, considerable further research
may be carried out on molecular patent space analysis
to address more fully issues surrounding ‘coverage’ of
example molecules and claims.
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Appendix 1. Primary peptide sequences with measured and predicted
activity

Example Sequence S. aureus E. coli

Act Pre Act Pre

MB_03 VSSKYLSKVKVKAGK 4 4.18 1.63 0.75

MB_04 ARLAKKALRRLAKKD 1.46 1.08 0.83 0.44

MB_10 GESLASKAAKAAER 0.78 0.92 0.46 0.45

MB_15 ESLAKALSKEALKALK 1 0.74 1.24 0.44

MB_18 LKALKKLAKKLKKLA 7 6.70 4.17 6.28
MB_22 GWLLLEYIPVIAAL 0.54 0.49 0.41 0.44

MB_31 EAALKAALDLAAKLA 0.75 1.13 0.39 0.45

MB_00 LKLLKKLLKKLKKLL 6.94 6.90 7.15 6.02
MB_21 FASLLGKALKALAKQ 6 6.32 6.15 5.68
MB_25 LSSALSALSSALSSK 0.54 0.46 0.37 0.44

MB_32 ERSAAKSAARSLARR 0.67 0.46 0.08 0.44

MB_33 EKTLARTAAKTALKK 0.43 0.58 0.22 0.44

MB_34 EKAAAKSAAAKTLARR 0.43 0.33 0.24 0.44

MB_35 VSSKYLSKALVKAGR 0.54 1.38 0.26 0.45

MB-36 FASLLGKALKALLAKLAKQ 5.74 4.92 5.95 5.40
MB-37 FASLLGKLAKKLAKKALK 5.74 5.91 5.22 4.96
MB-38 ESLKARSLKKSLKLKKLL 1.58 1.38 0.58 0.45

MB-41 ELAKKALKALKKALKSAR 3.64 3.33 0.18 0.59

MB-43 ELAKKALRALKKALKSAK 2.75 3.07 0.22 0.54

MB-45 ETFAKKALKALEKLLKKG 2.77 2.91 0.16 0.57

CM-1 LALLKVLLRKIKKAL 5.68 5.85 4 3.54
CM-2 LULLLKILLLKKLKA 3.38 3.14 0.75 0.83

CM-3 ALKAALLAILKIVRVIKK 5.68 5.47 3.07 4.07
CM-4 LLAILLLALLALRKKVLA 0.99 1.34 0.38 0.46

MB-40 ETELAKKALKALKLKKLA 0.47 0.32 0.16 0.44

MB-46 ESSLKKKALSKLSKLLKKG 2.57 2.63 0.28 0.51

MB-47 QKAASRLLRALSKLLEAF 5.65 5.55 0.11 0.48

MB-48 QKALAKLAKKALKALAKQ 1.03 1.31 1.77 0.45

MB-50 ESKAAKAAKKAAKAKASE 0.24 0.40 0.18 0.44

MC-03 AASKAAKTLAKLLSSLLKL 5.96 7.24 1.96 1.72

MC-04 LLKKLLRAASKALSLL 5.9 7.13 0.45 0.82

MC-05 AAKKLSKLLKTLLKLL 5.76 7.36 1.01 2.06

MC-08 KALKKLLKLASSLLTAL 5.9 7.06 1.61 1.12

MC-10 AASKALRTASRLARSLLT 5.85 7.03 0.41 −0.56
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Appendix 2. The 39 molecular parameters calculated for each peptide

Molecular parameter class Number of parameters Molecular parameters

Simple 4 Molecular weight, length of the alpha

helix, cross-sectional area of the alpha

helix and length/weight

Hydrophobic dipole 5 x, y, zandzycomponents and magnitude

Hydrophobicity 3 Sum of the hydrophobicity of the

hydrophobic amino acids, sum of

the hydrophobicity of the hydrophilic

amino acids and the sum of these two

parts

Solvent accessible surface area 3 Hydrophobic, hydrophilic and

hydrophilic/ hydrophobic

Charge dipole 4 x, y andzcomponents and magnitude

Charge 4 Sum of the charge of positively

charged amino acids, the sum of the

charge of positively charged amino

acids, the sum and the difference of

these two parts

Fit of hydrophobicity of amino 2 Fit to sine wave and fit to square wave

acids to different patterns

Radius of gyration 2 RxyzandRxy

Radial moment 2 The radial moment and the square of

the radial moment

Number of atoms betweenr and 10 Forr = 0 to 9

(r + 1) Angstroms from the alpha

helix axis


