
Bundling n-Stars in Polygonal Maps
Victor Parque∗† and Tomoyuki Miyashita∗

∗Department of Modern Mechanical Engineering, Waseda University, Japan
{parque@aoni.waseda.jp, tomo.miyashita@waseda.jp}

†Department of Mechatronics and Robotics, Egypt - Japan University of Science and Technology, Egypt
{victor.parque@ejust.edu.eg}

Abstract—This paper aims at computing minimal-length tree
layouts given an n-star graph in a polygonal map. This problem is
strongly related to the edge bundling problem, which consists of
compounding the edges of an input graph to obtain topologically
compact graph layouts being free of clutter and easy to visualize.
Computational experiments using a diverse set of polygonal maps
and number of edges in the input graph shows the feasibility,
efficiency and robustness of our approach.

I. INTRODUCTION

Aiming towards the realization of efficient routing of re-
sources in the integration, communication, and coordination
of large-scale networked systems, our interest is to tackle
the cherry bundling problem which consists of computing
minimal-length tree layouts given an n-star graph, or cherry
[1], [2], in a polygonal map.

Generally speaking, an instance of the cherry bundling
problem consists of the following elements:
• a source r ∈ R2,
• a finite non-empty set S⊆R2 of terminals, where a sense

of direction from r→∀s ∈ S is implicit.
• a polygonal map P = {p1, p2, ..., pk} with k polygons

denoting obstacles in the environment.
And a feasible solution of the above instance is
• a rooted tree T = (V,E) with V = {r}∪ S∪ I in which

I ⊆ R2 is the set of intermediate vertices of T , and the
elements of S are either intermediate or terminal vertices
of T .

To give a glimpse of the above instance, Fig. 1 shows a
basic example of the cherry bundling problem. In this example,
Fig. 1(a) shows the input elements: source r is depicted by a
red-colored node, the elements of s ∈ S are depicted by blue-
colored nodes, and the elements of P are depicted by brown-
colored polygons.

In line of the above, the feasible solution is depicted by
Fig. 1(b), in which a minimal-length tree avoiding obstacles
is computed. Note that new intermediate nodes are inserted to
minimize tree-length, and nodes s ∈ S are either intermediate
or terminals of T .

A closely related line of work in the existing literature is
the more general and widely-studied edge bundling problem,
which consists in compounding multiple edges of a graph into
overlapped and colinear edges to obtain holistically compact
topologies. The edge bundling concept has recently attracted
the attention of researchers due to its potential to realize

(a) Input Graph (b) Tree

Fig. 1. Basic Concept

clutter-free visualization of complex networks. That is, given
a graph G, bundling can be thought as a mapping β : G→G′,
where G′ is a compact structure whose edges represent spatial
density of the edges of G. Well-known bundling schemes
include the modeling of edges as flexible springs being co-
attractable with respect to compatibility metrics based on
angle, scale, position and visibility [3], and the inclusion
of edge directions, connectivity patterns and edge weights
into the attraction-based approach [4]. Also, the approach of
forcing edges to pass through points in a control mesh [5];
and the strategy of using kernel functions as a graph operator
[6]. Furthermore, there exists the optimization of ink usage
through multilevel agglomeration of edges [7]; the routing of
edges along tree layouts by using B-splines [8]; the convex
optimization of internal trunks in hierarchical layouts that en-
able modular bundles [9], and the nature-inspired optimization
bundling in non-hierarchical bipartite networks [10], [11].

Although the above studies have rendered graph bundles
being clutter-free, topologically compact and easy to visualize;
the study of edge bundling of n-star trees under the presence of
arbitrary obstacles and optimality considerations has received
little examination in the existing literatures. In this study, we
aim at contributing to the field by proposing the first algorithm
for edge bundling of n-stars considering optimality, as well as
obstacle avoidance.

Another closely related line of work is the Steiner tree
problem, which consists of finding a minimal-length graph
(tree) connecting n nodes. The problem first appeared in the
30’s [12], and was later popularized by Robbins and Courant
in the 40’s [13]. The generalized version, the Steiner tree with

u

r r

v

r

u v

r

u
x

v

r

u

r

v

Expand(u, v, x) Shrink(u) Merge(u v)

Fig. 2. Basic operations in tree T = (r,{...,u, ...,v, ...}). These fundamental operators are used due to the fact of allowing not only the growth, but also and
shortening in both depth and breadth.

obstacles in a polygonal map, has received recent attention due
to its direct implications to design optimal VLSI systems. In
[14], a two step approach was proposed: first, the authors gen-
erate a routing graph (an extended full Steiner tree) and then
shortest paths are generated by a search heuristic that considers
slew constraints. In [15], a linear time algorithm for Steiner
tree using layouts up to four terminals was proposed. In [16], a
three-phase approach was proposed: first, the authors generate
connected components (hypergraphs), then trees are computed
by connecting terminals in each hypergraph (sub-trees), and
finally the sub-trees are connected to span all terminals. In
[17], the obstacle-avoiding steiner minimal tree considering
visibility graphs was proposed. In [18], a parallel approach to
generate multiple routes simultaneously was considered; and
in [19], an O(nlog2n) approximation scheme was proposed
(n is number of terminals plus obstacle vertices). In summary,
the above studies have rendered algorithms which approximate
solutions to the (Rectilinear) Steiner tree in the presence of
obstacles and given n nodes in the plane. In contrast to the
above studies, having received no attention, finding minimal-
trees given an n-star imposes connectivity constraints which
implies rendering topologically-constrained Steiner trees. In
this study, the focal point of our contribution lies in how to
compute minimal trees given an n-star in a polygonal map.

Thus, our contributions is a nature-inspired algorithm for
searching optimal tree bundles while preserving connectivity
of the input graph while avoiding obstacles in a polygonal
domain.

In the rest of this paper, section 2 describes our proposed
algorithm, section 3 describes and discusses our computational
experiments, and section 4 concludes our paper..

II. PROPOSED METHOD

In this section we describe the basic preliminaries, as well
as the algorithmic concepts in our proposed approach.

A. Preliminaries
We tackle the cherry bundling problem, which assumes the

existence of the following:
• a source r ∈ R2.
• a finite non-empty set S⊆R2 of terminals, where a sense

of direction from source r→∀s ∈ S is implicit (bipartite
directed graph).

• a polygonal map P = {p1, p2, ..., pk} with k polygons
denoting obstacles in the environment.

Here, from a logistics perspective, the source represents the
central (emitter) hub whereas the terminal units represent the
decentralized receptor units.

Then, we aim at bundling (compounding) the source-
destination pairs r→ S to obtain minimal-length connectivity
from the source r towards the terminal set S while avoiding el-
ements (obstacles) in the polygonal map P. The expected result
is a rooted tree T = (V,E) = (r,L), in which V = {r}∪S∪ I,
I ⊆ R2 is a set of intermediate vertices of T , r is the root of
T , and L = {...,u, ...,v, ...} is the set of forest leaves of T , in
which u,v are trees, by recursive definition. Note that elements
of S can be either intermediate or leaf vertices of T .

Furthermore, let the following be:

Definition II.1. id(T)
is the unique identification of T , in which id(T) ∈ N. The
identification is used for bundling (compounding) purposes.

Definition II.2. leaves(T)
is the set of leaves of T . Let u ∈ leaves(T), then by recursive
definition u is a tree u= (ur,uL) rooted at ur and having leaves
uL = leaves(u).

Definition II.3. lea f (T,k)
is the leaf of T having k as its unique identification, that is
id(u) = k, for u ∈ leaves(T) and k ∈ N.

Definition II.4. end(T)
is the set of terminal nodes of T . Here, elements of end(T)
have no leaves, that is |leaves(u)|= 0 for u ∈ end(T).

The above definitions are the building blocks in our pro-
posed approach; in the subsequent section, we describe the
fundamental operators used in our scheme.

B. Tree Operations

We allow the initial n-star graph (given as input) to evolve
through a finite number of tree operators, as follows:

Definition II.5. Expand(u,v,x)
Let u,v∈ leaves(T) and x be a node in the polygonal map; the
expand operator inserts x into the set leaves(T), and moves
the leaves u,v into the set of leaves(x) (refer to Fig.2, left).

Definition II.6. Shrink(u)
Let u∈ leaves(T); the shrink operator deletes leaf u and moves
the set leaves(u) into the set leaves(T) (refer to Fig.2, middle).

Definition II.7. Merge(u→ v)
Let u,v ∈ leaves(T); the merge operator moves the set
leaves(u) into the set leaves(v). After this procedure, the leaf
u is deleted from the set leaves(T) (refer to Fig.2, right).

The above operations are inspired by natural phenomena
in trees. For example, the expand operator resembles the
growth of the trunk in natural trees, while the shrink operator
resembles the survival strategy of ancient and large trees.
The merge operator resembles inosculation, which is a natural
phenomenon where trunks grow together. The above operators
are used due to the fact of allowing not only growth, but also
shortening of the tree in both depth and breadth. The study
of a richer set of operators which allows finer degree to tree
manipulation is in our agenda. In the following subsection, we
describe the basic concept of our proposed algorithm.

C. Basic Algorithm

The basic concept of our proposed approach is shown in
Algorithm 1. In the following points we describe the dynamics
and the main points:

The input
The input in our algorithm is the tree To ← (r,S), repre-

senting the initial guess of the minimal tree structure; and the
output is the tree aiming at minimizing the total length while
preserving the root at source r, preserving the connectivity
towards the nodes in the terminal set S, and avoiding the
obstacles of the polygonal map P.

Clustering Routes
The subscript ρ denotes the set of shortest routes from the

source r to each terminal node of T . At initial iteration, |ρ|=
|S|, since all leaves of To are terminal nodes, while at later
iterations |ρ|< |S| since some terminals become intermediate
nodes due to merging, expansion and shrinkage.

The hierarchical clustering of the set ρ computes the den-
dogram Z = [zi j] ∈ R|ρ|×2, in which the number of terminals
of Z is equivalent to |ρ|. The rows of [zi j] are ordered in a
way that the first (last) rows indicate higher (lower) degree of
similarity between columns (which indicate the index of the
route). In other words, let a distance metric d : ρi,ρ j→R map
the distance between routes ρi and ρ j, and let k ∈ [|ρ|], then
the matrix Z = [zi j] ∈ R|ρ|×2 is ordered such as the following
condition is fulfilled d(ρzk,1 ,ρzk,2)< d(ρzk+1,1 ,ρzk+1,2).

For clustering and similarity computation, the distance be-
tween two routes is computed by the following metric:

d(ρi,ρ j) =

(
SP

∑
k=1
||ρk

i −ρ
k
j||2
)
.

(
cos−1

(ai.aj

|ai||aj|

))
(1)

, where ρi ∈ ρ, ρk
i is the k-th sampled point along the

route ρi, SP is the total number of 1-D equally-separated
interpolated points along the route ρi, and ai = ρend

i −ρinit
i in

which ρinit
i ,ρend

i ∈R2 are the starting and the end coordinates
of the root ρi, respectively. The main rationale of using the
above distance metric is due to its key benefit of measuring

Algorithm 1 Cherry Bundling
1: procedure BUNDLE(To)
2: Input To = (r,S) . Source and Terminals
3: Output T = (r,{...,u, ...,v, ...}) . Tree
4: T ← To . Initial solution (r,S)
5: if |leaves(T)|> 1 then
6: ρ← Shortest paths from r to end(T)
7: Z← Hierarchical Clustering of ρ

8: for k← 1 to |ρ| do
9: u← lea f (T,zk,1)

10: v← lea f (T,zk,2)

11: x←Minimize
x

J(T,u,v,x)
12: if x is far from r then
13: if x is close to u or v then
14: Merge(f arthest→ closest)
15: id(closest)← k
16: else
17: Expand(u,v,x)
18: id(x)← k
19: end if
20: else
21: if x is close to u or v then
22: Shrink(closest)
23: end if
24: id(T)← k
25: end if
26: end for
27: else
28: Shrink(leaves(T))
29: end if
30: for each u ∈ leaves(T) do
31: BUNDLE(u)
32: end for
33: return T
34: end procedure
35:

36: procedure STRAIGHTEN(T)
37: for each u ∈ leaves(T) do
38: if u is an intermediate node then
39: x←Minimize

x
H(T,u,x)

40: ur← xr

41: end if
42: end for
43: for each u ∈ leaves(T) do
44: STRAIGHTEN(u)
45: end for
46: end procedure

not only piecewise gaps (due to difference in topology of the
routes), but also orientation gaps (due to arbitrariness of end
nodes in the map). Furthermore, note that the above distance
metric is able to be performed under parallelization schemes,
bringing benefits in scalability for large-scale applications.

Searching Anchoring Points The dendogram dendogram Z
is useful to identify which routes are similar and are promising
to be bundled (since bundling similar routes will render
compact structures). Thus, it is desirable to find anchoring
nodes for routes which are similar from the point of view
of piecewise and orientation gaps. Specifically, the anchoring
node x is found by minimizing the following cost function:

J(T,u,v,x) = ∑
w∈{r,ur ,vr}

`(x,w) (2)

, where r is the root of T , the leaf u,v ∈ leaves(T) satisfy
id(u) = zk,1, and id(v) = zk,2 respectively, `(x,w) is the length
of the shortest route from node x to node w along the
polygonal map P. The above cost function has the role to
measure the length of an intermediate node connecting r, ur
and vr, in which ur and vr are the roots of trees u and v
respectively. Then, by minimizing the above cost function, we
aim at finding a minimal 3-star which links the root r of T
and the leaves u,v. Furthermore, since the cost function J is a
non-convex function due to the presence of the polygonal map
P, we use a non-linear optimization based on the interior-point
algorithm [20]. In order to ease the sampling of feasible points
that avoid the obstacles in the polygonal map, we represent
the coordinates of the root of x by the following 3-tuple:

xr = (i,λ1,λ2) (3)

, where i ∈ [|τ|] and λ1,λ2 ∈ [0,1]/ Here, τ is the set of
triangles of the Delaunay Triangulation of the convex hull that
spans node x,r,u and v. In the above representation, i is the in-
dex of the i-th triangle τi ∈ τ, and λ1,λ2 are real numbers in the
interval [0,1]. The unique feature of the above representation
lies in the ability to encode arbitrary points which guarantee
to be inside the (free) navigable space. The reader may note
tat the following relation holds: xr ∈N[|τ|]×R[0,1]×R[0,1]. The
equivalent 2-dimensional cartesian coordinates can be easily
computed as follows [21]:

xC
r = (1−λ1)Ai +

√
λ1(1−λ2)Bi +

√
λ1λ2Ci (4)

where xC
r is the cartesian coordinate of xr, and Ai,Bi,Ci are

the 2-dimensional cartesian coordinates of the vertices of the
i-th triangle τi ∈ τ.

Tree Operations
Merging occurs when the anchoring node x is far from r, yet

close to either u or v. Farness of node x to r, and closeness
of x to u,v is computed by `(x,r) > δ1 and D(r,u,v) < δ2,
respectively, where:

D(r,u,v) = min(`(r,u), `(r,v)) (5)

The role of using the user-defined thresholds δ1 and δ1
is to allow flexibility and granularity when designing and
generating minimal trees: smaller (larger) values of δ1,δ2
creates more (less) intermediate nodes x, thus the global tree
length is expected to be small (large). Tackling the optimal
trade-off in tree granularity and length is out of the scope of
this paper, and left for future work.

Then the farthest leaf (u or v) is merged to the closest one
(u or v), in which the closest leaf is computed by the following
metric:

closest =

{
u, for `(x,u)< `(x,v)
v, for `(x,u)> `(x,v)

(6)

As a natural consequence, the farthest node is the opposite
of the above. After merge operation, the id of the closest node
is set to k in order to continue with the ordered sequence of
bundling.

Expansion occurs when the anchoring node x is far from
the root r, and far from leaves u,v. After expand operation,
the id of the leaf x is set to k in order to continue with the
ordered sequence of bundling.

Shrinkage occurs either when the tree has a single leaf, or
when the anchoring node x is close to the root r and close to
either u or v. In the latter, after shrink operation, the id of T
is set to k in order to continue with the ordered sequence of
bundling.

The tree operations are guided by the dendogram Z; in
which some of the edges of the T are compounded and some
intermediate nodes are inserted due to the expand operation.
Note that tree operations are performed recursively.

Updating Intermediate Points
Once the bundle algorithm has performed the tree opera-

tions, the straighten operator is performed. This operator has
the role of adjusting the intermediate nodes in order to aim
for global minimal metric. Thus, the root of the intermediate
nodes are found by minimizing the following cost function:

H(T,u,x) = `(x,r)+ ∑
w∈leaves(u)

`(x,w) (7)

, where u ∈ leaves(T). The above function has the role
of finding a minimal q-star (a cherry having root at u and
whose leaves are r and leaves(u)). The q-star has the role
of linking the root r of T and the leaves of u, for which
the following is fulfilled q = 1+ |leaves(u)|. Since the above
cost function is non-convex, a non-linear optimization based
on the interior-point algorithm [20] is used. To realize an
efficient computation of obstacle-free sampling points, the
representation proposed in Eq. 3 is also used.

In summary, our proposed approach consists of two phases.
In the first phase, the bundling algorithm evolves the initial
input graph by using not only the dendogram from the
hierarchical clustering of the shortest paths from roots to
terminals, but also the tree operations which are guided by
the dendogram and closess/farness metrics. In the second

phase, the straightening algorithm updates the locations of the
intermediate nodes in order to minimize a global tree metric.

In the next section, we describe our computational experi-
ments and discuss our obtained results.

III. COMPUTATIONAL EXPERIMENTS

In order to evaluate the performance of our proposed
bundling algorithm, we performed exhaustive computational
experiments using diverse topologies of polygonal networks
and polygonal maps. This section describes our experimental
conditions, results and insights.

A. Settings

Our computing environment was an Intel i7-4930K @
3.4GHz, and experiments were performed using Matlab 2016a.
In order to enable a meaningful evaluation of our proposed
approach, we consider the following environmental settings:
• No. of polygonal maps: 3 types as shown by Fig. 3, where

each P⊂ R[0,50]×R[0,50].
• No. of edges in the input graph,

m = |E|= {5,10,20},
• For each combination of the above, 30 independent runs

were performed,
• In each independent run, the source r and the terminal

set S is initialized randomly and independently.
• In all experiments, the following parameters in Algorithm

1 were used: SP = 10, δ1 = δ2 = 3, as well as complete-
linkage agglomerative clustering, and minimization of
function J with convergence rate 10−6 or 3,000 function
evaluations limit were used.

The main reason of using the polygonal maps depicted
in Fig. 3 and the number of edges |E| up to 20 is due
to our interest in evaluating the performance close to the
number of transport/communication needs in robotic indoor
environments, where the complexity of the environment is
controlled not only by the convexity of the obstacle geometry,
but also by the disposition and the number of obstacles in the
polygonal map. Complex polygonal environments induce in
large number of triangles (since our representation shown in
Eq. 3 is based on triangulation of the free-space), thus repre-
senting a challenging search space for any search algorithm.
Our future work aims at using configurations considering large
scenarios and being close to outdoor environments.

Also, we use the values SP = 10 in order to allow a
reasonably fast computation of distance metrics between roots
(Eq. 1) in the domain R[0,50]×R[0,50]. Larger values of SP
would are recommended for large scale graphs or polygonal
environments. Also, δ1 = δ2 = 3 are used in order to allow
the growth of intermediate nodes within a reasonable distance
metric (these values represent 6% of the total dimension of
the map). It is possible to generate diverse minimal trees
using other values of δ1 and δ2. Furthermore, the use of the
complete-linkage hierarchical algorithm is based on various
preliminary tests confirming its effectiveness. And the main
rationale of using 10−6 or 3000 function evaluations is to
evaluate the efficiency of our algorithm under a restrictive

(a) Map 1 (b) Map 2 (c) Map 3

Fig. 3. Basic Concept

computational budget. Finally, the use of 30 independent runs
enables to evaluate our proposed approach under different and
arbitrary initialization conditions, avoiding any bias in random
luckiness during the interior-point optimization algorithm. As
a result, 270 experimental conditions were evaluated.

B. Results and Discussion

In order to show the kind of tree structures obtained in the
bundling process, as well as the convergence characteristics
of the optimization algorithm, Fig. 4 - Fig. 7 show the
obtained bundles of an arbitrary subset of results from the total
number of 270 experiments; and Fig. 8 shows the complexity
behaviour of our algorithm. The reader may note that our
results are arranged in a way that the x-axis shows the input
graph as well as the bundled tree, and the y-axis shows the
number of edges |E|= {5,10,20} in the input graph.

In regards to the obtained route bundles, Fig. 4 - Fig. 7
present obstacles as dark-brown polygons, the edges of the
input graphs and of the trees are presented as straight lines,
and nodes are presented by colored spheres. Here, the root
node of the input graph is depicted by a red color, whereas the
terminal nodes are depicted by blue spheres. The intermediate
nodes are shown by black-colored and smaller spheres. In all
experimental cases, and exemplified by Fig. 4 - Fig. 7, we
confirmed the following facts:
• Regardless of the configuration of the polygonal map and

the structure of the input graph, it is possible to generate
obstacle-avoiding tree structures representing the bundled
routes from source r to the terminal set S which aim at
minimizing the global distance metric while preserving
connectivity.

• Intermediate angles having degree 3 (which means 3
leaves), have edges separating each other at 120 degrees,
which is in line with the property of optimal Euclidean
Steiner trees with no obstacles. Note that this property has
not been explicitly considered in our approach, but rather
it is a consequence of the convergence of our algorithm.

• The topology of the bundled tree has a terminal set which
differs from the terminal set of the input graphs. This is
due to the fact that a number of nodes of the input graph
become intermediate in the bundled tree due to merging,
expansion and shrinking operations. How to predict the
number of terminal nodes in the bundled tree is out of
the scope of our paper.

• Our approach is able to preserve the connectivity from
root r towards the terminal set in S, since our bundling

Fig. 4. Performance in Map 1.

algorithm is based on compounding shortest routes from
roots to terminal leaves in a recursive manner. An exam-
ple of this fact is shown by Fig. 7, where the source r is in
a non-central location of the map. This figure exemplifies
the different approach when compared to the existing
literatures on obstacle-avoiding Steiner trees [15]–[19],
[22], in which all nodes are considered homogeneous
and preserving the connectivity from root r towards the
terminal set in S is unfeasible.

The above observations have important implications to
extend our proposed method in the following ways: (1) instead
of sampling the search over the free-space using arbitrary
initial conditions, it may be possible to compute the 3-star
graphs connecting sources and their leaves by using the Steiner
property of triangles, or by computing the fermat Point, and
(2) it may be possible to use pre-computed routes between the
anchoring points as initial solutions whenever the polygonal
map is expected to changes, since the routes are expected
to be structurally similar for small changes in the polygonal
map. The above are foundational insights to enable even faster
convergence to the optimal solutions in bundling edges in large
and dynamic environments.

Furthermore, in regards to the complexity behaviour of the

Fig. 5. Performance in Map 2.

propose bundling algorithm, Fig. 8 shows the time to compute
the bundled trees over 30 independent runs. Here, x-axis shows
the number of edges, while y-axis shows the time to compute
the bundled tree. The blue line indicates the average over
30 independent cases. By observing Fig. 8, we confirm the
following facts:

• Regardless of the configuration of the polygonal maps
and the structure of input graphs, the average complexity
function shows a linear tendency. However, the reader
may note a high variance among all cases (lines with
alpha-transparency). The high variance occurs due to
having independent runs under arbitrary initialization
conditions: the source and the terminal are initialized so
that path planning becomes harder when needed to go
through many obstacles, thus time is expected to change
for harsh conditions. Investigating the complexity as a
function of the number sides of each polygonal map is
left for future work, as well as the evaluation of the time
complexity in outdoor environments.

• In all cases, increasing the number of edges in the input
graph has a natural direct effect on increasing the time
by some small constant above the linear factor. This
observation is in line with our above insights regarding

Fig. 6. Performance in Map 3.

the linear tendency.
• In order to investigate the optimality of the converged

solutions, we also evaluated Algorithm 1 during 5 itera-
tions (executed 5 times consecutively). Fig. 9-10 shows
the evolution of length vs. number of iterations. Here,
in x-axis, we show the number of iterations, and in
y-axis we show the total length of the tree. By these
figures, we can confirm that the tree length converges
in the first iteration, which implies that Algorithm 1 is
able to compute minimal trees by using only bundling
and straighten operations. The reader may also note that
the bundling operator has an explorative effect compared
to the corrective role of the straighten operator. This is
due to the fact that the bundling function allows for
exploration over the search space by allowing to insert
intermediary nodes among trees. We can also observe that
the above described explorative behaviour is able to be
self-enhanced in further iterations.

The above results show the feasibility, efficiency and ro-
bustness to obtain minimal trees in polygonal maps with both
convex/non-convex obstacles. Computational experiments with
large number of edges and obstacles reminiscent of outdoor
environments are in our agenda. Also, in our agenda remains

Fig. 7. Performance in non-centralized cases.

the use of directed [23] and undirected graphs [24], and
modularity concepts [25] to allow combinatorial groupings of
nodes/edges (to further improve the scalability). Furthermore,
designing the optimal networking of modular and adaptive sys-
tems is a potential venue of research, e.g. to enable networks
with synchrony [?] in obstacle-constrained environments; to
enable adaptive networks with changing structures [?]. Last
but no least, the extension to generate smooth, curved and
collision-free navigation bundles in cluttered environments is
left for future work. Our results in these paper are building
blocks to further advancement towards developing global
network optimization with convex, flexible and scalable repre-
sentations. We believe the minimal length tree approach may
find use in several applications.

(a) Map 1 (b) Map 2 (c) Map 3

Fig. 8. Time Complexity

(a) m = 5 edges (b) m = 10 edges (c) m = 20 edges

Fig. 9. Length vs. Iterations in Map 1

(a) m = 5 edges (b) m = 10 edges (c) m = 20 edges

Fig. 10. Length vs. Iterations in Map 2

(a) m = 5 (b) m = 10 (c) m = 20

Fig. 11. Length vs. Iterations in Map 3

IV. CONCLUSION

In this paper, we have proposed a method for searching
optimal tree bundles based on nature-inspired tree operations.
The basic idea of our approach is to let trees evolve while
sampling the free-space over a triangulated and convex search
space. Then, it becomes possible the rendering of feasible
and minimal tree bundles efficiently since: (1) absence of
overlaps with obstacles is guaranteed, and (2) computation
of point inside polygon is explicitly avoided. Computational
experiments using a diverse class of polygonal maps and
number of edges in the input graphs show that (1) it is
possible to obtain bundled trees with an optimized global
distance metric, and (2) the time complexity for convergence
is possible over independent runs and has a linear tendency,
in average. In our future work, we aim at using polygonal
environments reminiscent of outdoor configurations, as well as
exploring the generalization ability in dynamic environments,
where both the input graph and the polygonal obstacles are
allowed to change. Potential applications of our include: (1)
design of transportation networks, (2) design of resource
distribution systems (e.g. water, oil, gas, energy, information),
(3) design of integration of mechanical and electrical systems
in buildings, (4) design of the optimal wiring in natural and
artificial systems, and (5) design and identification of cellular
pathways. We believe our approach opens new frontiers to
further develop compounded and global compounded path
planning algorithms via nature-inspired graph operations and
canonical representations of the search space.

REFERENCES

[1] P. Erdös and Rényi, Asymmetric Graphs. Acta Math. Acad. Sci. Hungar.
Vol. 14, 295-315, 1963.

[2] F. Harary, Graph Theory. Reading, MA: Addison-Wesley, 1994.
[3] D. Holten and J. J. van Wijk, Force-Directed Edge Bundling for Graph

Visualization. Eurographics, Symp. on Visualization, 2009.
[4] D. Selassie, B. Heller, and J. Heer, Divided Edge Bundling for Direc-

tional Network Data. IEEE Transactions on Visualization and Computer
Graphics, Vol. 17, No. 12, pp. 2354 - 2363, 2011.

[5] W. Cui, H. Zhou, P. C. W. H. Qu, and X. Li, Geometry-based edge
clustering for graph visualization. IEEE Transactions on Visualization
and Computer Graphics, Vol. 14, pp. 1277 - 1284, 2008.

[6] C. Hurter, O. Ersoy, and A. Telea, “Graph bundling by kernel density
estimation,” in Eurographics, 2011, pp. pp. 865–874.

[7] E. R. Gansner, S. N. Y. Hu, and C. Scheidegger, Multilevel agglom-
erative edge bundling for visualizing large graphs. IEEE Pacific
Visualization Symposium, pp. 187 - 194, 2011.

[8] D. Holten, Hirerarchical Edge Bundles: Visualization of Adjacency
Relations in Hierarchical Data. IEEE Pacific Visualization Symposium,
pp. 187 - 194, 2006.

[9] V. Parque, M. Kobayashi, and M. Higashi, Optimisation of Bundled
Routes. 16th Int. Conf. on Geometry and Graphics, pp. 893-902, 2014.

[10] V. Parque, S. Miura, and T. Miyashita, Optimization of Route Bundling
via Differential Evolution with a Convex Representation. IEEE Int.
Conf. on Real-time Computing and Robotics, Okinawa, Japan, 2017.

[11] ——, Computing Path Bundles in Bipartite Networks. 7th Int. Conf.
on Simulation and Modelling Methodologies, Technologies and Appli-
cations, pp. 422-427, Madrid, Spain, 2017.

[12] J. Vojtěch and M. Kössler, O minimálnı́ch grafech, obsahujı́cı́ch n
daných bodů. Časopis pro pěstovánı́ matematiky a fysiky 063.8, pp.
223-235, http://eudml.org/doc/25703, 1934.

[13] H. Robbins and R. Courant, What is Mathematics? Oxford University
Press, 1941.

[14] H. Zhang, D. Ye, and W. Guo, A heuristic for constructing a rectilinear
Steiner tree by reusing routing resources over obstacles. INTEGRA-
TION, the VLSI journal, Vol. 55, pp. 162-175, 2016.

[15] P. Winter, M. Zachariasen, and J. Nielsen, Short trees in Polygons.
Discrete Applied Mathematics, Vol. 118, pp. 55-72, 2002.

[16] T. T. Jing, Y. Hu, Z. Feng, X. Hong, X. Hu, and G. Yan, A full-
scale solution to the rectilinear obstacle-avoiding Steiner problem.
INTEGRATION, the VLSI journal, Vol. 41, pp. 413-425, 2008.

[17] P. Winter, Euclidean Steiner minimal trees with obstacles and Steiner
visibility graphs. Discrete Applied Mathematics, Vol. 47, pp. 187-206,
1993.

[18] W. Chow, L. Li, E. Young, and C. Sham, Obstacle-avoiding rectilinear
Steiner tree construction in sequential and parallel approach. INTE-
GRATION, the VLSI journal, Vol. 47, pp. 105-114, 2014.

[19] M. Müller-Hannemann, , and S. Tazari, A near linear time approximation
scheme for Steiner tree among obstacles in the plane. Computational
Geometry: Theory and Applications, Vol. 43, pp. 395-409, 2010.

[20] R. Byrd, , J. Gilbert, and J. Nocedal., A Trust Region Method Based on
Interior Point Techniques for Nonlinear Programming. Mathematical
Programming, Vol 89, No. 1, pp. 149185, 2000.

[21] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobki, Shape Distribu-
tions. Euro-graphics, ACM Trans. on Graphics, Vol. 21, No. 4, pp.
807-832, 2002.

[22] M. Zachariasen and P. Winter, Obstacle-avoiding Euclidean Steiner
trees in the plane: an exact algorithm. Algorithm Engineering and
Experimentation, Vol. 1619, pp. 282-295, 1999.

[23] V. Parque and T. Miyashita, On Succinct Representation of Directed
Graphs. IEEE Int. Conf. on Big Data and Smart Computing, pp. 199-
205, 2017.

[24] V. Parque, M. Kobayashi, and M. Higashi, Bijections for the numeric
representation of labeled graphs. IEEE Int. Conf. on Systems, Man
and Cybernetics, pp. 447-452, 2014.

[25] ——, Searching for Machine Modularity using Explorit. IEEE Int.
Conf. on Systems, Man and Cybernetics, pp. 2599-2604, 2014.

