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Abstract. Computing hierarchical routing networks in polygonal maps
is significant to realize the efficient coordination of agents, robots and
systems in general; and the fact of considering obstacles in the map,
makes the computation of efficient networks a relevant need for clut-
tered environments. In this paper, we present an approach to compute
the minimal-length hierarchical topologies in polygonal maps by Differ-
ential Evolution and Route Bundling Concepts. Our computational ex-
periments in scenarios considering convex and non-convex configuration
of polygonal maps show the feasibility of the proposed approach.
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1 Introduction

Over the last decade research on Internet of Things and collaborative robots has
made clear that optimal and robust routing in networks are significant to realize
the effective coordination and communication of multi-agent systems; and the
fact of having obstacles over the map, makes the computation of collision-free
routing a relevant need in cluttered environments [1–5].

Research in route planning has its origins in the mid 60’s, and since the sem-
inal work of Lozano-Perez in 1979 [6], the problem has been extensively studied
in the literature. For recent reviews, see [7, 8]. Often, collision-free trajectories
are computed considering the optimality of navigation in the free space. And
well-known methods such as RRT [9, 10] and PRM [11] guarantee probabilistic
completeness, while RRT* guarantees asymptotic optimality. Also, approaches
based on sampling and optimization with gradient-based approaches are used,
such as CHOMP, STOMP, and TrajOpt. However, these methods are sensitive
to initial conditions (initial trajectory). Also, path planning based on geometric
information has been argued to be accurate [12–16], in which finding optimal
origin-destination is usually based on the triangulation of the free space. Also,
online and approximation approaches have been proposed as well, e. g. the Po-
tential Field method [17], and the Cell Decomposition method [18]. Further-
more, heuristic approaches have been used to achieve optimality of routes in the
global sense, and examples include nature inspired approaches such as Neural
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Fig. 1. Basic concept of the proposed approach

Networks [19, 20], Genetic Algorithms [21], Differential Evolution [22–26] and
Particle Swarm Optimization (PSO) [27,28].

Being related to the Steiner tree problem, path planning on hierarchical
bundles is key to allow efficient distribution and communication of sparsely dis-
tributed nodes. Having started in the 30’s [29], the Steiner tree problem was
popularized in the 40’s [30]. In practical settings, the Obstacle-Avoiding Recti-
linear Steiner (OARST) given n nodes in a polygonal map has received recent
attention in VLSI systems [1–5]; and there exists a polynomial-time approxima-
tion of the more general Obstacle-Avoiding Steiner Tree (OAST) with O(nlog2n)
(n is number of terminals and obstacle vertices) [31]. However, the exhaustive
study of global optimization and gradient-free approaches on Minimum Steiner
Trees in polygonal maps has received little attention.

Other related works to path planning on hierarchical bundles involve the
edge bundling in network visualization [32–36], the path bundling in bipartite
networks [25, 26, 37], and the minimal trees in n-star networks with fixed roots
[38]. However, path planning considering minimal Steiner trees and flexible root
configuration has received little examination in the literature.

In this paper, in order to fill the above gaps, we propose an approach to com-
pute minimal trees given n points with a star topology and flexible configuration
of the root, wherein the goal is to generate topologically compact and minimal
trees being free of clutter and easy to visualize. The basic idea of our approach,
depicted by Fig. 1, is to allow routes to be bundled by using a hierarchical con-
figuration, and optimize the location of the root by Differential Evolution. Our
results by using a diverse set of polygonal map configurations show the feasibility
to compute minimal trees in the plane.

In the rest of this article, after describing the key components in our proposed
approach, we discuss our findings though our computational experiments, and
finally summarize our insights and future work.



2 Path Planning on Hierarchical Bundles

The basic outline of our algorithm is depicted by Fig. 1, in the following we
briefly describe the key components and dynamics.

2.1 Preliminaries

The input in our algorithm is the set of terminal nodes V and a polygonal map
P ; and the output is a tree layout aiming at minimizing the total tree length,
while not only preserving connectivity from the root r towards the nodes in the
terminal set V , but also avoiding the obstacles in map P .

2.2 Shortest Paths

The route r is known a-priori and its location is an interior point of the convex
hull of V . The shortest paths are computed from the root r towards each node
in the terminal V by using the A* algorithm with visibility graphs, rendering
the set ρ of shortest routes from the source r to each terminal node in V .

2.3 Route Bundling

Then, shortest routes are clustered by the hierarchical agglomerative approach
with complete and Euclidean metric, which renders a dendogram Z = [zij ] ∈
R|ρ|×2 denoting the ordering of path bundling in which the rows of the matrix Z
are configured in ascending order, with similar (different) routes being located
first (last). For clustering and similarity computation, the distance between two
routes is computed by the following metric:

d(ρi, ρj) =

(
SP∑
k=1

||ρki − ρkj ||2
)
.

(
cos−1

( ai.aj
|ai||aj|

))
(1)

, where ρi ∈ ρ, ρki is the k-th sampled point along the route ρi, SP is the
number of equally-separated interpolated points along the route ρi, and ai =
ρendi −ρiniti in which ρiniti , ρendi ∈ R2 are the starting and the end coordinates of
the route ρi, respectively. The main rationale of using the above distance metric
is due to its key benefit of measuring not only piecewise gaps (due to difference
in topology), but also orientation gaps (due to arbitrariness of location of end
nodes). Furthermore, note that the above distance metric is able to be computed
under parallelization schemes, bringing benefits in scalability for large-scale path
planning applications.

By using the order of the dendogram (hierarchical clustering), routes are bun-
dled by a nature-inspired approach which considers the merging, the expansion
and the shrinkage of leaves [38]. The bundle process is executed in bottom-up
approach (from terminal nodes to root), followed by a top-down approach (from
root to terminal nodes), which ensures co-adaptation while searching for optimal
topologies.



– Merging occurs when the anchoring node x is far from the root r, yet close
to either routes u or v. Farness of node x to r, and closeness of x to u, v is
computed by `(x, r) > δ1 and D(r, u, v) < δ2, respectively, where:

D(r, u, v) = min(`(r, u), `(r, v)) (2)

, where `(x,w) is the length of the shortest route from node x to node w along
the polygonal map P . The role of using the user-defined thresholds δ1 and δ2
is to allow flexibility and granularity when designing and generating minimal
trees: smaller (larger) values of δ1(δ2) creates more (less) intermediate nodes
x, thus the global tree length is expected to be small (large). Then the
farthest leaf (u or v) is merged to the closest one (u or v), in which the
closest leaf is computed by the following metric:

closest =

{
u, for `(x, u) < `(x, v)

v, for `(x, u) > `(x, v)
(3)

As a natural consequence, the farthest node is the opposite of the above.
– Expansion occurs when the anchoring node x is far from the root r, and far

from leaves u, v.
– Shrinkage occurs either when the tree has a single leaf, or when the anchoring

node x is close to the root r and close to either u or v.

The above bundling operations are guided by the dendogram Z; in which
some of the edges of the T are compounded and some intermediate nodes are
inserted due to the expand operation. Note that tree operations are performed
recursively.

2.4 Optimizing the Root of Trees

The root in the tree T is allowed to be flexible, and its location is optimized by
minimizing:

J(T, r) =
∑

s∈leaves(T )

`(r, s) (4)

, where r is the root of tree T . Note that the above definition is recursive. Due
to the nature of handling obstacles with arbitrary geometry, the optimization of
the above cost function is realized by Differential Evolution with Neighborhood
and Convex Encoding [25, 26], which is used due to its advantages to not only
balance the exploration and the exploitation while searching for the optimal
location of the root, but also to render feasible root coordinates by using a
triangular encoding, which allows to sample obstacle-avoiding coordinates in
polygonal maps efficiently.

3 Computational Experiments

In order to evaluate the performance of our proposed path bundling algorithm,
we performed computational experiments in diverse scenarios.



(a) Map 1 (b) Map 2

Fig. 2. Polygonal Maps

3.1 Settings

Our computing environment was an Intel i7-4930K @ 3.4GHz, Matlab 2016a.
To evaluate our approach in diverse scenarios, we used polygonal maps with
convex and non-convex polygonal configurations, as shown by Fig. 2 [39, 40].
Also, for each configuration, 5 independent runs for path planning in origin-
destination pairs consisting of 20 edges in a star-topology was performed. The
main motivation of using the above is due to our foci on scenarios being close to
indoor environments, where complexity is controlled by the convexity and the
configuration of the polygonal map.

As for parameters in Differential Evolution, we used: probability of crossover
CR = 0.5, scaling factor α = β = |ln(U(0, 1))/2|, population size with 10 indi-
viduals, neighborhood ratio η = 0.2, and termination criterion is 5000 function
evaluations. The main reason of using crossover probability CR = 0.5 is to give
the same importance to the sampling with historical search vectors, and with
local and global interpolations. The scaling factors α, β allow to search in small
steps when computing the self-adaptive directions. Furthermore, small values
of population size and neighborhood factor enable efficient sampling within the
local neighborhood [25]. Fine tuning of the above is out of our scope.

3.2 Results

In order to show the learning performance of our proposed approach, Fig. 3
shows the convergence behaviour as a function of the number of evaluations
over independent runs. By observing Fig. 3, we can confirm that computing
minimal trees becomes possible within a 1000 - 1500 function evaluations.

Also, in order to show the evolvability performance of our proposed approach,
Fig. 4 and Fig. 5 show the elite solutions generating the path planners in hier-
archical bundles after E function evaluations. Here E = 0 denotes the input (as



(a) Convergence in Map 1 (b) Convergence in Map 2

Fig. 3. Convergence over different Maps

(a) E = 0 (b) E = 20 (c) E = 40 (d) E = 290

(e) E = 420 (f) E = 900 (g) E = 1180 (h) E = 5000

Fig. 4. Convergence examples in Map 1 after E function evaluations.

portrayed by the basic concept in Fig. 1), and E = 5000, denotes the converged
solution. By looking at the generated topologies in Fig. 4 and Fig. 5, we can
observe that it is possible to compute the optimal location of the roots (which
is different from the initial solution), and that larger changes in topology occur
at earlier stages of the learning algorithm. We believe this fact occurs due to
the highly explorative (exploitative) nature in earlier (later) generations, which
induces in large (small) changes in the nature of the topology of minimal trees.



(a) E = 0 (b) E = 20 (c) E = 30 (d) E = 70

(e) E = 80 (f) E =150 (g) E =180 (h) E = 230

(i) E = 570 (j) E = 600 (k) E = 700 (l) E = 5000

Fig. 5. Convergence examples in Map 2 after E function evaluations.

Finally, to visualize deployment, Fig. 6 shows the generated topologies of the
minimal trees in their respective environments [39,40].

We believe that our obtained results are building blocks to further advance
path planning in hierarchical networks in the presence of polygonal obstacles.
Investigating the learning performance with canonical encodings in directed
graphs [41] and undirected graphs [42], the use of concurrency concepts in net-
works [44] and in exploration-exploitation [43], as well as the formation of mod-
ules in hierarchical bundles by succinct subset partitions [45] are in our agenda.

4 Conclusion

We proposed a method to compute hierarchical networks in polygonal maps given
n points configured in an n-star topology with flexible root location. The basic
idea of our approach is based on path bundling to find minimal trees while avoid-
ing obstacles, and evolution to compute the optimal location of the roots in the
minimal tree. Our computational experiments involving convex and non-convex
polygonal map scenarios confirm the feasibility to compute obstacle-avoiding
minimal trees, and the efficiency to converge to optimal solutions within 1000-
1500 function evaluations. In our future work, we aim at exploring the learning
performance of minimal topologies by using succinct encodings of graphs, con-
currency and combinatorial subset formation. We believe our approach may find
uses in Operations Research, Communications and Multi-Agent Systems.



(a) Minimal Tree in Map 1

(b) Minimal Tree in Map 2

Fig. 6. Minimal Trees.
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