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ABSTRACT
Minimal trees in polygonal maps aim at minimizing the connec-

tivity in a network while avoiding obstacle collision. Being closely

related to the Steiner Tree Problem, yet with a different scope,

minimal trees aim at connecting origin-destination pairs, given in

a bipartite network, to allow the joint transport of information,

goods, resources and people. In this paper, we propose a method to

tackle the bundling problem of minimal trees in modular bipartite

networks by using a two-layer optimization based on Differential

Evolution with a convex representation of coordinates. Our compu-

tational experiments in polygonal domains considering both convex

and non-convex geometry show the feasibility and the efficiency

of the proposed approach.
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1 INTRODUCTION
Being ubiquitous in scenarios in which the means for transport

and communication is scarce, and the environment is either hard o

impossible to navigate, minimal trees aim at compounding paths in

a network in order to achieve the minimal-length connectivity and

thus efficient transport and communication in a cluttered environ-

ment. As such, the result is a tree minimizing the inter-connectivity

among source and destination nodes.
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The research on minimal trees has its origins in the 30’s[1], with

the Steiner tree problem, which was popularized in the 40’s[2]. Also,

in VLSI systems, the Obstacle-Avoiding Rectilinear Steiner (OARST)

given n nodes in a polygonal map has received attention[3–7]. Also,

the Obstacle-Avoiding Steiner Tree (OAST) has an approximation

scheme running in polynomial-time with O(nloд2n), for n bring

the number of terminals and obstacle vertices[8]. However, the ex-

haustive study of global optimization and gradient-free approaches

on Minimum Steiner Trees in polygonal maps has received little

attention.

Related studies on minimal trees are also studied in wireless

networks [9–14], and network visualization [15–20]. In line of the

above, and in more particular domains, the closest developments

to minimal trees is related to edge bundling problem in network

visualization field. Here, the conventional works have focused on

clustering the geometry of edges[15], the edge bundling based on

force attraction[15, 16], the attraction to the skeletonization[17],

and the optimization of the centroid points of close edges[18].

Indeed, also path planning is related to the computation of mini-

mal trees. Here, Dijsktra [21] and A* [22], along with their exten-

sions are well-known. It has been argued that path planning in

triangulated space is highly accurate and efficient. As such, for a

map with polygonal obstacles havingn vertices, the Delaunay Tri-

angulation ca be computed to render a connected graph with O(n)
nodes, each of which represents the triangles conforming the free-

space. Then, by using the Delaunay-based connected graph, path

planning can be efficiently performed by graph search methods

on the adjacency matrix of the Delaunay-based connected graph.

In particular, If one uses the Dijkstra-based search[21, 23], time

complexity ca be achieved byO(n.loд(n)), yet it is possible to use A*
search[22, 24] along with a funneling algorithm[25, 26] to obtain a

quasi-linear time path planning.

Other related works are the path bundling in non-modular bi-

partite networks[27–29], and the minimal trees in n-star networks
with fixed roots[30]. However, path planning considering mini-

mal Steiner trees and flexible root configuration has received little

examination in the literature.

However, due to having a different scope, the above algorithms

have rendered compounded networks which are aesthetic and com-

pact, but not necessarily optimal in the sense of minimizing a global

connectivity metric among nodes. In this paper, we consider mod-

ular bipartite networks and compute minimal trees on polygonal

maps. The basic idea of our approach consists in compounding

edges in modular bipartite networks by a two-layer optimization,

in which we first compute the optimal roots of path bundles for
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Figure 1: Basic Idea of Modular Minimal Trees

each module of the bipartite network, and then compute the opti-

mal roots of path bundles across modules. Our contributions are as

follows:

• We propose a method to tackle the bundling problem of

minimal trees in modular bipartite networks by using a two-

layer optimization based on Differential Evolution with a

convex representation.

• Computational experiments consisting of 1250 problem sce-

narios, and 2.5 million instances of functions evaluations

show the (1) the feasibility to compute minimal trees in mod-

ular bipartite networks, and (2) convergence within [400,

800] function evaluations.

In the rest of this article, after describing the key components

in our proposed approach, we discuss our findings though our

computational experiments, and finally summarize our insights

and future work.

2 COMPUTING MODULAR PATH BUNDLES
2.1 Basic Idea
The basic concept of minimal trees in modular bipartite networks is

depicted by Fig. 1 and Algorithm 1, in which the input is a polygonal

map and a bipartite network, and the output is a tree structure with

paths avoiding obstacles and minimizing the total distance metric.

The following is assumed as inputs:

• A modular bipartite graph G = (V ,E) wherein edge e ∈ E
represents the needs in communication/transportation be-

tween origin-destination pairs, in which the edges in the

set E are grouped in M modules, following a cluster-like

configuration such that E = E1 ∪ E2 ∪ ...Em ... ∪ EM , and

V = V1 ∪V2 ∪ ...Vm ...∪VM . An example of a modular bipar-

tite network is depicted by Fig. 1-(a), in which the bipartite

network has 6 edges, grouped into two modules, namely

Module 1 and Module 2, each of which has distinct edges

and vertices.

• A polygonal map configuration ρ = {ρ1, . . . , ρs }, in which

a-priori knowledge of obstacles ρ ∈ M define unfeasible

areas for navigation/transportation. An example of a polyg-

onal configuration is shown by Fig. 1-(a), in which the map

involves the presence of two polygons ρ = {ρ1, ρ2}. In this

paper, we assume polygons are in 2D.

2.2 Bundle Representation
In order to represent path bundles ofmodular bipartite networks, we

use the tuplexm to encode the root for eachmodule (m = 1, 2, ...,M),

and the tuple xo to encode the root across modules. In the following

paragraphs we describe the key encoding mechanisms.

2.2.1 Representation for each Module. We represent minimal

trees by using the roots of a tree encoded in a triangular (convex)

space; thus the bundle of them-th module of the bipartite network

is represented by the following tuple:

xm =
(
(imP ,α

m
P , β

m
P )︸          ︷︷          ︸

xPm

, (imQ ,α
m
Q , β

m
Q )︸          ︷︷          ︸

xQm

)
(1)

, where imP is the integer number related to the i-th triangle of

them-th module related to the coordinate P , and αmP , β
m
P ,α

m
Q , β

m
Q ∈

[0, 1] are Real numbers.

The basic idea of the above implies representing coordinates in a

triangular encoding, in which in order to encode a coordinate, the

following tuple is used:

P = (i,α , β), (2)

(Px , Py ) = (1 − α)Ai +
√
α(1 − β)Bi +

√
αβCi , (3)

where P is the coordinate in triangular space, for i ∈ [|T |],
[a] = {1, 2, ...,a} and T = {t1, t2, . . . , ti , . . . , tn } is the set of Delau-
nay triangles of the free space of the polygonal map ρ, α , β ∈ [0, 1]
are arbitrary constants, Px and Py is the horizontal and vertical

cartesian coordinates of point P , and Ai ,Bi ,Ci are the coordinates
of the vertices of the i-th triangle ti ∈ T . The above encoding en-
ables to represent coordinates which guarantee to be inside the free
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Algorithm 1 Bundling of Modular Bipartite Networks

1: procedure Bundle(G)

2: Input G ◃ Modular Bipartite Graph

3: Output (xo ,x1,x2, ...,xm , ...,xM ) ◃ Roots of Path Bundle

4: form ← 1 toM do ◃ M Minimization Problems

5: xm ← Minimize Fm (x) with x ∈ Tm

6: end for

7: xo ← Minimize Fo (x) with x ∈ To

8: end procedure

space, and which is meritorious to encode obstacle-free coordinates

for path planning problems.

Furthermore, the following relation holds: imP , i
m
Q ∈ [|Tm |], for

the set Tm being computed as follows:

Tm = DT
(
CVm − {ρ1 ∪ ρ2 . . . ∪ ρs }

)
(4)

, whereDT (.) represents the Delaunay Triangulation, the geome-

try CVm encodes the Convex Hull of the union of all vertices in the

m-th module of the bipartite networkG , and ρ1 ∪ ρ2 . . . ∪ ρs repre-
sents the union of obstacles. Basically, Tm encodes the partition, in

terms of a convex set, of the free space which is most relevant to

them-th module of the bipartite network. Naturally, xm ∈ Tm , for

m = 1, 2, ...,M .

2.2.2 Representation across Modules. We represent bundles by

considering the grouping of modules with the following:

xo =
(
(ioP ,α

o
P , β

o
P )︸        ︷︷        ︸

xPo

, (ioQ ,α
o
Q , β

o
Q )︸         ︷︷         ︸

xQo

)
(5)

, in which the following holds: ioP , i
o
Q ∈ [|To |], and the set To is

computed as follows:

To = DT
(
Cx1∪x2∪...∪xm − ρ1 ∪ ρ2 . . . ∪ ρs

)
(6)

, where DT (.) represents the Delaunay Triangulation operator,

Cx1∪x2∪...∪xm represents the Convex Hull of the roots ofm mod-

ular bundles in the bipartite network G. In line of the above, the

following holds: xo ∈ To .
The basic idea in the above representation is to encode the poten-

tial locations of the roots xo by triangulating the relevant free search
space (which is derived by geometric operations). Furthermore, by

computing the triangulation sets Tm and To , we aim at construct-

ing the focalized search spaces of roots of modular bundles, which

is then used by optimization algorithms.

2.3 Optimization Problems
The basic idea of computing path bundles in modular bipartite

networks is depicted by two-level optimization, each of which

computes the root x of bundled paths for each and across modules.

The basic idea to solve the two-level optimization is portrayed

by Algorithm 1, and in the following we explain its dynamics.

2.3.1 Optimization in Modules. Here, the optimization aims at

computing the roots xm of path bundles for each modulem ∈ [M],
as follows:

Minimize
x

Fm (x)

subject to x ∈ Tm
(7)

, where x ∈ Tm implies the feasible search space for the tu-

ple x . Following the definition of Eq. (1), the lower bound of x is

(1, 0, 0, 1, 0, 0), and the upper bound of x is (|Tm |, 1, 1, |Tm |, 1, 1) for
m ∈ [M].

The objective function Fm measures the length of the route

bundle for each module, as follows:

Fm (x) =
∑
e ∈Em

d(eS ,x
P
m ) + d(x

P
m ,x

Q
m ) +

∑
e ∈Em

d(eF ,x
Q
m ) (8)

where, d(., .) is the Euclidean obstacle-free shortest distance

between two points, eS and eF are coordinates of the origin and

destination of the edge e ∈ Em in them-th module, and xPm and x
Q
m

are roots of bundles for each module.

2.3.2 Optimization across Modules. Here, the optimization aims

at computing the location of roots xo of path bundles across modules,
as follows:

Minimize
x

Fo (x)

subject to x ∈ To
(9)

In line of the above, here, the lower bound of x is (1, 0, 0, 1, 0, 0),

and the upper bound of xo is (|To |, 1, 1, |To |, 1, 1) form ∈ [M].
Also, here, the objective function measures the length of the

route bundle across modules, as follows:

Fo (x) =
∑

m∈[M ]

d(xPm ,x
P
o ) + d(x

P
o ,x

Q
o ) +

∑
m∈[M ]

d(x
Q
m ,x

Q
o ) (10)

where, d(., .) is the Euclidean obstacle-free shortest distance

between two points, xPo and x
Q
o are roots of bundles across modules.

2.4 Differential Evolution
This subsection describes the optimization algorithm used to com-

pute the optimal route bundles.

We use Differential Evolution with Neighborhood and Convex En-
coding (DENC)[28] both global-local interpolation vectors, as well

as convex representation of the geometric search space. Sampling

is based on the following:

xt+1 =

{
ut F (ut ) ≤ F (xt )

xt otherwise

(11)

where,
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• xt represents xm or xo at iteration t , in other words xt is the
individual (route bundle),
• F (.) is the objective function, which is either Fm or Fo (de-
noting minimization), and
• ut is the trial route bundle solution at iteration t .

In the above, the representation of variable x is convex, in which

coordinates are in triangular space, as follows:

xt ≡
(
(iP ,αP , βP )︸        ︷︷        ︸
Coordinate P

, (iQ ,αQ , βQ )︸         ︷︷         ︸
Coordinate Q

)
(12)

, where Coordinate P and Coordinate Q imply Euclidean coordi-

nates in the plane. The definitions of i,α , β follow the same prin-

ciples of Eq. (1) and Eq. (5). Also, the conversion to the cartesian

coordinates is straightforward due to the definition of Eq. 3.

The trial vector ut is computed from global-local interpolation

vectors, as follows:

ut = xct + bt ◦ (vt − x
c
t ) (13)

bt = [bt,1,bt,2,bt,3, ...,bt,D ] (14)

• ◦ is the Hadamard product (element-wise).

• xc is the crossover individual at iteration t .
• vt is the mutant individual at iteration t .
• bt is a vector of masks containing zeros and ones.

The mask bt is computed as follows:

bt, j =

{
1, rt, j ≤ CR or j = jrand

0, otherwise

(15)

vt = w
xt .дt + (1 −w

xt ).lt (16)

where,

• ◦ is the Hadamard product (element-wise).

• rt, j and jrand are random numbers uniformly distributed in

R[0,1] and N[D] respectively.
• CR is the probability of crossover.

• D = 6 is the dimensionality of the route bundling problem.

In the above, the reader may note that high crossover rates CR
incite in large number of ones in the mask vector bt , implying a

highly explorative sampling.

The global and local interpolation vectors are computed by using

neighborhood concepts, as follows:

дt = xt + α(xдbest − xt ) + β(x
1 − x2) (17)

lt = xt + α(xnbestx − xt ) + β(x
p − xq ) (18)

wxt = wxt + α(wдbest −w
xt ) + β(w1 −w2) (19)

where,

• дt is the global donor individual.
• lt is the local donor individual.
• {x1t ,x

2

t } ⊂ P, are random individuals sampled from the pop-

ulation P for x1 , x2 , xt .
• xдbest is the global best in the population P at iteration t .

• xnbestx is the local best in the neighborhood N(xt ) of indi-
vidual xt at iteration t .
• the neighborhood N(xt ) of vector xt is the set of individuals
contiguous to xt by radius δ =

|P |.η
2

in a ring topology.
• {xp ,xq } ⊂ N(xt ), are random individuals for xp , xq , xt .
• wxt

denotes the coefficient of individual xt ,
• wдbest is the coefficient associated to xдbest ,

• w1,w2
are the coefficients associated to the vectors x1,x2

respectively,and

• any coefficientwxt ∈ U [0, 1] is set randomly at initial itera-

tion.

The main reason of using Differential Evolution with global and
local interpolation vectors is due to its advantage to balance both

exploration and exploitation over the entire search space x ∈ T,
wherein the trade-off between the global and the local search is

self-adapted throughout the iterations.

3 COMPUTATIONAL EXPERIMENTS
To evaluate the feasibility and efficiency of our proposed approach,

we used polygonal domains with both convex and non-convex

geometry, as well as distinct configurations of modular bipartite

networks. In this section, we describe our experimental results and

obtained insights.

3.1 Experimental Settings
Our computing environment was an Intel i7-4930K @ 3.4GHz with

Windows 8.1, and our algorithms were implemented in Matlab

2018a. In order to enable a meaningful evaluation of our proposed

approach, we considered the following environmental settings:

• No. of Modules in the bipartite graph =M = {2, 4, 6, 8, 10}
• No. of Edges in each module of bipartite graph,

|Em | = {5, 10, 15, 20, 25},
• Number of Polygonal Obstacles: {1, 2, 3, 4, 5},

• No. Sides in each Polygonal Obstacle: {5, 10}.

• 5 Independent runs of the above experimental setting, with

the maximum number of functions evaluations being set

between 2000 and 2500,

• In each independent experiment, the initial solutions of route

bundles xm ∈ Tm and xo ∈ To are initialized randomly and

independently.

As a result of the above, we used 1250 problem scenarios, and

2.5 million instances of functions evaluations.

As for parameters in Differential Evolution, we used:

• probability of crossover CR = 0.5,

• scaling factor α = β = |ln(U (0, 1))/2|,
• population size with 10 individuals, and

• neighborhood ratio η = 0.1

The main reason of using crossover probability CR = 0.5 is

to give the same importance to the sampling local-global interpo-

lations and historical search directions. Also, the small values of

scaling factors α , β as used in this paper allow to search in small

steps when computing the self-adaptive directions. Furthermore,

small values of population size and neighborhood factor η allow to

sampling efficiently within the local polygonal neighborhood[28].
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|ρ | = 1 |ρ | = 2 |ρ | = 3 |ρ | = 4 |ρ | = 5

Figure 2: Polygonal Map with 5 sides and Bipartite Networks with |ρ | modules, each with 5 (top) edges, 10 edges, 15 edges, 20
edges and 25 (bottom) edges.

|ρ | = 1 |ρ | = 2 |ρ | = 3 |ρ | = 4 |ρ | = 5

Figure 3: Polygonal Map with 5 sides and Bipartite Networks with |ρ | modules, each with 5 (top) edges, 10 edges, 15 edges, 20
edges and 25 (bottom) edges.

Fine tuning of Differential Evolution Parameters is out of the scope

of this paper.

The key motivation behind using the number of edges up to 25,

and modules up to 10 is due to our interest in applications relating

coordination and communication in indoor environments, in which

the complexity of the environment is controlled by (1) the number

of obstacles in the polygonal map, and/or (2) the number of sides for

each obstacle. These two factors increase the search space, thus, it

is relevant in our focus to evaluate the convergence speed through

independent runs.

3.2 Results
To exemplify the kind of tree structures obtained by our proposed

method, Fig. 2 - Fig. 5 show examples of modular bipartite networks

and their optimized minimal trees. In regards to the obtained mini-

mal trees, by observing the results being rendered in Fig. 2 to Fig.

5, we can confirm the following facts:

• Regardless of the configuration of the polygonal domain, it

becomes possible to compute tree structures of minimal trees

which aim at minimizing the total tree length of modular

bipartite networks.

• The location of the anchoring points are not necessarily close

to the centroid of origin-destination pairs.

• Regardless of increasing the edges for each module of the

bipartite graph, a number of sub-trees overlap in geometry,

which implies the need to increase the depth to compute

anchoring points in each module.

To show the convergence speed of our algorithms, Fig. 6 - Fig.

10 show the convergence of the fitness function Fo , denoting the
performance of the length across modules, for different number of

obstacles in the map |ρ |. In regards to the convergence behaviour of

the proposed algorithm, by observing Fig. 6 - Fig. 10, it is possible

to confirm the following facts:
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|ρ | = 1 |ρ | = 2 |ρ | = 3 |ρ | = 4 |ρ | = 5

Figure 4: Polygonal Map with 5 sides and Bipartite Networks with |ρ | modules, each with 5 (top) edges, 10 edges, 15 edges, 20
edges and 25 (bottom) edges.

|ρ | = 1 |ρ | = 2 |ρ | = 3 |ρ | = 4 |ρ | = 5

Figure 5: Polygonal Map with 5 sides and Bipartite Networks with |ρ | modules, each with 5 (top) edges, 10 edges, 15 edges, 20
edges and 25 (bottom) edges.

• Regardless of the configuration of the polygonal, it is possible

to converge to the bundled paths which minimize the global

distance metric within [400, 800] function evaluations.

• Increasing the number of edges has a direct effect on in-

creasing the length of the minimal tree by some small factor

smaller than 1.

• Increasing the number of modules of bipartite networks has

a direct effect on increasing the length of the minimal tree

by a factor smaller than 3 (upper bound).

We believe that the above observations are relevant to design

higher-order minimal trees for modular networks. In line of this,

we propose the following:

• Whenevermodular bipartite networks or polygonal maps are

expected to change, it may be possible to use pre-computed

minimal trees as initial solutions further adaptation, since

the location of roots is expected to be near.

• A hierarchical convex search space, as the one proposed in

this paper, may be key for effective and efficient sampling of

the search space for higher-order minimal trees.

The above insights implies the possibility to build more efficient

algorithms for computing minimal trees in polygonal environments

with both convex and non-convex obstacles. In our future agenda,

we aim at performing further computational experiments using

large number of edges and diverse obstacle configurations reminis-

cent of outdoor environments.

In our future work, we aim at investigating improved approaches

to compute higher-order bundling of minimal trees, as well as im-

proved learning algorithms. For instance, it may be possible to

use canonical encodings in directed graphs[31] and undirected

graphs[32] to explore diverse topologies of network connectivity;
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(a) Polygons with 5 sides

(b) Polygons with 10 sides

Figure 6: Convergence of fitness functions for |ρ | = 1

.

and it may be possible to use of concurrency concepts in exploration-

exploitation[33, 34]. Furthermore, studying the formation of mod-

ules in hierarchical bundles by succinct subset partitions is in our

agenda[35].

4 FINAL REMARKS
We have presented an approach to compute minimal trees by com-

pounding edges in modular bipartite networks. Our computational

experiments show the feasibility to obtain minimal trees in en-

vironments with non-convex obstacles. In future work, we aim

at evaluating the generalization ability in environments reminis-

cent of outdoor configurations, and evaluate in problems involving

communication, transportation and network design.
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