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a b s t r a c t

The present work focuses on an open problem in the design of Extended Kalman filters: the lack of
knowledge of the measurement noise covariance. A novel extension of the analytic behaviors frame-
work, which integrates a theoretical formulation and evolutionary computing, has been introduced as
a design methodology for the construction of this unknown parameter. The proposed methodology
is developed and applied for the design of Evolved Extended Kalman Filters for nonlinear first-order
dynamical systems. The proposed methodology applies an offline evolutionary synthesis of analytic
nonlinear functions, to be used as measurement noise covariance, aiming to minimize the Kalman
criterion. The virtues of the methodology are exemplified through a complex, highly nonlinear, first-
order dynamical system, for which 2649 optimized replacements of the measurement noise covariance
are found. Under different scenarios, the performance of the Evolved Extended Kalman Filter with
unknown measurement noise covariance is compared with that of the conventional Extended Kalman
Filter where the measurement noise covariance is known. The robustness of the Evolved Extended
Kalman Filter is demonstrated through numerical evaluation.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The Extended Kalman Filter (EKF) is a generalized version of
he well-known state estimator Kalman Filter (KF) dedicated to
onlinear systems. The EKF has been proved to be useful from
he Apollo moon landing project in the sixties (see [1,2]), and
ontinues being relevant to date [3,4].
The functionality of the EKF is based on the covariance ma-

rices that characterize the White Gaussian Noise (WGN) in the
rocess and in the measurements. In the standard EKF, both
ovariance matrices are typically assumed constant values, being
ither known, proposed by an expert after analyzing the process
nd the measurements, or found by trial-and-error, among other
echniques. Most of the time, the covariance matrices are diffi-
ult to be known, hence, the search for a replacement of these
arameters is required.
The revision of literature shows several approaches to deal

ith the uncertainty in the covariance matrices. Some works aim
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to estimate, or identify, a numeric value for the unknown noise
covariances by introducing mostly adaptive models or optimiza-
tion techniques. Afterwards, the found value can be used either
for the EKF, or to cancel the effect of noise, either in the process
or in the measurement. In the early 70s, Mehra [5] classified
the, so far known, adaptive filtering approaches into four cate-
gories: Bayesian, Maximum Likelihood, Correlation, and Covari-
ance Matching. Among the new solutions found in the literature,
are innovation-based methods [6–8]; fuzzy logic and/or neural
networks [9–14]; stochastic or probabilistic approaches [15–18];
and metaheuristics [19], in particular Genetic Algorithms [20–22],
and Differential Evolution [23]. Despite the large amount of re-
search devoted to this particular aspect of Kalman Filters design,
dating more than fifty years, the tuning of the filter’s covariance
matrices still remains an open problem [24].

This work focuses on the measurement noise covariance of
the filter, i.e., it considers a configuration of noisy measurements
coming from a deterministic process, as in [25–29]. A novel
methodology that builds replacement functions for the typically
unknown measurement noise covariance, which is an important
tuning parameter in the EKF, is proposed. In contrast to the
works found in the literature, the proposed methodology is built
as an extension of the analytic behaviors framework originally
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eveloped for the construction of nonlinear controllers [30–34].
he novelty of this framework resides in the integration of a
heoretical formulation with an evolutionary process based on
he Genetic Programming paradigm. Focused in our problem,
t allows to find dynamic expressions that automatically adjust
hemselves to minimize the Kalman criterion, and can deal with
arametric variations. A remarkable feature with respect to the
iterature, where the aim is to propose constant estimates of the
nknown covariances, here the measurement noise covariance
s replaced by an analytic function that depends on the filter’s
ntrinsic variables and on the system’s noisy measurement. An-
ther important feature of the methodology is that it produces a
arge set of suitable solutions to the given problem. From these,
he designer can choose the most appropriate analytic function
eplacement to be used online for real-world applications, such as
avigation and control [35–37]. Tuning the EKF with the new re-
lacement generates a new filter called Evolved Extended Kalman
ilter (EEKF).
This document is organized as follows. Section 2 states the

heoretical preliminaries for the EKF, a brief introduction of the
nalytic behaviors framework, and the description of the dy-
amics of the logistic map system employed as a testbed for
he general methodology. The general form of the methodology
eveloped for the construction of EEKFs, applied to nonlinear,
irst Order Dynamical Systems (FO-DS) is presented in Section 3.
he application of the methodology for a particular FO-DS, logistic
ap system, is described in Section 4. The logistic map system

s chosen since, despite its simplicity, its solutions are complex,
arying from fixed points to chaos [38–40], depending on its
ifurcation parameter. This system is commonly used to model
he growth and decay of a population over time, the presence of
urbulence in a fluid, the host–parasite problem, the double pen-
ulum, as well as to describe the chaotic dynamics of phenomena
ithin several research fields [38,41]. Finally, the conclusions are
utlined in Section 5.

. Preliminaries

For later use, the theoretical basis of EKF, an overview of the
nalytic behaviors framework, and the description of the logistic
ap employed to exemplify the proposed approach, are detailed.

.1. Extended Kalman Filter

Consider a class of nonlinear systems described by the deter-
inistic difference equation

k = f (xk−1), (1)

here xk−1 represents the state vector, and f (xk−1) is a nonlinear
ector function that defines the dynamics of the systems. For (1),
he outputs described by

k = h(xk) + vk, (2)

are considered, where h(xk) is a function of the state vector,
and the random sequence vk corresponds to WGN normally dis-
tributed with N (0,Rk), where Rk is the covariance matrix of vk
that is used for tuning the EKF.

The EKF, developed by Schmidt et al. [1], estimates the state
vector of (1) subject to WGN; this is

xk = f (xk−1) + wk, (3)

where wk are uncertainties of WGN distributed with N (0,Q k),
with Q k being the covariance matrix of wk. To optimally estimate
xk, the filter uses the outputs (2) and the knowledge of (3).
This filter is frequently found in the literature; see for instance,
2

[42–44]. Since the present work considers (1) instead of (3), the
standard EKF becomes

x̂pk = f (x̂uk−1), (4)

Pp
k = Ak−1Pu

k−1A
T
k−1, (5)

K k = Pp
kC

T
k (C kP

p
kC

T
k + Rk)−1, (6)

x̂uk = x̂pk + K k(yk − h(x̂pk)), (7)

Pu
k = (I − K kC k)P

p
k, (8)

where the traditional EKF equation Pp
k = Ak−1Pu

k−1A
T
k−1 + Q k−1

has been modified to (5). In the above relations, x̂pk is the esti-
mation of the state xk, before considering yk; P

p
k is the predicted

covariance matrix of the estimation error; K k is the Kalman gain;
x̂uk describes, although locally, the optimal estimation of xk; and
Pu

k is the updated covariance matrix of the estimation error.
Rk is a symmetric and positive definite matrix capturing in its
diagonal the variances of the uncertainties vk, while Pu

k and Pp
k

are symmetric and positive definite matrices. The superindexes p
and u indicate the prediction and update phases. The matrices

Ak−1 =
∂f (xk−1)
∂xk−1

⏐⏐⏐
x̂uk−1

, C k =
∂h(xk)
∂xk

⏐⏐⏐
x̂pk

come from the Taylor’s linear approximations of (1) and (2)
around the nominal values xk−1 = x̂uk−1, xk = x̂pk , and vk = 0
see [42]). These approximations are

xk ≈ Ak−1xk−1 + uk−1 and (9)

k ≈ h(x̂pk) + C kxk − C kx̂
p
k + vk, (10)

ith uk−1 = f (x̂uk−1) − Ak−1x̂
u
k−1. It should be noted that the EKF

4)–(8) is derived from the standard KF applied to estimate the
tate vector of (9), given the outputs

k = C kxk + vk, (11)

here zk = yk − h(x̂pk) + C kx̂
p
k , (see [42]). The idealized initial

conditions for the EKF are x̂u0 = E[x0] and Pu
0 =var[x0], where E

nd var are, respectively, the expectation and the variance opera-
ors. The EKF is locally optimal in the sense that locally minimize
he Kalman criterion defined as the trace of the covariance of the
stimation error, that is

race(Pu
k) = trace(E[(xk − x̂uk)(xk − x̂uk)

⊤
]). (12)

.2. Analytic behaviors framework

The analytic behaviors framework is a recent control design
cheme for the automated synthesis of analytic nonlinear con-
rollers proposed by [30], and extended in [31–34]. This approach,
eveloped to address control problems, relates the behavior of
rtificial systems with the principles that govern the behaviors
nd the learning process in humans. It aims to automate and syn-
hesize the process of acquiring new behaviors, and/or modifying
xisting ones. Such behaviors are translated into new skills for the
ystem to solve a large class of problems. The general overview
f this framework is presented in Fig. 1. The entire behavior of
system can be defined as the natural behavior, where three
ain basis behaviors have been considered and denoted as the
nforced, the forced, and the learned behaviors. More behaviors
an be introduced such as unmodeled dynamics, external distur-
ances from the environment, and/or parametric uncertainties,
or instance, due to normal wear and tear in the case of physical
ystems. Additional phenomena can be added if the nature of
he system requires it. The unforced behavior is defined as the
odel of the system representing its internal dynamics. This is
hat is known from the system. This behavior solely depends
n initial conditions without applying any input or excitation
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Fig. 1. Analytic behaviors framework.

ignal. The forced behavior is related to the already acquired
ehaviors, either from a previous synthesis or by experience.
nd finally, the learned behaviors, produced by an evolutionary
rocess, are dedicated to find nonlinear controllers that extend
he capabilities of the system. The Genetic Programming (GP)
aradigm is applied as the evolutive engine, since it has the ability
o construct solutions using analytic functions.

The GP fits a solution for the task in hand following processes
nspired by natural evolution. First, a solution is represented
y a syntactic tree structure. Second, the initial population of
olutions is randomly created. Third, each solution is evaluated
nd ranked according to a fitness function. Fourth, a selection
ethod is performed to choose the fittest individuals for repro-
uction. Fifth, the selected individuals are mated and mutated to
roduce offspring. The old population is replaced with the new
ndividuals. This cycle is repeated until a desired level of fitness
s achieved [45].

In this work, the analytic behaviors framework is applied
or the design of evolved versions of EKFs. This proposal solves
he problem of estimating the state of a nonlinear first-order
ynamical system whose output is corrupted by a noisy signal of
nknown covariance value. The extension of the original frame-
ork is defined as the introduction of the theoretical formulation
f the conventional EKF and a parallel structure of both the true
ystem and the filter is set.

.3. The logistic map system

The logistic map can be considered as one of the simplest non-
inear, first-order, difference systems, possessing a rich variety of
ehaviors ranging from stable fixed points to chaos. This system
s given as [38]

k = α xk−1(1 − xk−1). (13)

For 0 ≤ α < 1, the solution to this system is xk = 0.
Different values of α have different interpretations, for instance
when modeling species, using 1 < α < 4 corresponds to the
growth of a species, otherwise the population becomes extinct.
Steady-state values are observed in the interval 1 ≤ α < 3,
and bifurcations in the form of period-doubling cascade appear
from α ≥ 3 to α ≈ 3.56995. The chaotic regime appears for
values of α greater than 3.56995 and α ≤ 4. Some islands of
stability within this interval are also observed; this phenomenon
is called intermittency. The complex behavior of this system can
be graphically explained using its bifurcation map, presented in
Fig. 2, for 1 ≤ α ≤ 4. The logistic map system has been
widely employed in a vast number of science fields, and it is still
attracting the focus of many researchers. For instance, see the
works of [38,46–58], to mention a few.
3

Fig. 2. Bifurcation diagram of the logistic map system (13).

3. Synthesis of analytic behaviors for EEKFs for nonlinear
FO-DS

In this section, the proposed methodology for the construction
of EEKFs applied to a nonlinear FO-DS is described in a general
way. First, the problem statement is defined, and next, each stage
of the approach is detailed.

3.1. Problem statement

Consider the EKF (4)–(8), with unknown tuning parameter
Rk, dedicated to the first-order version of (1) and (2). Given the
order of the system, its matrices and the ones from the filter
become scalars. The problem is thus defined as the search of a
replacement of Rk, expressed as a scalar analytic function Rgpi .
To solve the problem in question, a novel methodology based on
the analytic behaviors approach is developed. This methodology
is designed for the search of a set of functions Rgpi that work
as replacements of the typically unknown tuning parameter Rk.
These functions are found by means of evolutionary computation,
hence the name Evolved EKF (EEKF). The implemented evolution-
ary process is guided by a fitness function constructed on the
average of the Kalman criterion defined by (12).

3.2. The analytic behaviors approach for EEKF

This work proposes an extension of the analytic behavior-
based framework for the construction of EEKFs. In this section,
each stage of the methodology is detailed in order to build a
suitable solution.

A general layout for the search of analytic solutions consider-
ing a nonlinear FO-DS is described in Fig. 3. The nonlinear model
of the system and the EEKF are represented by the NONLINEAR
FO-DS, and the EVOLVED EXTENDED KALMAN FILTER blocks,
respectively. Note that the EEKF has the same structure as the
conventional EKF presented in Section 2, where a function Rgpi

is introduced as a solution that substitutes the covariance matrix
value Rk. Both systems, denoted by the NONLINEAR FO-DS and
the EVOLVED EXTENDED KALMAN FILTER blocks, are running
in parallel, where the EEKF’s objective is to optimally estimate
the state of the true system in the presence of the uncertainty
introduced by the noise v .
k
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Fig. 3. Layout of the EEKF. The construction of the EEKFs is based on the analytic behaviors framework, that solves the estimation task in the presence of uncertainty
introduced by the noise vk . The solutions Rgpi , i = 1, . . . ,m are optimized analytic functions derived from an evolutionary process applied to the filter.
The first step of this methodology is the definition of the
basis behaviors for both systems, where the dynamics and the
interactions between them and the environment are described.
The basis behaviors for the system’s nonlinear model, denoted as
NONLINEAR FO-DS in Fig. 3, are summarized as follows.

1. The natural behavior is defined by the output of the system,
where initial conditions and interactions with the envi-
ronment are considered. This is given by the output yk
defined by the state xk, and corrupted by additive noise,
vk. The uncertainty problem is given as the noise vk being
characterized by WGN with unknown covariance value Rk.

2. The unforced behavior denotes the output of the system
when only the internal dynamics are considered. Thus, the
state xk, of the nonlinear first-order dynamical model (1),
subject to some initial condition x0, defines the unforced
behavior of the true system.

3. The forced behavior of the system is defined by the output
affected by external inputs, either from the environment
or by interacting with other systems. Since the system
is corrupted by an external input, denoted as the noise
vk, it is assumed that, in this setup, the forced behavior
corresponds to the effect of the noise signal vk over the
output state xk.

Notice that the learned behavior is not defined for the non-
linear system since its states are the desired target for the EEKF
to achieve. Hence, the learned behavior is only defined for the
EEKF through a learning stage implemented by an evolutionary
process. The objective is that the EEKF recovers optimally the
system state.

The EVOLVED EXTENDED KALMAN FILTER block is composed
of the iterative procedure between the PREDICTION and the
UPDATE stages. The basis behaviors for this block are described
below.

1. The unforced behavior is denoted as the estimated out-
puts x̂pk and Pp

k from the PREDICTION block of the filter
(see Fig. 3). These outputs depend on the estimated initial
conditions x̂0 and P0.

2. The forced behavior of the EEKF is given as the response
to the effect of external inputs. This is the interaction with
the true system by means of the input yk. This interaction
is described by (7), and it is used in the UPDATE stage of
the filter (see Fig. 3).

3. Finally, our aim is the construction of an EEKF using a
suitable function Rgpi , whose dynamics converge to the
states of the system’s nonlinear model (1)–(2). Thus, the
EEKF must learn to deal with the noise uncertainty, and to
4

adapt in order to fulfill the estimation task. An optimization
based on the GP paradigm is introduced to derive the
analytic function Rgpi , to be used in place of the Rk value.
The restriction is that such function is only allowed to use
information from the EKF and the noisy output, yk, from
the true system. This way, the found Rgpi is a solution that
will offer a straightforward implementation in a practical
application. Note that, by using this methodology, it is
possible to obtain hundreds or thousands of solutions Rgpi

that satisfy the restrictions with acceptable performance.
In this case, the superindex i refers to a particular solution,
from a set of m possible choices.

3.2.1. The learning stage
The description of the synthesis of suitable solutions, applying

the GP paradigm, is given next. These solutions generate the
learned behaviors of the EEKFs, and are meant to replace the
unknown covariance value, Rk, in order to cope with the uncer-
tainty. Based on the structure of the EEKF, note that the filter’s
learned behaviors propagate through the UPDATE stage shown
in Fig. 3; they first appear in Eq. (6) in the computation of the
filter’s gain Kk. This gain is later applied for the calculation of the
updated estimated state x̂uk in (7), and for the updated value of
the covariance Pu

k in (8). Then, these values are iteratively used
for the new prediction.

The computational description of the learning process, based
on GP, is depicted in the flowchart in Fig. 4. This process requires
the setting of

1. the numerical models of the nonlinear system and of the
EEKF, as shown in Fig. 3;

2. the definition of the search space for the synthesis of the
solution Rgpi ;

3. the fitness function that evaluates the performance of each
possible solution generated by the GP;

4. the setup of the scenarios or cases where the performance
will be tested; and

5. the tuning stage of the GP parameters.

First, the definition of the numerical models is based on
Eqs. (1)–(2) for the nonlinear system model, and on (4)–(8) for
the EEKF. Second, the search space is defined as the pool of
mathematical functions and arguments that can be used for the
construction of the analytic solution Rgpi . These expressions are
known, respectively, as the Functions and Terminals sets used by
the GP. The distinctive feature of the analytic behaviors frame-
work is the use of an encoding of analytic nature. Arithmetic,

trigonometric, and other special functions can be selected for the
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Fig. 4. Evolutionary process for the synthesis of optimized analytic functions Rgpi , i = 1, . . . ,m as estimations of the unknown covariance value Rk for the additive
noise vk . The analytic functions are applied into the structure of EEKFs aiming to solve the estimation task of a nonlinear FO-DS.
Functions set, see Table 1. From the nonlinear system model,
only the noisy output yk is selected to be a part of the set of
Terminals, since it is the only piece of information available
through measurements. The other arguments used, as part of the
Terminals set, are variables from the EEKF, and a noise estimation
error defined as epk = yk − x̂pk; i.e. the difference between the
noisy system output and the predicted estimated state, as well
as its time derivative, ėpk . The variables that compose the set of
Terminals are presented in Table 2.

The third setting corresponds to the design of a fitness func-
tion that guides the evolutionary process by ranking the perfor-
mance of candidate solutions as replacement functions Rgpi for
he unknown value of Rk in the filter. The proposed methodology
akes advantage of the Kalman criterion, which measures the
ocal optimality of the filter. This criterion is defined as in Eq. (12),
here the covariance is reduced to the variance and the trace
perator is not needed, since we deal with first-order systems.
hus, the fitness function is defined as

=
1
n

n∑
j=0

ekj . (14)

where ekj = (E[(xk − x̂uk)
2
])j, and n is the number of noisy

samples vk affecting the system’s measurement yk. The evolutive
algorithm performs an optimization process, which minimizes
the fitness function (14). Hence, the definition of the optimization
5

problem is expressed as

min
ekj

1
n

n∑
j=0

ekj , (15)

s. t. xk = f (xk−1),

x̂uk = x̂pk + K k(yk − h(x̂pk)), (16)

where xk denotes the state of the system, and x̂uk corresponds to
the local optimal estimation of xk, as established by the theory of
the conventional EKF. Note that xk, from the nonlinear model, is
only used during the offline search performed by the evolutionary
process. It is not used for the construction of the replacement
functions Rgpi as established by the defined set of Terminals
listed in Table 2. Thus, the obtained solutions are completely
independent of xk.

A characteristic to be considered is that the number of selected
scenarios has an impact on the increment of the computational
load during the implementation of the evolutionary process. In
addition, it is recommended to set the parameters of the system
such that their dynamics provides valuable information to the
learning stage.

The tuning stage of the GP process is based on a trial-and-error
approach. Commonly, a large number of generations and individ-
uals is used by the GP’s evolutive process. However, an important
feature of the analytic behaviors methodology is that the number
of generations and individuals required to find suitable solutions



L. Herrera, M.C. Rodríguez-Liñán, E. Clemente et al. Applied Soft Computing 115 (2022) 108174

i
t
t
t
o
t
t
d
f
r
b

s
m
f

Table 1
Functions used in the evolutionary process to build the replacement functions Rgpi .
ID Expression Definition ID Expression Definition

1 (·)2 Square 20 sc(·) Secant
2 (·)3 Cubic 21 ct(·) Cotangent
3 sr(·) Square root 22 si Inverse sine
4 shi(·) Inverse hyperbolic sine 23 ci Inverse cosine
5 chi(·) Inverse hyperbolic cosine 24 atanr(·) Inverse tangent of the real

part of the argument
6 thi(·) Inverse hyperbolic tangent 25 e(·) Exponential
7 cshi(·) Inverse hyperbolic cosecant 26 ln(·) Natural logarithm
8 schi(·) Inverse hyperbolic secant 27 Re(·) Real part of the argument
9 cthi(·) Inverse hyperbolic cotangent 28 || · || Euclidean norm
10 sh(·) Hyperbolic sine 29 abs(·) Absolute value
11 ch(·) Hyperbolic cosine 30 sgn(·) Signum function
12 th(·) Hyperbolic tangent 31 + Addition
13 csh(·) Hyperbolic cosecant 32 – Subtraction
14 sch(·) Hyperbolic secant 33 / Division
15 cth(·) Hyperbolic cotangent 34 ∗ Multiplication
16 c(·) Cosine 35 (·)(·) Exponentiation
17 s(·) Sin 36 max(·, ·) Maximum
18 t(·) Tangent 37 min(·, ·) Minimum
19 cs(·) Cosecant
Table 2
Terminals used by the GP in the learning stage.

ID Term Description ID Term Description

1 x̂uk Updated estimated state 5 epk Noise estimation error

2 x̂pk Predicted estimated state 6 ėpk Time derivative of noise
estimation error

3 ˙̂xpk Time derivative of the
predicted estimated state

7 Rgpi
k−1 Past value of the ith proposed

solution

4 yk Noisy measurement of the
nonlinear system
for a well formulated problem is reduced. This implies that, in
general, optimal solutions can be found with a relatively small
number of generations, and the increment of this number will
only result in the growth of the syntactic tree (this is, an increase
in the size of the solutions’ expressions). Since, intrinsic to the
methodology, a lower number of generations are required, the
proposed approach reduces the computational load when com-
pared to the traditional applications of the GP approach reported
in the literature, [59]. A solution can be considered as suitable
if its fitness is comparable to a target value. For the addressed
problem in this work, this target value can be established in
terms of a suitable score calculated with respect to the optimality
Kalman criterion.

3.2.2. Post-processing stage
The post-processing stage is composed of two tasks. The first,

s the statistical analysis of the learning stage performed by
he GP. Notice that, an evolutive process is a non deterministic
echnique, therefore, it is a good practice to realize several runs of
he learning stage, with the objective of obtaining a measurement
f its average performance. Thus, the statistical analysis includes
he performance of the best fitness, the average best fitness, and
he average fitness over a set of runs, as well as their standard
eviation. The score for the diversity of the solutions, and the
requency of appearance of each function and variable, taken
espectively from the defined sets of Functions and Terminals, can
e further analyzed.
Once the analysis of the evolutionary process is finished, the

olutions from all the runs are ranked according to their perfor-
ance with respect to the fitness criterion F , see Eq. (14). The

ound optimal analytic functions Rgpi , i = 1, . . . ,m constitute a
large set of generated learned behaviors in the EEKF that address
the formulated problem. The complexity of the solutions found by
6

the GP can be constrained by specifying the maximum permitted
depth of the syntactic trees. A decreased depth in the syntactic
trees will also result in a reduced search space. A compromise
between the complexity of the solutions and the size search space
must be reached. Further mathematical analysis of the found
solutions can also be done as part of the post-processing stage
to simplify and reduce the size of large expressions.

The post-processing stage is important since it is the backbone
of the process of selecting a particular solution based on the
suitability of its features for a particular system or setup. For
instance, the solutions can be classified according to

• having a similar or better fitness value, F , than a traditional
or ideal setup;

• their structural complexity or the size of the expressions;
• the variables used, either from the filter or the noisy mea-

surements of the true system;
• the geometrical or mathematical properties of the functions

used in the expressions;
• the hardware and computational capabilities available for

the implementation of the EEKFs.

The above are some practical assumptions that can constrain the
use of certain solutions in specific problems and applications.

3.2.3. Discussion
From the proposed methodology, the following remarkable

features can be outlined.
First, the core of the analytic behaviors framework is the for-

mulation of an emulation of the natural learning process
[30,32,34]. This means that it is a scalable, iterative method,
where new desirable characteristics can be incrementally added
to the solutions. Translated into our uncertainty problem, this
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mplies that the analysis of the statistical results can give in-
ight towards improving the scores of the solutions generated
y the evolutionary process. This can be realized through the
ntroduction of either a reshaped fitness function, a modified set
f Functions, and/or a manual tuning of the GP parameters.
Second, the proposed methodology is an optimization strategy

pplied to the EKF. Even though, according to Kalman theory,
he EKF is an optimal estimation of a process under zero-mean
GN, in practice, this type of noise is not truly achieved. The
GN, either in simulation or experimentally, rarely is a true zero-
ean noise; there are always small deviations from the mean.
his slightly diminishes the optimal estimation performed by the
KF. The proposed methodology uses the output measurement’s
ffected by the flawed zero-mean WGN to minimize the Kalman
ost function and to estimate the state. Hence, the EEKF can lead
o results where its equals or exceeds the performance of the EKF.

Third, the generality and robustness of the solutions discov-
red by the proposed methodology can be numerically evaluated.
he tests can include the introduction of model uncertainty,
valuation of local stability conditions considering an initial esti-
ation error larger than that used during the learning stage, and

he variation of the initial conditions of the true system.
In the following section, the implementation of the proposed

ethodology is exemplified for the construction of an EEKF for a
articular complex, highly nonlinear, first-order dynamical sys-
em. The system under study is the logistic map described in
ection 2.3.

. A motivating example: the logistic map system

The logistic map system is a nonlinear, first-order dynamical
ystem selected to exemplify our methodology due the richness
f its behaviors, which range from stable fixed points to chaos.
his particular system (13) can be rewritten in the form (1)–(2)
ith f and h given as

f (xk−1) = α xk−1(1 − xk−1), h(xk) = xk + vk, (17)

where f (xk−1) is the logistic map function, and h(xk) is the logistic
map state corrupted by a noise signal vk. Then, the construction
of the EKF (4)–(8) for (17) is specified with

Ak−1 = α (1 − 2 x̂uk−1), Ck = 1. (18)

The parameter α = 3.7 is selected such that the system oper-
ates in the chaotic regime; this is done to enrich the dynamics
of the system during the learning stage. The initial condition
x0 = 0.6 is also considered during this process. In addition, a
set of 50 training WGN samples vk of amplitude a = 0.3 are
generated, these are generated with the randn MATLAB function,
which creates normally distributed random numbers with ‘‘zero’’
mean. Each vk, with 400 elements each, defines a scenario for the
learning process. The initial conditions for the EEKFs are chosen
as x̂u0 = x0 + 0.1 and P0 = 0.01.

The search space is defined by the set of Terminals and Func-
tions to be used in the construction of the analytic functions Rgpi ,
which is an estimation of the unknown covariance Rk. The Termi-
nals set, described in Table 2, is defined as per the methodology
in Section 3, while the Functions set is listed in Table 1, where
only the real values of the functions are considered. The fitness
function that evaluates the performance of each individual, as
proposed by the learning stage, is defined as in (14). Finally, the
parameters used to define the learning process are indicated in
Table 3.
7

Table 3
Parameters use in the evolutionary process.

Parameter Value

Runs 30
Number of generations 100
Population size 400
Crossover rate 80%
Mutation rate 20%
Maximum tree depth 12
Sampling Lexicographic
Elitism Keep best

4.1. Statistical analysis of the learning process

The first post-processing stage consists in the statistical anal-
ysis of the minimization process based on the minimization of
the standard optimality criteria of the EKF, defined by the fitness
function, F , as in (14). Given that the GP is a non-deterministic
process, a criterion to determine its convergence is to repeat the
method several times. The validity of our methodology is based
on the execution of 30 runs using the same settings for each one
(see Table 3).

The statistic results from the evolutionary process applied to
the system defined by Eqs. (17) are presented in Fig. 5. The
best fitness average, its standard deviation, and the best fitness
over the 30 runs are depicted in Fig. 5(a). From this Figure, two
features of the optimization process are remarked. First, there are
not significant changes after the 60th generation. Implying that
a local optimal score for the proposed setting has been found;
in consequence, increasing the number of generations will not
significantly improve the fitness score F of the solutions. Second,
similar performance is observed around the 20th generation,
according to the evaluated EEKF’s optimal criterion given in (14),
in comparison with the conventional EKF using the covariance
value Rk. This means that the problem is well formulated, since
the results of the found solutions are comparable to the ideal
setting, where the covariance value Rk is known.

An important feature of this methodology is the generation of
many solutions, and the differences between them is referred to
as the diversity of the solutions. An analysis over the diversity of
the solutions with respect to the number of generations is shown
in Fig. 5(b). There is a slight reduction in the diversity along the
evolutionary process, see Fig. 5(b), but a high score of the fitness
is preserved at the last generation (see Fig. 5(a)). The increment
in size of the expressions, i.e., complexity, can be seen through a
graph of depth and number of nodes of the syntactic tree that
defines each solution. An analysis of the complexity along the
runs executed by the GP is shown in Figs. 5(c) and 5(d).

The analysis of the variables and functions used by the found
solutions is based on their usage rate. This is shown in Fig. 6.
Using the indexes from Tables 2, the three terminals that are used
the most are the noisy measurement of the nonlinear system yk,
followed by the time derivative of the proposed error function
ėpk and the predicted estimated state x̂pk . Similarly, according to
the IDs of the Functions set, listed in Table 1, the top four most
frequently used functions, in descending order, are the maxi-
mum, the square root, the exponentiation, and the hyperbolic
cosine functions. As part of the learning process, the GP discarded
some functions from the set, due to their poor performance with
respect to the optimal criterion of fitness. A new evolutionary
process could be proposed by redefining the Functions set if a
new focused GP process is required or desirable.
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Fig. 5. Statistics of the evolutionary GP process.
Fig. 6. Usage rate of Functions and Terminals by the evolutionary process within the discovered solutions. The indexes of the Terminals and Functions sets are
defined as shown in Tables 1 and 2, respectively.
4.2. The discovered behaviors

The proposed methodology applied to the logistic difference
quation system (13) and its output, gave a set of 2649 suitable
nalytic functions to be used in place of the covariance value Rk.
uch functions are those having a fitness score less than 1×10−3.
his threshold is chosen according to the actual fitness of the
onventional EKF (F = 0.001544). For every solution, the fitness
F is computed using the same noisy signal v , see (14).
k

8

From the large set of solutions found by the analytic behaviors
approach, described in Section 3, a list of ten solutions Rgpi , i =

1, . . . , 10, have been selected due to their interesting properties,
in terms of their performance, domain, structure, and the vari-
ables used, (see Table 4). Two tests were performed by randomly
varying the WGN samples affecting the system’s output. The
filters are tested for noise samples different from those used in
the learning stage. The results are shown in the fourth and fifth
columns of Table 4. The fourth column describes the average error
variance for a first test with 10 different noise samples. The size of
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Table 4
From the evolutionary process, using parameters α = 3.7, a = 0.3, x0 = 0.6, x̂u0 = x0 + 0.1 and P0 = 0.01, a set of ten
solutions Rgpi are shown with their respective training score, as well as their performance under two different scenarios,
Test 1 and Test 2. The performance of the conventional EKF is also computed for comparison purposes. The scores are
calculated using the fitness function (14) and shown with a scaling factor of 1 × 10−3 units.

Sol Expression Training Test 1 Test 2

Rgp1 max(max(sr(||ch(sr(ch(s(sch(cthi(e
p
k))))))||), 0.722 0.728 0.941

sr(ch(sr(sr(sr(ch(sr(sch(cthi(e
p
k)))))))))),

max(sch(cthi(||Re(cthi(e
p
k))||)),

||ch(sr(ch(s(sch(cthi(Re(cthi(e
p
k))))))))||))

Rgp2 max(max(sch(cthi(||Re(e
p
k)||)), 0.802 0.723 0.983

|| ch(ch(s(sch(cthi(e
p
k)))))||), sch(x̂

p
k))

Rgp3 ch(cth(cth(ch(ch(yk)yk )))yk + chi(R
gp3
k−1)) 0.907 1.740 1.345

Rgp4 sch(cthi(e
p
k)) 0.921 0.730 0.962

Rgp5 max(th(sr(cthi(yk))), si(ecthi(yk))) 0.922 2.443 1.421

Rgp6 si(ecthi(yk)) 0.925 2.486 1.430

Rgp7 abs(ct(ėpk)) + abs(abs(abs(ci(abs(ė
p
k)))))+ 0.92 1.705 1.260

abs(ci(ct(abs(abs(ci(abs(ct(ė
p
k)))))) + ci(x̂

p
k)))

Rgp8 ecthi(atanr(th(max(x̂uk−1,shi(sc(yk)))))) 0.941 1.666 1.366

Rgp9 csh(sh(x̂uk−1))

|||| ėpk ||||
0.961 1.261 1.264

Rgp10 ch(max(x̂pk, cthi(th(sr(ch(yk)))))) 0.966 1.653 1.365

Rk var(vk) 1.544 1.834 1.335
this set corresponds to the 20% of the number of noise samples
used in the training stage. From the observed results, a second
test is presented with a larger number of noise samples. Hence,
the fifth column shows the average error variance value taking
into account 500 new different noise samples. In both tests,
the samples were randomly generated with the randn MATLAB
function. These tests were performed using the same parameters
as in the learning stage, for the logistic map, these are α =

.7, a = 0.3, x0 = 0.6, x̂u0 = x0 + 0.1 and P0 = 0.01.
Referring to Table 4, the following can be observed. The so-

lution Rgp1 has the largest expression but it is the function with
the best fitness F from the whole evolutionary process. All the
solutions are listed as they were synthesized by the learning
stage. Several expressions can be simplified by inspection, while
others may require further mathematical analysis. Notice that
solutions Rgp1 and Rgp4 only rely on the value of the error, epk . Such
solutions can be compared to Rgp2 and Rgp10 since they consider
yk and x̂pk , which define this error. The noisy measurements yk
and the updated estimated state x̂uk are considered by Rgp8 . The
time derivative of the state estimation error, ėpk , is used in Rgp7

and Rgp9 . In the first one, the derivative of the error is paired
with the predicted estimated state x̂pk , and in the second one, with
the updated estimated state x̂uk . Solution Rgp9 possess a singularity
point in ėpk = 0 that never occurred during the learning process.
The expressions that only use the noisy measurements yk, and
no other variable, are Rgp5 and Rgp6 . This may be an indicative of
solutions that are specific for the logistic map system and/or for
the particular scenarios used in the learning stage. A recursive
function is identified in solution Rgp3 as it relies on the values
of the noisy measurements yk and on the past value of Rgp3 , this
is, Rgp3

k−1. Solutions Rgp3 , Rgp4 , Rgp7 , Rgp8 , and Rgp10 can be straight-
forwardly concluded as positive definite, since functions cosh(·),
sech(·), abs(·), and eacoth(·) are positive by definition. Solution
Rgp2 is also a positive function, since it switches between the
maximum values of two positive valued functions: the norm and
the sech(·) functions. Thus, the fulfilling of Rk > 0 condition of
the EKF can be easily concluded for all of them. On the other

gp1 gp5 gp6 gp9
hand, solutions R , R , R and R require further numerical

9

and mathematical analysis to test if the Rk > 0 condition holds
globally, if they constitute local solutions for the problem, or if
they are particular solutions for the logistic map system under
study. In addition, piece-wise analysis may be required for some
of the found solutions.

Fig. 7 shows the error variance for each noise sample obtained
from Tests 1 and 2. For clarity purposes, only 4 of the 10 se-
lected solutions have been plotted. These include the solution
with the best overall performance, solutions with low structural
complexity, and solutions that are interesting due to the functions
and variables they use. Fig. 7(a) shows the results for Test 1,
while Fig. 7(b) presents the error variance obtained from Test 2. A
direct comparison against the performance of Rk shows that the
performance of the found functions is better, or at least similar,
to that of Rk.

4.3. Validation stage: numeric analysis of performance robustness

The performance of the found solutions are now numerically
evaluated on scenarios different from those used in the learning
stage. The performance robustness of the EEKFs using solutions

Rgp4
= sech(coth−1(epk)), (19)

Rgp6
= sin−1(ecoth

−1(yk)), (20)

Rgp10
= cosh(max(x̂pk, arcoth(tanh(

√
cosh(yk))))), (21)

from Table 4, are evaluated and compared against the conven-
tional EKF. Recall that only the real domain of the solutions is
considered. Function Rgp6 may be a particular solution as it cor-
responds to a positive valued function that is zero in the interval
(−1, 1) of the argument. On the other hand, the hyperbolic secant
and the hyperbolic cosine functions from Rgp4 and Rgp10 , respec-
tively, are nonzero positive valued functions by definition. These
features of the studied solutions fulfill the required condition
Rgpi > 0 that guarantees the internal stability of the EEKF. These
solutions have been numerically verified to satisfy this condition,
in all of the testing scenarios. The test settings to evaluate the
robustness are summarized as follows.



L. Herrera, M.C. Rodríguez-Liñán, E. Clemente et al. Applied Soft Computing 115 (2022) 108174
Fig. 7. Error variance for each noise sample in Test 1 7(a) and Test 2 7(b). In Fig. 7(a) note that the highest fluctuation in sample 8 is due to the natural response
of the filter to that particular noise sample. Despite this, the performance produced by the conventional EKF is not as good as the one provided by our proposal.
Table 5
Numeric evaluation of the robustness performance of the EEKF with Rgp4 , Rgp6 , and Rgp10 compared with the
conventional EKF using the real covariance matrix Rk . The minimum average error variances are indicated in bold.
All values have a factor of 1 × 10−3 units.

x0 α

3.5 3.6 3.7 3.8 3.9 4.0

0.50

Rk 0.1099 0.8621 1.4765 1.0347 0.8590 0.9619
Rgp4 0.1118 0.9759 1.1410 0.8469 1.1825 1.0818
Rgp6 0.1103 0.8813 1.3832 2.2463 2.0795 0.9832
Rgp10 0.1103 0.9390 1.5846 2.9782 1.0864 0.9622

0.55

Rk 0.1106 1.0025 1.9989 1.6892 1.9363 2.3064
Rgp4 0.1167 1.2484 0.8240 1.9203 1.4550 1.0421
Rgp6 0.1109 1.1118 2.8391 1.1616 1.9469 1.9139
Rgp10 0.1109 0.9986 2.9489 1.5768 2.0586 1.6087

0.60

Rk 0.1089 0.8558 1.9137 0.9789 1.2451 1.5855
Rgp4 0.1230 0.8664 1.2150 1.0868 1.1863 1.0563
Rgp6 0.1092 0.9652 2.5609 2.0708 1.2319 0.9786
Rgp10 0.1093 0.8340 1.7277 2.3314 1.1548 1.4326

0.65

Rk 0.1215 0.8795 2.2495 1.1745 1.6433 1.7116
Rgp4 0.1439 0.9881 1.0512 0.8851 1.6835 1.2044
Rgp6 0.1218 1.3189 2.8768 1.9720 1.7553 1.8738
Rgp10 0.1218 0.9454 3.2340 1.3722 1.7570 1.6578

0.70

Rk 0.1117 0.7186 2.0154 0.9697 1.4833 1.5496
Rgp4 0.1894 0.8806 1.4192 1.4488 1.1337 0.9419
Rgp6 0.1121 0.8230 2.8065 2.3579 2.3279 1.6800
Rgp10 0.1121 0.8080 2.4548 2.2542 1.9687 1.7466
s
f
t

(a) Model uncertainties are introduced in the form of variations
in α. For the learning process, this parameter was set to
α = 3.7. For the performance testing, this value is ranged
through the chaotic regime α = {3.5, 3.6, 3.7, 3.8, 3.9,
4.0}.

(b) The Local stability of the EEKF is evaluated by considering
larger initial estimation errors x0 − x̂u0 between the real
system and the filter. The initial estimation error for the
learning stage was set at −0.1 since x0 = 0.6 and x̂u0 =

x0 + 0.1 were selected. For the numerical study, the initial
estimation error is set to −0.2, i.e., x̂u0 = x0 + 0.2.

(c) The dynamics of the system within the chaotic regime is
tested by considering variations in its initial conditions. The
robustness of the filter is tested with variations in the lo-
gistic map’s initial conditions, operating in chaotic regime
with x0 = {0.50, 0.55, 0.60, 0.65, 0.70}, in contrast to
x0 = 0.6, which was the initial condition used in the
learning stage.
10
The robustness is assessed by comparing the average error
variance, (14), of the EEKFs using Rgp4 , Rgp6 , Rgp10 , and the EKF with
the conventional (known) Rk. For each combination of x0–α, the
ystem is simulated with the same noise samples as in Test 1, see
igure 8. For every scenario, it has been numerically verified that
he condition K > 0 for the Kalman gain holds, which means that
the estimation is not relying solely on the predicted estimated
state but also on the noisy measurements, yk, from the system.
It is important to note that while the conventional EKF assumes
knowledge about the covariance value Rk, the proposed EEKFs do
not possess any information about it.

Table 5 shows a quantitative comparison of the average error
variances between the chosen solutions, and the traditional Rk.
The best performances are highlighted in bold for each α and for
each initial condition x0. In all cases, the evolved solutions have
similar or better performance than the conventional EKF. Note
that for α = 3.7, Rgp4 offers minimum average error variance,
since the learned behavior was trained for this value of α.

The robustness analysis confirms that the EEKFs provide an
accurate estimation of logistic map system’s state, regardless
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Fig. 8. Robustness analysis of the discovered solutions against the conventional EKF. Each solution is tested with five different initial conditions and for six different
values of parameter α. The average error variance is shown in each case.
of the unknown measurements noise covariance. These results
are numerically comparable to the conventional EKF using the
known covariance matrix of the noise. The strength and ca-
pabilities of the proposed synthesis, using the analytic behav-
iors approach, applied to a particular complex, highly nonlinear,
first-order dynamical system has been shown.

Remark 1. As expected, there are cases where the performance of
the EEKFs exceed the performance of the conventional EKF. In our
case, the WGN produced in software, MATLAB, does not comply
with the zero mean condition.

Remark 2. It has been numerically evaluated that studied so-
lutions Rgp4 , Rgp6 , and Rgp10 fulfill the required internal stability
ondition Rgpi > 0. In addition, Kk > 0 has also been numerically
erified, which indicates that the EEKF relies on the measure-
ents of the real system, despite the assumption of absence of
rocess noise.

.4. Discussion

In the previous subsections, the proposed methodology is
llustrated to estimate the state of a logistic map system in its
11
chaotic regime under noisy measurement conditions. Through the
application of the analytic behaviors framework, 2649 Rgpi ’s, in
the form of analytic functions, were found. These functions can be
used in place of the EKF measurements noise covariance matrix,
Rk; this results in an EEKF. To build the Rgpi functions, the Genetic
Programming technique was used. Then, for the training stage, a
data set of 50 normally distributed random noise samples, and a
fixed set of system parameters (initial conditions and describing
parameters) were proposed. Once this learning stage is over,
some Rgpi ’s were analyzed in order to study the robustness of the
methodology. Thus, the selected Rgpi ’s were tested with a new
set of 10 different normally distributed random noise samples
(Test 1). This process allows us to compare the performance of
the obtained EEKFs against the conventional EKF. To show that
there is no overfitting, a second set of 500 normally distributed
random noise samples is now considered for a new test (Test
2). Furthermore, robustness was verified considering variations in
the system bifurcation parameter, the EEKF initial condition, and
the system initial conditions, as shown in the previous subsection.

The robustness analysis demonstrates the performance of the
constructed EEKFs for accurately estimating the state of the lo-
gistic map system. Notice that the EEKF does not assume WGN;
thus, the function Rgpi adjusts the covariance value in terms of
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he predicted noise value, and it does not need the real noise
ovariance of the measurement to tune the filter. This is, the
EKF dynamically self-tunes the measurement noise covariance
arameter. From the numerical results, it can be observed that,
n some cases, the EEKF provides better performance than the
KF. This can be explained since the EKF, by construction, as-
umes ideal conditions like WGN with zero mean. However, these
heoretical conditions are not perfectly satisfied, since experi-
entally, or even in simulation, a WGN with zero mean is not

ruly accomplished.
In order to show that our methodology allows to achieve a

uitable solution in average, the proposed procedure is repeated
0 times. Afterwards, a statistical analysis of performance, com-
lexity, diversity, and frequency of functions and terminals, is
ealized. From this analysis the convergence of the proposed
ptimization problem is concluded.

. Conclusions

An extension of the analytic behaviors framework has been
eveloped for the optimal computation of a replacement of the
nknown measurement noise covariance matrix, Rk, convention-
lly used to tune the EKF. Traditionally, the estimation of Rk

is a challenge, since, in general, the nature of the noise is not
known, and there is not an analytic method to compute it. In
this approach, the covariance matrix is replaced by an analytic
function. This expression is given in terms of the noisy output,
the only available information from the system, and in terms of
the filter’s variables. Applying any one of the solutions, found
by means of an evolutionary process, the resulting EKF structure
becomes an Evolved EKF (EEKF).

The proposed extension of the analytic behaviors is applied
using two parallel dynamical systems: the model of the system,
and the EEKF. The basis behaviors are defined for each system,
and the optimized search, by means of evolutionary computation,
is embedded into the EEKF using the noisy outputs from the
nonlinear FO-DS as an interaction between both systems.

By using the analytic behaviors framework, many different
solutions with similar performance can be found for the con-
struction of EEKFs. The optimality criteria of the standard EKF
formulation is used to define an aptitude function to guide the
search of solutions and to assess the suitability of the EEKFs.

Since the found functions depend only on available informa-
tion from the system and on the variables of the filter itself, our
proposal can be used in any application that requires an EKF,
with the advantage that it does not need the known measure-
ment noise covariance to tune the filter. Besides, even when the
search for solutions is realized offline, the produced results are
analytic functions which are easy to implement online. Moreover,
the robustness analysis showed that the found EEKFs maintain
their adequate response even in the presence of variations in
parameters and/or initial conditions.

Inspired by the results presented in this work, the analytic be-
haviors methodology can be applied to propose specialized EEKFs
for particular applications in nonlinear first-order dynamical sys-
tems. Extension to nonlinear higher order dynamical systems and
the introduction of further considerations about the process noise
can be also evaluated as future work.
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