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ABSTRACT
Evolutionary algorithms (EA) based neural architecture search
(NAS) involves evaluating each architecture by training it from
scratch, which is extremely time-consuming. This can be reduced
by using a supernet for estimating the fitness of an architecture due
to weight sharing among all architectures in the search space. How-
ever, the estimated fitness is very noisy due to the co-adaptation of
the operations in the supernet which results in NASmethods getting
trapped in local optimum. In this paper, we propose a method called
NEvoNAS wherein the NAS problem is posed as a multi-objective
problem with 2 objectives: (i) maximize architecture novelty, (ii)
maximize architecture fitness/accuracy. The novelty search is used
for maintaining a diverse set of solutions at each generation which
helps avoiding local optimum traps while the architecture fitness
is calculated using supernet. NSGA-II is used for finding the pareto
optimal front for the NAS problem and the best architecture in the
pareto front is returned as the searched architecture. Exerimentally,
NEvoNAS gives better results on 2 different search spaces while
using significantly less computational resources as compared to
previous EA-based methods. The code for our paper can be found
here.
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1 INTRODUCTION
In the recent years, convolutional neural networks (CNNs) have
been very instrumental in solving various computer vision prob-
lems. However, the CNN architectures (such as ResNet [14], DenseNet
[15] AlexNet [17], VGGNet [33]) have been designed mainly by hu-
mans, relying on their intuition and understanding of the specific
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NAS Methods Trial 1 Trial 2 Trial 3 Trial 4
DARTS†[24] 97.08 97.23 97.0 96.95
EvNAS‡[34] 97.19 97.39 96.93 97.04

Random Search†[21] 97.04 96.67 97.17 97.0
Table 1: Quality of the architectures found in 4 trials for dif-
ferent NAS methods using supernet. † represents results re-
port in [21] while ‡ represents re-run.

problem. Searching the neural architecture automatically by using
an algorithm, i.e. Neural architecture search (NAS), is an alternative
to the architectures designed by humans, and in the recent years,
these NAS methods have attracted increasing interest because of
its promise of an automatic and efficient search of architectures
specific to a task. Vanilla NAS methods [13][44][45] have shown
promising results in the field of computer vision but most of these
methods consume a huge amount of computational power as it
involves training each architecture from scratch for its evaluation.
Vanilla evolutionary algorithm (EA)-based NAS methods also suf-
fers from the same huge computational requirement problem. For
example, the method proposed in [30] required 3150 GPU days of
evolution.

Recently proposed gradient-based methods such as [24] [11][40]
have reduced the search time by sharing weights among the ar-
chitectures through the use of supernet. However, the supernet
suffers from inaccurate performance estimation [2]. This results
in premature convergence to the local optimum [4][41]. In order
to mitigate this problem, NAS methods using supernet run the al-
gorithm multiple times and select the best architecture out of the
multiple runs. This can be thought of as running the algorithm
multiple times in order to get a set of good quality neural archi-
tectures. This is illustrated in Table 1, which shows the quality of
the searched architecture in terms of test accuracy on CIFAR-10
dataset for gradient based method DARTS[24], EA-based method
EvNAS[34] and random search[21] in 4 trials. These multiple trials
end up increasing the compuational costs.

In this paper, we propose a method called NEvoNAS (Novelty
Driven Evolutionary Neural Architecture Search), in which the algo-
rithm is run only once to get a set of good quality neural architec-
ture solutions. This is achieved by posing the NAS problem as a
multi-objective problemwith 2 objectives: (i)maximize architecture
novelty, and (ii) maximize architecture fitness/accuracy. Maximiz-
ing architecture novelty (i.e. novelty search) is used for maintaining
a diverse set of solutions at each generation which helps avoiding
local optimum traps while maximizing the architecture fitness us-
ing supernet guides the search towards potential solutions. We used
NSGA-II for finding the pareto optimal front of the multi-objective
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NAS problem and the best architecture in the discovered pareto
optimal front is returned as the searched architecture.

Our contributions can be summarized as follows:

• We propose a novelty metric called architecture novelty met-
ric which determines how novel a neural architecture is from
the already discovered neural architectures.

• We pose the NAS problem as a multi-objective problem with
the objective of maximizing both the architecture novelty
metric and architecture fitness.

2 PROPOSED METHOD
2.1 Search Space and Performance Estimation
We follow [24] to create the architecture by staking together 2
types of cells: normal cells which preserve the dimentionality of
the input with a stride of one and reduction cells which reduce the
spatial dimension with a stride of two. A cell in the architecture is
represented by an architecture parameter, 𝛼 which is a matrix with
columns representing the weights of different operations 𝑂𝑝 (.)𝑠
from the operation space O (i.e. the search space of NAS) and rows
representing the edge between two nodes.

We used a supernet [24] to estimate the performance of an ar-
chitecture in the search space. It shares the weights among all
architectures in the search space by treating all the architectures as
the subgraphs of a supergraph. This design choice allows us to skip
the individual architecture training from scratch for its evaluation
because of the weight-sharing nature of the supernet, thus resulting
in a significant reduction of search time. The performance of an
architecture is calculated by first selecting the architecture in the
supernet and then calculating the performance of the supernet on
the validation data, also known as the fitness of the architecture.

Figure 1: Illustration of architecture dissimilaritymetric cal-
culation of two architecturesA1 andA2. The common edges
between A1 and A2 is shown by two small parallel lines on
the edges between the two nodes that are common in both
architectures.

2.2 Architecture Novelty Metric
In order to create an EA algorithm that rewards novel architecture,
we need a noveltymetric thatmeasures how different an architecture
is from another architecture. This provides a constant pressure to
generate new architecture. In the neural architecture space, we
first define a similarity metric, 𝑆𝑖𝑚(A1,A2), which measures how
similar an architecture A1 to another architecture A2 and is given
as follows:

𝑆𝑖𝑚(A1,A2) =
∩(A1,A2)

𝑛(A1) + 𝑛(A2) − ∩(A1,A2)
(1)

Where ∩(A1,A2) refers to the number of common operations be-
tween 2 nodes present in the given architectures, A1,A2, 𝑛(A1)
and 𝑛(A2) refer to total number of opration edges present between
nodes in theA1 andA2 respectively. Note that 𝑆𝑖𝑚(A1,A2) equals
to 1 if A1 and A2 are the same architecture (i.e. A1 = A2) and
𝑆𝑖𝑚(A1,A2) equals to 0 if A1 and A2 do not share any oper-
ations between 2 nodes (i.e. completely different architectures).
Thus, 0 ≤ 𝑆𝑖𝑚(A1,A2) ≤ 1. Now, we define an dissimilarity met-
ric, 𝐷𝑖𝑠 (A1,A2), which is used for measuring how different an
architecture A1 is from another architecture A2 and is given as
follows:

𝐷𝑖𝑠 (A1,A2) = 1 − 𝑆𝑖𝑚(A1,A2) (2)
Note that 𝐷𝑖𝑠 (A1,A2) equals to 0 if A1 and A2 are the same ar-
chitecture (i.e. A1 = A2) and 𝐷𝑖𝑠 (A1,A2) equals to 1 if A1 and
A2 do not share any operations between 2 nodes (i.e. completely
different architectures). Thus, 0 ≤ 𝐷𝑖𝑠 (A1,A2) ≤ 1. For illustra-
tion, in Figure 1, the architectures A1 and A2 have two common
edges between nodes (0, 3) and (1, 3), thus ∩(A1,A2) = 2, while
both 𝑛(A1) and 𝑛(A2) are equal to 6. So, the dissimilarity metric
comes out to be 0.8.

The novelty of a newly generated neural architecture is com-
puted with respect to an archive of past generated neural archi-
tectures and current population of neural architecture. To get the
novelty of neural architecture, we need a novelty metric [19] which
characterizes how far the neural architecture is from its predeces-
sors and the rest of the population in the neural architectural space.
We define architecture novelty metric as the mean dissimilarity met-
ric of the k-nearest neighbors, which is given as follows:

𝐹𝑛𝑜𝑣 (A) = 1
𝑘

𝑘∑
𝑖=1

𝐷𝑖𝑠 (A,A𝑖 ) (3)

Where A𝑖 is the 𝑖th-nearest neighbor of the neural architecture
A in terms of the dissimilarity metric. The nearest neighbors are
calculated from the archive of past neural architectures and the
current population.

2.3 NEvoNAS
Multi-objective optimization is a popular branch of evolutionary
computation (EC), which involves optimizing problems with more
than one objective function simultaneously. NEvoNAS poses the
NAS problem as a multi-objective problem with two objectives: (i)
maximize architecture novelty, (ii) maximize architecture fitness.
The architecture novelty is calculated using the architecture novelty
metric (discussed in Section 2.2) and the fitness of the architecture is
calculated using the supernet. In order to solve the multi-objective
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Table 2: Comparison of NEvoNAS with other NAS methods in S1 in terms of test accuracy (higher is better) on CIFAR-10,
CIFAR-100 and ImageNet.

Architecture CIFAR-10 CIFAR-100 ImageNet Search
Top-1 (%) Params GPU Top-1 (%) Params GPU Test Accuracy (%) Params +× Method
Acc. (%) (M) Days Acc. (%) (M) Days Top-1 Top-5 (M)

ResNet[14] 95.39 1.7 - 77.90 1.7 - - - - - manual
DenseNet-BC[15] 96.54 25.6 - 82.82 25.6 - - - - - manual
ShuffleNet[43] 90.87 1.06 - 77.14 1.06 - - - - - manual
PNAS[22] 96.59 3.2 225 80.47 3.2 225 74.2 91.9 5.1 588 SMBO
RSPS[21] 97.14 4.3 2.7 - - - - - - - random
NASNet-A[45] 97.35 3.3 1800 - - - 74.0 91.6 5.3 564 RL
ENAS[29] 97.14 4.6 0.45 80.57 4.6 0.45 - - - - RL
DARTS[24] 97.24 3.3 4 - - - 73.3 91.3 4.7 574 gradient
GDAS[11] 97.07 3.4 0.83 - - - 74.0 91.5 5.3 581 gradient
SNAS[40] 97.15 2.8 1.5 - - - 72.7 90.8 4.3 522 gradient
SETN[10] 97.31 4.6 1.8 - - - 74.3 92.0 5.4 599 gradient
AmoebaNet-A[30] 96.66 3.2 3150 81.07 3.2 3150 74.5 92.0 5.1 555 EA
Large-scale Evo.[31] 94.60 5.4 2750 77.00 40.4 2750 - - - - EA
CNN-GA[38] 96.78 2.9 35 79.47 4.1 40 - - - - EA
AE-CNN[37] 95.7 2.0 27 79.15 5.4 36 - - - - EA
NSGANetV1-A2[27] 97.35 0.9 27 82.58 0.9 27 - - - - EA
AE-CNN+E2EPP[36] 94.70 4.3 7 77.98 20.9 10 - - - - EA
NSGA-NET[26] 97.25 3.3 4 79.26 3.3 8 - - - - EA
E𝑁 2AS[42] 97.39 3.1 3 - - - - - - - EA
NEvoNAS-C10A 97.46 3.4 0.35 - - - 74.8 92.1 4.9 541 EA
NEvoNAS-C100A - - - 83.95 3.9 0.3 75.7 92.7 5.4 598 EA

problem, we used NSGA-II [6], a well-known Pareto-based Multi-
objective Evolutionary Algorithm (MOEA).

The entire process is summarized in the supplementary. NEvoNAS
starts with initializing the population randomly, the supernet with
random weights and an empty 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 . In each generation, the
supernet is trained on the training data. During training, 𝛼 of each
individual architecture in the population is copied to the supernet
in a round-robin fashion for each training batch. Then, the fitness
of each individual architecture in the population, 𝐹𝑎𝑐𝑐 , is calculated
using the supernet. Next, the novelty of each individual architecture
in the population, 𝐹𝑛𝑜𝑣 , is calculated with respect to the 𝑎𝑟𝑐ℎ𝑖𝑣𝑒
of past neural architectures and the current population of neural
architectures. Th 𝑎𝑟𝑐ℎ𝑖𝑣𝑒 is then updated to include the new indi-
vidual architectures from the current population. NSGA-II is then
used to generate the next generation population. The entire process
runs for G generations. NEvoNAS returns a pareto optimal front,
𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙 , (i.e. set of possible neural architecture solution) and the
best neural architecture in the front is returned as the searched
architecture. Note that NEvoNAS runs for only once to get a set
of possible solutions unlike other NAS methods using supernet
[24][34][21].

3 EXPERIMENTS
In this section, we report the performance of NEvoNAS in terms
of a neural architecture search on the search space used in [24]
Search space 1 (S1). We performed architecture searches on both
CIFAR-10 and CIFAR-100 with different random number seeds;
their results are provided in Table 2. The results show that the
cells discovered by NEvoNAS on CIFAR-10 and CIFAR-100 achieve
better results than those by human designed, RL based, gradient-
based and EA-based methods. On comparing the computation time
(or search cost) measured in terms of GPU days, we found that
NEvoNAS performs the architecture search in significantly less time

as compared to other EA-based methods while giving better search
results. GPU days for any NAS method is calculated by multiplying
the number of GPUs used in the NAS method by the execution
time (reported in units of days). We followed [24] to compare the
transfer capability of NEvoNASwith that of the other NASmethods,
wherein the discovered architecture on a dataset was transferred to
another dataset (i.e. ImageNet) by retraining the architecture from
scratch on the new dataset. So, the discovered architectures from
the architecture search on CIFAR-10 and CIFAR-100 (i.e. NEvoNAS-
C10A and NEvoNAS-C100A) are then evaluated on the ImageNet
dataset in mobile setting and the results are provided in Table 2.
The results show that the cells discovered by NEvoNAS on CIFAR-
10 and CIFAR-100 can be successfully transferred to ImageNet,
achieving better results than those of human designed, RL based,
gradient based and EA based methods while using significantly less
computational resources.

4 CONCLUSION
The goal of this paper was to mitigate the noisy fitness estimation
nature of the supernet which forces NAS methods using supernet
to run multiple times to get a set of neural architecture solutions.
We resolve this by posing the NAS problem as a multi-objective
problemwith two objectives of maximizing the architecture novelty
(i.e. novelty search) and maximizing the architecture fitness. This
results in a pareto optimal front which provides a set of good quality
neural architecture solutions in a single run, thus, reducing the
computational requirements. Experimentally, NEvoNAS reduced
the search time of EA-based search methods significantly while
achieving better results in S1 search space.
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