
Adapting Novelty towards Generating Antigens for Antivirus
systems

Ritwik Murali∗∗
C Shunmuga Velayutham

m_ritwik@cb.amrita.edu
Dept. of Computer Science & Engg.

Amrita School of Engineering - Coimbatore,
Amrita Vishwa Vidyapeetham
Coimbatore, Tamil Nadu, India
cs_velayutham@cb.amrita.edu

ABSTRACT
It is well known that anti-malware scanners depend on malware
signatures to identify malware. However, even minor modifications
to malware code structure results in a change in the malware sig-
nature thus enabling the variant to evade detection by scanners.
Therefore, there exists the need for a proactively generated malware
variant dataset to aid detection of such diverse variants by auto-
mated antivirus scanners. This paper proposes and demonstrates
a generic assembly source code based framework that facilitates
any evolutionary algorithm to generate diverse and potential vari-
ants of an input malware, while retaining its maliciousness, yet
capable of evading antivirus scanners. Generic code transformation
functions and a novelty search supported quality metric have been
proposed as components of the framework to be used respectively
as variation operators and fitness function, for evolutionary algo-
rithms. The results demonstrate the effectiveness of the framework
in generating diverse variants and the generated variants have been
shown to evade over 98% of popular antivirus scanners. The mal-
ware variants evolved by the framework can serve as antigens to
assist malware analysis engines to improve their malware detection
algorithms.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; In-
trusion/anomaly detection and malware mitigation; • Infor-
mation systems → Expert systems; Decision support sys-
tems; • Applied computing → Personal computers and PC
applications; • Computing methodologies → Bio-inspired
approaches; Generative and developmental approaches.

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’22, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9237-2/22/07. . . $15.00
https://doi.org/10.1145/3512290.3528693

KEYWORDS
Application of Evolutionary Algorithms, Evolutionary Algorithm,
Malware, Malware Generation, Proactive Defence, Virus

ACM Reference Format:
Ritwik Murali and C Shunmuga Velayutham. 2022. Adapting Novelty to-
wards Generating Antigens for Antivirus systems . In Genetic and Evolution-
ary Computation Conference (GECCO ’22), July 9–13, 2022, Boston, MA, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3512290.3528693

1 INTRODUCTION
To the average user, a secure computer system is synonymous
with the installation and usage of an automated antivirus software.
These antivirus software are expected to detect and/or prevent ma-
licious programs from affecting the end user’s computing system.
Most of the antivirus (AV) scanners identify malicious programs by
examining new software/programs for predefined malicious pat-
terns. These malicious patterns (called signatures) are identified
previously by malware analysts and included in the antivirus scan-
ner softwares database [28], thus enabling automated detection.
While malicious software or malware have been prevalent since
the early 1970s 1 [37] and the use of up-to-date antivirus software
has simplified the process of securing a computing system, it is a
fact that the AV scanners still struggle to identify variants of mali-
cious programs. This is because even minor modifications in the
malware code result in a change in the known malicious pattern,
thus enabling the malware to evade detection by the AV scanners
[22]. The identification / detection of malware variants usually re-
quires manual intervention and it is quite impractical for an analyst
to predict and identify signatures of unknown malware variants
[29]. The significance of the problem is further emphasized by the
2021 SonicWall Cyber Threat Report, where 589,313 new malware
variants were identified by the SonicWall team in 2020 [36]. To put
in perspective, this is a 57.35% increase from 2019 where 153,909
malware variants were detected by the same company.

To counter this problem, anti-malware research has used two
strategies with opposing perspectives. The first is a defensive strat-
egy that applies Artificial Intelligence, Machine Learning [5, 15,
24, 33, 43, 44], Data Mining [8, 16, 42], Evolutionary Algorithms
[23, 25, 34, 40], Optimization Strategies [21] and Knowledge Frame-
work [12] based techniques to detect and predict malware variants

1Throughout this paper, the terms malware and virus are used interchangeably

1254

https://orcid.org/0000-0002-1269-2257
https://doi.org/10.1145/3512290.3528693
https://doi.org/10.1145/3512290.3528693
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3512290.3528693&domain=pdf&date_stamp=2022-07-08

GECCO ’22, July 9–13, 2022, Boston, MA, USA Murali,R and Velayutham, C S

by identifying specific characteristics or features of the malware
executable in order to detect and/or classify its variants. However,
the performance (in terms of accuracy and false positives) of these
techniques are dependant on the underlying data set used for train-
ing and classification and are severely affected by the shortage of
such publicly available labelled data sets [1]. The second is a more
aggressive / proactive strategy that involves creating malware vari-
ants using generative techniques, such as Generative Adversarial
Networks (GANs), or meta-heuristic algorithms, like Evolutionary
Algorithms (EAs), to reduce the real-world impact of the variants.
While GANs exploit the non-linear structure of neural networks
to generate complex adversarial examples capable of evading the
target model [2, 14, 19, 35, 38], EAs use biological evolution in-
spired strategies to generate malware capable of evading antivirus
scanners [9, 30]. In most cases, the proactive malware generation
approach acts to augment the effectiveness of the defensive strategy
as the malware variants generated serve as a valid database upon
which the former can be trained or tested.

The use of EAs for malware generation is mainly focused on two
approaches. The first involved the identification of various malware
features with the EA being used to search for new variants with
novel combinations of the identified features. The features were at
the application level and the EA ensured that the malware variants
generated have similar malicious characteristics. This was demon-
strated by Noreen et al.[31] who used a version of the email worm
Bagle to illustrate the application of evolutionary algorithms in mal-
ware generation. The worm was represented as a genome, which
is essentially a collection of all the attack features such as date,
port number, domain, email body, email subject, etc. The evolution
involved searching for different combinations of attack features’
values facilitated by mutation. The work also served as a framework
for the application level approach and also used genetic algorithms
as an evolutionary tool while showcasing a comparative study of
different parent selection and crossover techniques that could be
used for the malware, more specifically, computer worm generation.

The second approach involves the use of the underlying assem-
bly code of the malware as the platform for variation. Since all
executables (irrespective of the source programming language)
can be disassembled to their assembly code structure, the second
approach is gaining popularity. The explored approaches include
using byte level modifications of the Windows Portable Executable
(PE) files [7], evolving entropy based polymorphic packers [26],
identifying locations within valid executable to hide malicious code
[6] and even a bottom up strategy of malware generation using
Backus–Naur form (BNF) grammar to form the production rules to
build code based on a designed grammar [32]. EAs have also been
used to test the available AV solutions among mobile systems as
well [3, 27, 41] in an effort to confuse the AV systems to misclassify
malware and/or evolve variants to test the AV systems themselves.

While multiple algorithms are able to evolve an assortment of
variants, the generation of a malware variant dataset, calls for cre-
ating a large number of malware variants possibly through code
or feature modifications. In both cases, the modifications or trans-
formations should also ensure and result in a diverse set of valid

malware variants that serve as good representatives of the malware
variants’ space.The focus so far, has broadly been on evolving vari-
ants that evade the antivirus scanners. Additionally, these strategies
employ diverse malware representation and evolutionary operators
as directed by the representation. Therefore, it is also increasingly
challenging for the practitioner to validate the quality and inno-
vations (in terms of complex code mutations) of the generated
malware variants.

Traditional evolutionary algorithms however are typically driven
to converge to a fitness optimum. However, such a fitness strategy
may not be apt when attempting to promote diversity and unique-
ness in the resultant population. Novelty search is a divergent
search algorithm that has the ability to promote evolvability [17].
Evolvability allows the evolutionary algorithm to generate vari-
ability [11]. This technique, inspired by natural evolution, rewards
individuals that exhibit novel behaviours. The selection process for
novel individuals therefore depends on the distance of the individ-
ual from its nearest neighbours in the behaviour space [18]. Novelty
search also suggests several strategies to manage the archive of past
solutions. These include collecting the individuals whose novelty
was above a threshold when first evaluated, the most novel individ-
uals at each generation or even randomly chosen individuals if not
none at all [10].

In this work, we present an evolutionary algorithmic approach
to evolve valid and potential (capable of evading effective anti-virus
scanners) variants of a given malware. We consider the evolved
(generated) malware variants as antigens which can be presented
to malware analysis engines to train and improve their malware
detection algorithms thereby providing active acquired immunity
to the end system against the existing numerous malware variants.
We hypothesize that a novelty search based approach is capable
of generating malware variants of greater diversity than a simple
similarity based approach and verify the hypothesis with our Mal-
ware Antigens Generating Evolutionary algorithm (MAGE). The
algorithm would serve as a foundation for an assembly source code
based framework towards generating diverse, valid and potential
variants (capable of evading antivirus scanners). The modular de-
sign of the proposed framework facilitates extensibility in terms
of malware representation, code transformation functions, quality
indicator and the underlying evolutionary algorithm.

2 MALWARE ANTIGEN GENERATING
EVOLUTIONARY ALGORITHM (MAGE) AS A
FRAMEWORK

A framework that facilitates automated malware variant generation
must handle two major challenges: (1) Ensure that the framework
always results in a valid executable and the executable retains its
maliciousness, and (2) The design of the framework should be flexi-
ble and modular such that the practitioner can induce application
specific changes as per their requirement. In the context of an evolu-
tionary algorithm (𝐸), the automated malware variant evolution can
be formally started as follows. To apply the evolutionary algorithm
(𝐸) on a given virus assembly code (Z) to generate variants (Z ′)

1255

Adapting Novelty towards Generating Antigens for Antivirus systems GECCO ’22, July 9–13, 2022, Boston, MA, USA

using assembly code transformation functions (𝑇) for code muta-
tions such that the maliciousness (Ω(Z ′)) of the evolved variants is
retained and the variant dataset generated by 𝐸 is diverse in nature.

Therefore the proposed framework (𝐹) includes the components
𝐸, Z , Z ′,Δ and b , where 𝑇 ∈ {𝜓𝑝 , 𝜏𝑞, 𝜎𝑟 } and 𝑅 are variation oper-
ators (Δ), b refers to the quality indicator or fitness function and
𝜓, 𝜏 and 𝜎 are the control flow modifications, data transformations
and code layout changes respectively. This implies that any 𝐸 can
operate on Z and employ Δ = {𝑇, 𝑅} as variation operators and b

to evaluate the candidates to realize the automated generation of
valid variants Z ′ of Z . In the perspective of an evolutionary algo-
rithm, the framework models the different representations possible
in an assembly language environment and discusses a few of the
variation operators (𝑇, 𝑅 ∈ Δ) and uses a modified version of nov-
elty as the fitness function (b). The general structure of a typical
population based meta-heuristic algorithm is given in Algorithm 1.
Each module in the framework is flexible enough to be customized
as per the practitioners requirement as can be observed during
the description of the Malware Antigens Generating Evolutionary
algorithm (MAGE) in the next section.

Algorithm 1 Structure of an evolutionary algorithm

1: procedure Evolutionary Algo()
2: INITIALIZE a population using random individual solutions
3: EVALUATE every individual in current population
4: while NOT TERMINATION CONDITION do
5: SELECT parents using any selection strategy
6: RECOMBINE the parent pairs ⊲ i.e. perform

crossover
7: MUTATE the resultant child ⊲ i.e. the new

individual
8: EVALUATE the new individual
9: SELECT individuals for the next generation
10: end while
11: end procedure

2.1 Representation
From the perspective of the evolutionary algorithm, considering the
case of the assembly language code structure, there are a number of
ways the source code can be represented. Here each individual in
the population is the entire assembly code (program) of the chosen
malware (or even a variant). The representation is quite flexible and
allows the individual to be modelled either in a linear fashion (figure
1) or as a graph (figure 2). Both the framework and the evolutionary
algorithm proposed in this work adopt the linear representation of
the malware code for the simulation experiments.

2.2 Quality indicator
The quality indicator b (fitness function in EA) of the framework
quantifies the extent of the transformation introduced in the source
assembly code. In the context of malware variant generation, this
work attempts to explore a variation of novelty search as a strategy
to yield divergent code structures. Considering each individual as
a vector of assembly code statements (as the linear representation

Figure 1: Linear representation of virus code.

Figure 2: Graph representation of virus code.

dictates), the quality indicator (b) is calculated as the euclidean
distance between each individual in the population and the mean
vector (𝑆) of all intra-population similarity vectors in the population
as shown in equation 1. Here P is the population size.

b =

√√√
𝑃∑︁
𝑖=1

(𝑆,−→𝑆𝐼𝑖)2 (1)

The similarity vector
−→
𝑆 𝐼𝑖 for the 𝑖𝑡ℎ individual within the pop-

ulation P is
−→
𝑆𝐼𝑖 = 𝐽 (𝑝1, 𝑝𝑖), 𝐽 (𝑝2, 𝑝𝑖), ..., 𝐽 (𝑝𝑁𝑃 , 𝑝𝑖), 𝐽 (Z , 𝑝𝑖) where

𝑝1, ..., 𝑝𝑃𝐺 is the rest of the population comprising all chromosomes
except 𝑝𝑖 , Z is the source virus code and 𝐽 (𝑝 𝑗 , 𝑝𝑖) is the Jaccard
similarity index between a 𝑗𝑡ℎ and 𝑖𝑡ℎ chromosome as shown in
equation 2.

𝐽 (ℎ 𝑗 , ℎ𝑖) =
|ℎ 𝑗 ∩ ℎ𝑖 |
|ℎ 𝑗 ∪ ℎ𝑖 |

=
ℎ 𝑗 ∩ ℎ𝑖

|ℎ 𝑗 | + |ℎ𝑖 | − ℎ 𝑗 ∩ ℎ𝑖
(2)

The Jaccard similarity index was chosen after preliminary exper-
iments revealed that this was the most stringent metric for gener-
ating divergent malware. Nevertheless, it is worth reiterating that
the choice(s) proposed for each key component of the framework

1256

GECCO ’22, July 9–13, 2022, Boston, MA, USA Murali,R and Velayutham, C S

is merely suggestive and a practitioner, by virtue of the modular
nature of the framework, can employ their choice(s) for each key
component.

2.3 Variation Operations
Given the representation, the variation operations Δ are defined
as mutation and crossover operations. For the chosen assembly
language representation, the framework proposes code transfor-
mation operators as both mutation (𝑇) and crossover (𝑅) operations.

2.3.1 Mutation:
In the case of malware, the framework exploits the assembly level
constructs commonly used by malware authors for evading an-
tivirus scanners [13], to model the transformation operators (𝑇).
Therefore the transformation operators can be considered as a sub-
set of the code evasion operators namely modifying control flow
(𝜓), Transforming Data (𝜏)) and Changing Code Layout (𝜎) (i.e.
𝑇 ⊆ {𝜓, 𝜏, 𝜎}) and this includes the use of opaque predicates (𝑇𝑂𝑃),
bogus insertions (𝑇𝐵𝐼), branching functions (𝑇𝐵𝐹), instruction trans-
formation (𝑇𝐼𝑇), code block reordering (𝑇𝑅𝐵), variable substitution
(𝑇𝑉𝑆) and code block substitution (𝑇𝐶𝐵𝑆). Each of the transforma-
tion operators are limited by a set of constraints (𝐶) that define the
allowed structure resulting from transformations thus limiting the
potentially infinite productions and ensuring valid code structures.

Based on generic transformation functions (𝑇𝑂𝑃 ,𝑇𝐵𝐼 ,𝑇𝐵𝐹 ,𝑇𝐼𝑇 ,
𝑇𝑅𝐵,𝑇𝑉𝑆 and 𝑇𝐶𝐵𝑆), five transformation function instances namely
Fake Instruction (𝑇𝐹𝐼), Forced JMP (𝑇𝐹 𝐽), Untouchable Block (𝑇𝑈𝐵),
Conditional Zero JMP (𝑇𝐶𝑍 𝐽) and Conditional NonZero JMP (𝑇𝐶𝑁𝑍 𝐽),
have been defined and proposed. It is worth mentioning that every
assembly language program code has a standard prologue (header),
a program body and epilogue (footer). Therefore, all applications
of code transformations are constrained by a common rule (𝐶𝑐𝑜𝑚)
which states that “Every code transformation must be applied in the
program body of the input assembly code”. It should be noted that
only the common constraint 𝑐𝑐𝑜𝑚 is applicable in the case of Fake
instructions (𝑇𝐹𝐼), such as ‘NOP’, which can be inserted anywhere
within the program body as it does not affect the code functionality
in any manner.𝐶𝑐𝑜𝑚 here ensures that a valid executable is created
post application of the transformation. However, while multiple
NOP instructions can be inserted in any location within the pro-
gram body, excessive insertion of this instruction would result in
the code bloating thus increasing the chances of generating invalid
executables.

“JMP” is an assembly language instruction that alters the control
flow of the assembly code and can be inserted anywhere within
a contiguous code block. This is a logical choice as insertion of a
JMP statement beyond the boundaries of any function is meaning-
less since the command will never be called and would act as dead
code. The JMP instruction is always paired with a label and this acts
similar to a function call and in the framework 𝐹 , must be defined be-
yond any continuous block of assembly code. This is to ensure that
the label definition does not interrupt or affect any existing function
blocks or contiguous code structures. The label definition should
end with a reference/return to the line/command immediately after

the JMP call so as to ensure continuity in the control flow of the
code. This also ensures that nesting of such a transformation results
in complex but linear code flow as shown in figure 3. Based on the
above understanding of the JMP statement, the Forced JMP (𝑇𝐹 𝐽)
transformation is a logical control flowmodification choice for code
mutations and it is defined as𝑇𝐹 𝐽 = (𝐶 (𝐽𝑀𝑃, $𝑙𝑎𝑏𝑒𝑙, 𝑠1, $𝑙𝑎𝑏𝑒𝑙 :, 𝑠1))
where “label” refers to the logical position of the control flow trans-
fer and 𝑠𝑖 stands for each subsequent assembly language instruc-
tion. The flexibility of the JMP statement can also be exploited to
create the Untouchable Block transformation, formally defined as
𝑇𝑈𝐵 = (𝐶 (𝐽𝑀𝑃, $𝑙𝑎𝑏𝑒𝑙, 𝑠+

𝑘
, $𝑙𝑎𝑏𝑒𝑙 :)). Here, immediately after the

JMP statement multiple assembly language statements (𝑠+
𝑘
) may

be inserted. However, since none of these instructions will ever
be executed, all of them act as dead code. The lines of code and
structure of the code is changed here while retaining the control
flow. Conditional JMP (𝑇𝐶𝑍 𝐽 and𝑇𝐶𝑁𝑍 𝐽) transformations check the
status of the zero flag at that specific instance of code execution
before executing a JMP instruction. This further increases the num-
ber of code level variations that can be evolved by the evolutionary
algorithm.

Figure 3: Forced JMP Transformation

There are also certain transformation functions that are classi-
fied under𝜓, 𝜏 and 𝜎 , commonly used in higher level programming
languages. These include operations such as loop unrolling, class
transformations, array transformations, etc., which are not feasi-
ble to apply in the context of assembly language transformations
because the format is not supported in assembly languages and/or
they do not always result in a valid executable post application on
code. Therefore such transformations have not been considered in
the framework proposed. The chosen transformations ensure that

1257

Adapting Novelty towards Generating Antigens for Antivirus systems GECCO ’22, July 9–13, 2022, Boston, MA, USA

the transformed code is always a valid executable and thus form
potential candidates for mutation operations𝑀 ∈ Δ.

2.3.2 Crossover:
The crossover or recombination operation (𝑅𝐸 ∈ Δ) is another inte-
gral variation operation of an evolutionary algorithm. In the context
of the code transformation functions described above, the recombi-
nation operation can be realized as code block transformation (𝑇𝐶𝐵𝐼)
and can be defined as follows. If P is the population of all individuals
in the solution space of a single generation then 𝑝 and 𝑝 in the pop-
ulation represent two candidate parents for the crossover operation.
In the context of the proposed assembly code based framework,
𝑝 = {𝑆+, 𝐿𝑂𝑃+,𝐶𝑂𝑃+} and 𝑝 = {𝑆+, ˆ𝐿𝑂𝑃

+
, ˆ𝐶𝑂𝑃

+}. Then ⟨𝑂, �̂�⟩ :=
𝑅𝐸 (𝑝, 𝑝) := 𝑇𝐶𝐵𝐼 {(𝑆+, 𝐿𝑂𝑃+,𝐶𝑂𝑃+), (𝑆+, ˆ𝐿𝑂𝑃

+
, ˆ𝐶𝑂𝑃

+),𝐶𝑖 } where
𝑂 , �̂� are the offsprings resulting from recombination operation,
𝐿𝑂𝑃 & 𝐶𝑂𝑃 represent the loop & conditional statements in the
assembly language construct, and𝑇𝐶𝐵𝐼 represents code block inter-
change transformation function. Table 1 shows a summary of the
instances of the variation operators.

The code block interchange transformation function 𝑇𝐶𝐵𝐼 in-
terchanges blocks of code that might contain statements as well
as loop and conditional operands. In the absence of a constraint,
𝑇𝐶𝐵𝐼 has the potential to yield invalid executables as offsprings
and hence can be very disruptive. Consequently, the choice of code
block location, (henceforth called pivot point) is very crucial to en-
sure that code block interchange does not interrupt the sequential
execution of the resultant assembly code. The constraint then re-
quires the interchange to be applied between code blocks above the
pivot point and similarly swap code blocks below the pivot point
as well. This constraint reduces the possibility of a label defined
by any transformation function being lost during interchange op-
eration else an undefined label would result in an invalid executable.

Table 1: Summary of variation operator instances

Notation Description Definition
𝑇𝐹𝐼 Fake Instruction 𝑁𝑂𝑃

𝑇𝐹 𝐽 Forced JMP (𝐶 (𝐽𝑀𝑃, $𝑙𝑎𝑏𝑒𝑙, 𝑠1, $𝑙𝑎𝑏𝑒𝑙 :, 𝑠1))
𝑇𝑈𝐵 Untouchable Block (𝐶 (𝐽𝑀𝑃, $𝑙𝑎𝑏𝑒𝑙, 𝑠+

𝑘
, $𝑙𝑎𝑏𝑒𝑙 :))

𝑇𝐶𝑍 𝐽 Conditional Zero JMP (𝐶 (𝐽𝑍, $𝑙𝑎𝑏𝑒𝑙, 𝑠1, $𝑙𝑎𝑏𝑒𝑙 :, 𝑠1))
𝑇𝐶𝑁𝑍 𝐽 Conditional Non Zero JMP (𝐶 (𝐽𝑁𝑍, $𝑙𝑎𝑏𝑒𝑙, 𝑠1, $𝑙𝑎𝑏𝑒𝑙 :, 𝑠1))

𝑅𝐸 (𝑝, 𝑝)
Crossover between 2 parents
where 𝑇𝐶𝐵𝐼 represents
code block interchange

𝑇_𝐶𝐵𝐼 {(𝑆+, 𝐿𝑂𝑃+,𝐶𝑂𝑃+),
(𝑆+, ˆ𝐿𝑂𝑃

+
, ˆ𝐶𝑂𝑃

+),𝐶𝑖 }

As shown in Figure 4, the pivot point is randomly chosen to
be any point beyond non-overlapping block of statements (𝑠𝑖). By
virtue of this pivot point, all transformation functions discussed
so far (including 𝑇𝐶𝐵𝐼) can be applied both above and below the
pivot point. Each shaded block in Figure 4 shows the space available
for application of transformation operations as constrained by the
pivot point. Since all the transformation functions described so
far can be applied either within a block or between blocks, there
remains ample opportunity for these transformation functions to
introduce arbitrary complexity in the code yet retaining its capa-
bility for execution. Without loss of generality, the pivot point can

Figure 4: Code block interchange transformation

be considered to be in the middle of the source assembly code thus
facilitating equal opportunity to the blocks above and below for
arbitrary transformations. It is worth observing that𝑇𝐶𝐵𝐼 is a poten-
tial candidate transformation function for realizing single-point and
multi-point crossover operations (with the latter requiring multiple
pivot points).

2.4 Malware Antigen Generating Evolutionary
algorithm (MAGE)

The Malware Antigen Generating Evolutionary algorithm (MAGE)
has been designed based on the framework and the overview of
MAGE is shown in algorithm 2. Therefore, MAGE also seamlessly
merges into the form of a traditional EA as shown previously by
algorithm 1. Each chromosome generated by MAGE, by virtue of
the transformation functions, is a potential variant. This implies
that MAGE is able to evolve 𝑃 ×𝐺 variants (P is the population and
G is the generation) virus variants, makingMAGE a generative algo-
rithm. Additionally, following the novelty search ideals, MAGE also
identifies the novel chromosomes in each generation and collates
them in the form of a unique dataset. While every chromosome
is a potential variant, this dataset of unique variants can serve as
the antigens using which the antivirus systems can update their
signature database. The intention behind the automated malware
generation using MAGE is not just to generate virus variants evad-
ing AV scanners but to generate variants as diverse as possible in
terms of the assembly code structure.

1258

GECCO ’22, July 9–13, 2022, Boston, MA, USA Murali,R and Velayutham, C S

Algorithm 2 MAGE as a framework

1: procedure Evolutionary Algo(Z)
2: Generate Initial Population using transformations 𝑇𝑖 ∈

{𝜓, 𝜏, 𝜎} with a probability 𝑝𝑚𝑖

3: while (EXE Generated) | | (Generations limit yet to be
reached) do

4: Compute fitness b =

√︃∑𝑃
𝑖=1 (

−→
𝑆𝐼𝑖 , 𝐽𝑖)2 for every candi-

date 𝑖 in current population ⊲ EVALUATE
5: while maximum population size limit not reached do
6: Select two parents using the tournament

selection strategy ⊲ SELECTION
7: Perform crossover ⊲ RECOMBINE
8: Apply code transformation mutation

functions (𝑖 .𝑒 .𝑇𝑖 ∈ {𝜓, 𝜏, 𝜎}) each with a probability
𝑝𝑚

𝑖 on each of the resultant offspring ⊲ MUTATE
9: Add each evolved child to the next

generation population
10: Identify the novel individuals from

current population and add them to a “Unique”
variant dataset

11: end while
12: end while
13: end procedure

3 EXPERIMENTS & DISCUSSION
In order to validate the capability of the framework in evolving di-
vergent virus variants, MAGE was seeded with the assembly source
of Intruder - a virus that can infect .EXE files and jump across di-
rectories and even drives [20]. The Intruder virus attaches itself
to the end of any .EXE program and takes control of the program
when it first starts. The virus first locates all files (including those
from the sub directories) possible to infect and verifies if it can
be infected before actually infecting the .EXE file. Since Intruder
is an extremely infectious virus, the test-bed consisted of an iso-
lated computer, inside which a 32bit Microsoft Windows 7 guest
virtual machine was used. The host operating system was a 64bit
Linux Mint system. This ensured that the experiments that were
conducted did not escape the test environment and spread. The
host machine had an Intel© Core™ i5-2400 CPU @ 3.10GHz with 4
CPU cores and 8 GB RAM with a 1TB Hard disk. The guest virtual
machine used 3 CPU cores and 4GB of RAM with an execution
cap of 80%. Regular snapshots of the virtual machine was taken to
keep track of any changes the system might exhibit and thereby
identify possible accidental infections. The guest windows OS also
had a copy of the Microsoft Macro Assembler (MASM) which is
required to make the virus an executable. Also, since the focus
is on evolving divergent malware from a single source, no other
obfuscation techniques or packers were employed during the test.

The purpose of the experiments was to verify if a novelty sup-
ported intra-population similarity based approach is capable of
generating malware variants of greater diversity than a simple
similarity-only based approach. Therefore, the simulation experi-
ments involved evaluating the diversity, in terms of code structures,
the result of applying MAGE with two different quality indicators

0 50 100 150 200 250 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Best variant from each Generation

Si
m
ila
rit
y
W
ith

So
ur
ce

Fitness type 𝛼
Fitness type 𝛽

Figure 5: Similarity values of Initial and Final population
using 𝛼 and 𝛽

(fitness functions) 𝛼 and 𝛽 . The indicator 𝛼 solely depended on
Jaccard similarity as a metric for evaluation, while the fitness func-
tion 𝛽 exploited the Jaccard similarity index based intra-population
similarity. It is also worth mentioning that the focus of the work is
on a framework for evolving divergent variants rather than bench-
marking. In order to ensure fairness during comparison, the same
random seed was set and used for the experiments and only the
Jaccard similarity best fit individuals from each generation were
compared with the source virus. The population size has been set at
a random value of 20 and the EA has been run for 300 generations.
The transformation functions 𝑇𝐹𝐼 , 𝑇𝐹 𝐽 , 𝑇𝑈𝐵 , 𝑇𝐶𝑍 𝐽 and 𝑇𝐶𝑁𝑍 𝐽 are
employed to mutate assembly code structure and 𝑇𝐶𝐵𝐼 is employed
for crossover operation. The results (figure 5) show that a novelty
supported intra-population similarity based fitness function is able
to induce more variations within the population.

A statistical analysis using the Mann-Whitney U test was also
performed on the similarity value of the variants evolved in both the
initial and final populations. The Mann–Whitney U test is a popular
non-parametric hypothesis test that verifies a null hypothesis (𝐻0)
and a research hypothesis (𝐻1). In the current analysis, the null
hypothesis (𝐻0) states that the initial and final populations are
the same. Conversely, in this context, the research hypothesis (𝐻1)
states that the initial and final populations are different. The test
calculates the value of 𝑈 which ranges from 0 to 𝑛1 × 𝑛2, where 𝑛1
and 𝑛2 are the sizes of each population. Based on the probability
(𝑝) that the results appear by chance, a high value of U accepts
the null hypothesis (𝐻0) and rejects the research hypothesis (𝐻1).
Conversely, a low value of U rejects the null hypothesis (𝐻0) and
accepts the research hypothesis (𝐻1), also based on the probability
(𝑝) of the results appearing by chance. In the case of most biological
analyses, it is usually admissible to use 𝑝 < 0.01 as the threshold
for acceptance for the Mann-Whitney U test.

1259

Adapting Novelty towards Generating Antigens for Antivirus systems GECCO ’22, July 9–13, 2022, Boston, MA, USA

Table 2: Similarity Values of Initial population vs Final pop-
ulation

Similarity with Source (𝛼) Novelty (𝛽)
Initial Population Final Population Initial Population Final Population

1 0.9844155844 0.9973684211 0.981865285 0.4834183673
2 0.9717948718 0.9793281654 0.981865285 0.4922077922
3 0.9973684211 0.9921465969 0.9742930591 0.500660502
4 0.9844155844 0.9973684211 0.9973684211 0.4947780679
5 0.981865285 0.9844155844 0.961928934 0.4884020619
6 0.9717948718 0.9973684211 0.9793281654 0.4896640827
7 0.9947506562 0.9973684211 0.9947506562 0.5060080107
8 0.9844155844 0.9768041237 1 0.4834183673
9 0.961928934 0.9717948718 0.9869791667 0.5039893617
10 1 0.9973684211 0.9793281654 0.506684492
11 0.9844155844 0.9895561358 0.9768041237 0.4973753281
12 1 0.981865285 0.981865285 0.4980289093
13 0.981865285 0.981865285 0.9895561358 0.49672346
14 0.981865285 0.9844155844 0.981865285 0.5013227513
15 1 0.9947506562 0.981865285 0.4947780679
16 0.9895561358 0.9973684211 0.961928934 0.4947780679
17 0.9643765903 0.9768041237 0.9594936709 0.4922077922
18 0.9768041237 0.9793281654 0.9844155844 0.5039893617
19 0.9693094629 0.9947506562 0.9869791667 0.5039893617
20 0.9844155844 0.9895561358 0.9844155844 0.506684492

On performing the Mann-Whitney U Test on the initial and final
populations (shown in Table 2) resulting from using 𝛼 as the fitness
metric in MAGE, the 𝑈 , 𝑝 and 𝑧𝑠𝑐𝑜𝑟𝑒 values were calculated. Both
𝑈 = 161 and 𝑧𝑠𝑐𝑜𝑟𝑒 = −1.04143 fall within the acceptable range
(where 128.065 to 271.935 is the region of acceptance for U and
between −1.96 and 1.96 is the region of acceptance for z score),
and the value of 𝑝 was 0.29834, which is not within the permissible
threshold limit of 0.01. This implied that the hypothesis 𝐻0 cannot
be conclusively rejected and so the two populations are considered
to be similar. On the other hand, when the Mann-Whitney U Test
was performed on the initial and final populations resulting from
using 𝛽 as the fitness metric in MAGE, the difference between the
randomly selected values of the initial and the final populations
was large enough to be statistically significant. The value of 𝑈 was
400 and 𝑧𝑠𝑐𝑜𝑟𝑒 was 5.4054 (both outside the region of acceptance,
namely from 127.6622 to 272.3378 for U and from -1.96 to 1.96 for
z score) and 𝑝 was 6.467 × 10−8 which is definitely less than the
threshold of 0.01. From this it is clear that the hypothesis 𝐻0 can
be conclusively rejected and the research hypothesis 𝐻1 (which
states that the two populations are different) can be accepted. To
further illustrate that the evolution was indeed encouraged by the
cascading effect of the fitness function, the Mann-Whitney U Test
was also applied on the initial populations of both distributions.
The results (𝑈 = 223, 𝑧𝑠𝑐𝑜𝑟𝑒 = 0.6133, 𝑝 = 0.5397) show that null
hypothesis is true and both the populations are same. Since initial
populations of both the distributions are level, it can be concluded
that the diversity in the populations was more pronounced the
during evolution, when using a novelty search based fitness func-
tion (𝛽). This further supports the hypothesis that a novelty search
based approach (𝛽) is capable of generating malware variants of
greater diversity than a simple similarity based (𝛼) approach.

At this juncture, it is worth mentioning that, since the aim of
the EA was to evolve divergent variants that are capable of evading
antivirus scanners while not altering the maliciousness of the resul-
tant variant, the evasion capability of the virus and its variants was

0 50 100 150 200 250 300
0
2

4

6

8

10
12

14

16

18

20

Best variant from each Generation

N
o.
of

AV
sc
an
ne
rs

de
te
ct
in
g
Z
′

Figure 6: Evasion capability of MAGE: Number of antivirus
scanners detecting the generated variants

also checked using VirusTotal [39] which used over 60 antivirus
scanners to scan each executable. The VirusTotal results showed
that 20 popular antivirus scanners were able to identify the source
Intruder virus. However, it was observed that by the 250𝑡ℎ gener-
ation, almost all the antivirus scanners used by VirusTotal (over
98%) were evaded by variants evolved. By way of example, figure
6 displays evasion capability of variants evolved by MAGE when
using 𝛽 as the quality indicator. This observation was expected as
it is a well known fact that even minor modifications in code is
sufficient to evade most antivirus scanners. It is also worth noting
that, by virtue of the transformation functions (𝑇) and well defined
recombination operator (𝑅), MAGE is capable of evolving valid
virus executables for over 600 generations i.e. 600 × 20 = 12, 000
divergent virus variables successfully. This is because “bloat” is
a common factor in EAs [4] and the Microsoft Macro Assembler
(MASM) required that the files remained under the 64KB limit.

The above simulation experiments have demonstrated that a
novelty supported intra-population similarity based approach is ca-
pable of generating diverse variants of a given malware. Subsequent
Mann-Whitney U test based statistical analysis on the similarity
value of the variants evolved revealed that the diversity in the pop-
ulations was more pronounced during the evolution, when using a
novelty search based fitness function (𝛽). The validity of the frame-
work was also demonstrated by the proposed Malware Antigen
Generating Evolutionary algorithm (MAGE) which evolved diverse
virus variants that evaded detection by over 98% of all antivirus
scanners in VirusTotal.

4 CONCLUSION
This work discussed a generic assembly source code based frame-
work that facilitates an evolutionary algorithm to generate diverse

1260

GECCO ’22, July 9–13, 2022, Boston, MA, USA Murali,R and Velayutham, C S

and potential variants of an input malware, while retaining its ma-
liciousness, yet capable of evading antivirus scanners. The generic
code transformation functions 𝑇 ⊆ {𝜓, 𝜏, 𝜎} based on which five
transformation function instances namely Fake Instruction (𝑇𝐹𝐼),
Forced JMP (𝑇𝐹 𝐽), Untouchable Block (𝑇𝑈𝐵), Conditional JMP (𝑇𝐶𝑍 𝐽)
and Conditional JMP (𝑇𝐶𝑁𝑍 𝐽), were also proposed and defined as
mutation operators. The code block interchange transformation
function (𝑇𝐶𝐵𝐼) was utilized in the design of the crossover opera-
tor to enable seamless recombination resulting in a valid executable.

The validity of the framework was also demonstrated by the
proposed Malware Antigen Generating Evolutionary algorithm
(MAGE) which utilized a novelty search supported intra-population
based fitness function to evolve diverse variants of a source mal-
ware. The simulation experiments were performed using Intruder -
a virus that attaches itself to the end of any .EXE program. The ver-
satility, efficacy and flexibility of the MAGE was also demonstrated
by utilizing two different quality indicators (fitness functions) 𝛼
and 𝛽 , to evolve valid variants of the Intruder virus. VirusTotal was
utilized to observe the evasion capability of the evolved Intruder
virus variants. Results show that almost all the antivirus scanners
were evaded by the evolved variants after 250 generations of evolu-
tion. Statistical analysis on the initial and final populations further
revealed that the novelty supported intra-population based fitness
function (𝛽) was able to direct MAGE to evolve divergent malware
variants of the given source malware.

Since every candidate evolved byMAGE is a potential variant, the
entire collection of variants generated could serve as the malware
variant dataset. This dataset of antigens could then be presented to
the malware analysis engines to improve their malware detection
algorithms. Thus, in conclusion, the framework and MAGE could
serve as a flexible platform for researchers and practitioners to
develop novel applications under the aegis of automated malware
generation for proactive defence.

REFERENCES
[1] Giovanni Apruzzese, Michele Colajanni, Luca Ferretti, Alessandro Guido, and

Mirco Marchetti. 2018. On the effectiveness of machine and deep learning for
cyber security. In 2018 10th International Conference on Cyber Conflict (CyCon).
IEEE, IEEE, Tallinn, 371–390.

[2] Kshitiz Aryal, Maanak Gupta, and Mahmoud Abdelsalam. 2021. A Survey on
Adversarial Attacks for Malware Analysis. CoRR abs/2111.08223 (2021), arXiv–
2111. arXiv:2111.08223 https://arxiv.org/abs/2111.08223

[3] Emre Aydogan and Sevil Sen. 2015. Automatic generation of mobile malwares
using genetic programming. In European conference on the applications of evolu-
tionary computation. Springer, Copenhagen, 745–756.

[4] Wolfgang Banzhaf, Peter Nordin, Robert E Keller, and Frank D Francone. 1998.
Genetic programming: an introduction. Vol. 1. Morgan Kaufmann Publishers San
Francisco, California.

[5] Shamik Bose, Timothy Barao, and Xiuwen Liu. 2020. Explaining ai for mal-
ware detection: Analysis of mechanisms of malconv. In 2020 International Joint
Conference on Neural Networks (IJCNN). IEEE, IEEE, Glasgow, 1–8.

[6] Andrea Cani, Marco Gaudesi, Ernesto Sanchez, Giovanni Squillero, and Alberto
Tonda. 2014. Towards automated malware creation: code generation and code
integration. In Proceedings of the 29th Annual ACM Symposium on Applied Com-
puting. ACM, Gyeongju, Republic of Korea, 157–160.

[7] Raphael Labaca Castro, Corinna Schmitt, and Gabi Dreo. 2019. AIMED: Evolv-
ing Malware with Genetic Programming to Evade Detection. In 2019 18th IEEE
International Conference On Trust, Security And Privacy In Computing And Commu-
nications/13th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE). IEEE, Rotorua, 240–247.

[8] Rory Coulter, Qing-Long Han, Lei Pan, Jun Zhang, and Yang Xiang. 2020. Code
analysis for intelligent cyber systems: A data-driven approach. Information

sciences 524 (2020), 46–58.
[9] T Divya and Kandasamy Muniasamy. 2015. Real-time intrusion prediction using

hidden Markov model with genetic algorithm. In Artificial intelligence and
evolutionary algorithms in engineering systems. Springer, New Delhi, 731–736.

[10] Stephane Doncieux, Alban Laflaquière, and Alexandre Coninx. 2019. Novelty
search: a theoretical perspective. In Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, Prague, 99–106. https://doi.org/10.1145/3321707.
3321752

[11] Stephane Doncieux, Giuseppe Paolo, Alban Laflaquière, and Alexandre Coninx.
2020. Novelty search makes evolvability inevitable. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference. ACM, Lille, 85–93.

[12] Weijie Han, Jingfeng Xue, Yong Wang, Fuquan Zhang, and Xianwei Gao. 2021.
APTMalInsight: Identify and cognize APT malware based on system call infor-
mation and ontology knowledge framework. Information Sciences 546 (2021),
633–664.

[13] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti Mäkelä, Jo-
hannes Holvitie, Sami Hyrynsalmi, and Ville Leppänen. 2018. Diversification
and obfuscation techniques for software security: A systematic literature review.
Information and Software Technology 104 (2018), 72–93.

[14] Weiwei Hu and Ying Tan. 2017. Generating Adversarial Malware Examples for
Black-Box Attacks Based on GAN. https://doi.org/10.48550/ARXIV.1702.05983

[15] Seungho Jeon and Jongsub Moon. 2020. Malware-detection method with a
convolutional recurrent neural network using opcode sequences. Information
Sciences 535 (2020), 1–15.

[16] Alireza Khalilian, Amir Nourazar, Mojtaba Vahidi-Asl, and Hassan Haghighi.
2018. G3MD: Mining frequent opcode sub-graphs for metamorphic malware
detection of existing families. Expert Systems with Applications 112 (2018), 15–33.

[17] Joel Lehman and Kenneth O Stanley. 2011. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary computation 19, 2 (2011),
189–223.

[18] Joel Lehman and Kenneth O Stanley. 2011. Improving evolvability through nov-
elty search and self-adaptation. In 2011 IEEE congress of evolutionary computation
(CEC). IEEE, New Orleans, 2693–2700.

[19] Yuanzhang Li, Yaxiao Wang, Ye Wang, Lishan Ke, and Yu-an Tan. 2020. A
feature-vector generative adversarial network for evading PDF malware classi-
fiers. Information Sciences 523 (2020), 38–48.

[20] Mark A. Ludwig. 1991. The Little Black Book of Computer Viruses. Amer Eagle
Pubns Inc, Arizona.

[21] Noah MacAskill, Zachary Wilkins, and Nur Zincir-Heywood. 2021. Scaling Multi-
Objective Optimization for Clustering Malware. In 2021 IEEE Symposium Series
on Computational Intelligence (SSCI). IEEE, Orlando, 1–8.

[22] Alexey V Malanov and Vitaliy A Kamlyuk. 2012. Rapid heuristic method and
system for recognition of similarity between malware variants. US Patent
8,250,655.

[23] Farnoush Manavi and Ali Hamzeh. 2019. A new approach for malware detection
based on evolutionary algorithm. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion. ACM, Prague, 1619–1624.

[24] KannanMani S ManiArasuSekar, Paveethran Swaminathan, Ritwik Murali,
Govind K Ratan, and Surya V Siva. 2020. Optimal feature selection for non-
network malware classification. In 2020 International Conference on Inventive
Computation Technologies (ICICT). IEEE, IEEE, Coimbatore, 82–87.

[25] Syed Bilal Mehdi, Ajay Kumar Tanwani, and Muddassar Farooq. 2009. Imad:
in-execution malware analysis and detection. In Proceedings of the 11th Annual
conference on Genetic and evolutionary computation. ACM, Montréal, 1553–1560.

[26] Héctor D Menéndez, David Clark, and Earl T Barr. 2021. Getting ahead of the
Arms Race: Hothousing the Coevolution of VirusTotal with a Packer. Entropy 23,
4 (2021), 395.

[27] Guozhu Meng, Yinxing Xue, Chandramohan Mahinthan, Annamalai Narayanan,
Yang Liu, Jie Zhang, and Tieming Chen. 2016. Mystique: Evolving android
malware for auditing anti-malware tools. In Proceedings of the 11th ACM on Asia
conference on computer and communications security. ACM, Xi’an, 365–376.

[28] Peter Morley. 2001. Processing virus collections. VIRUS 129 (2001), 129–134.
[29] Ritwik Murali, Akash Ravi, and Harshit Agarwal. 2020. A Malware Variant

Resistant To Traditional Analysis Techniques. In 2020 International Conference
on Emerging Trends in Information Technology and Engineering (ic-ETITE). IEEE,
Chennai, 1–7.

[30] Ritwik Murali and C Shunmuga Velayutham. 2020. A preliminary investigation
into automatically evolving computer viruses using evolutionary algorithms.
Journal of Intelligent & Fuzzy Systems 38, 5 (2020), 6517–6526.

[31] Sadia Noreen, Shafaq Murtaza, M Zubair Shafiq, and Muddassar Farooq. 2009.
Evolvable malware. In Proceedings of the 11th Annual conference on Genetic and
evolutionary computation. ACM, Montréal, 1569–1576.

[32] Sadia Noreen, Shafaq Murtaza, M Zubair Shafiq, and Muddassar Farooq. 2009.
Using Formal Grammar and Genetic Operators to Evolve Malware. In Recent
Advances in Intrusion Detection (RAID). LNCS, Springer, France, 374–375.

[33] TG Gregory Paul and T Gireesh Kumar. 2017. A framework for dynamic malware
analysis based on behavior artifacts. In Proceedings of the 5th International Con-
ference on Frontiers in Intelligent Computing: Theory and Applications. Springer,

1261

https://arxiv.org/abs/2111.08223
https://arxiv.org/abs/2111.08223
https://doi.org/10.1145/3321707.3321752
https://doi.org/10.1145/3321707.3321752
https://doi.org/10.48550/ARXIV.1702.05983

Adapting Novelty towards Generating Antigens for Antivirus systems GECCO ’22, July 9–13, 2022, Boston, MA, USA

Springer, Bhubaneswar, 551–559.
[34] M Zubair Rafique, Ping Chen, Christophe Huygens, and Wouter Joosen. 2014.

Evolutionary algorithms for classification of malware families through different
network behaviors. In Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation. ACM, Vancouver, 1167–1174.

[35] Abhishek Singh, Debojyoti Dutta, and Amit Saha. 2019. MIGAN: malware im-
age synthesis using GANs. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. Association for the Advancement of Artificial Intelligence,
Honolulu, 10033–10034.

[36] SONICWALL. 2022. 2021 SonicWall Cyber Threat Report. SONICWALL. Retrieved
January 28, 2022 from https://www.sonicwall.com/medialibrary/en/white-paper/
2021-cyber-threat-report.pdf

[37] Peter Szor. 2005. The Art of Computer Virus Research and Defense: ART COMP
VIRUS RES DEFENSE _p1. Addison Wesley Professional, USA.

[38] Wee Ling Tan and Tram Truong-Huu. 2020. Enhancing Robustness of Malware
Detection using Synthetically-adversarial Samples. In GLOBECOM 2020-2020
IEEE Global Communications Conference. IEEE, Taipei, 1–6.

[39] VirusTotal. 2021. Getting started with VirusTotal. https://developers.virustotal.
com/reference Last accessed August 2021.

[40] Zachary Wilkins and Nur Zincir-Heywood. 2020. COUGAR: clustering of un-
known malware using genetic algorithm routines. In Proceedings of the 2020
Genetic and Evolutionary Computation Conference. ACM, Cancún, 1195–1203.

[41] Yinxing Xue, Guozhu Meng, Yang Liu, Tian Huat Tan, Hongxu Chen, Jun Sun,
and Jie Zhang. 2017. Auditing anti-malware tools by evolving android malware
and dynamic loading technique. IEEE Transactions on Information Forensics and
Security 12, 7 (2017), 1529–1544.

[42] Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. 2017. A survey
on malware detection using data mining techniques. ACM Computing Surveys
(CSUR) 50, 3 (2017), 1–40.

[43] Suyeon Yoo, Sungjin Kim, Seungjae Kim, and Brent Byunghoon Kang. 2021. AI-
HydRa: Advanced hybrid approach using random forest and deep learning for
malware classification. Information Sciences 546 (2021), 420–435.

[44] Nur Zincir-Heywood, Marco Mellia, and Yixin Diao. 2021. Overview of Artificial
Intelligence and Machine Learning. Wiley Online Library, New Jersey. 19–32
pages.

1262

https://www.sonicwall.com/medialibrary/en/white-paper/2021-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/2021-cyber-threat-report.pdf
https://developers.virustotal.com/reference
https://developers.virustotal.com/reference

	Abstract
	1 Introduction
	2 Malware Antigen Generating Evolutionary algorithm (MAGE) as a Framework
	2.1 Representation
	2.2 Quality indicator
	2.3 Variation Operations
	2.4 Malware Antigen Generating Evolutionary algorithm (MAGE)

	3 Experiments & Discussion
	4 Conclusion
	References

