
Neural Architecture Search using Progressive Evolution
Nilotpal Sinha

nilotpalsinha.cs06g@nctu.edu.tw
National Yang Ming Chiao Tung University

Hsinchu City, Taiwan R.O.C

Kuan-Wen Chen
National Yang Ming Chiao Tung University

Hsinchu City, Taiwan R.O.C
kuanwen@cs.nctu.edu.tw

ABSTRACT
Vanilla neural architecture search using evolutionary algorithms
(EA) involves evaluating each architecture by training it from
scratch, which is extremely time-consuming. This can be reduced
by using a supernet to estimate the fitness of every architecture
in the search space due to its weight sharing nature. However, the
estimated fitness is very noisy due to the co-adaptation of the oper-
ations in the supernet. In this work, we propose a method called
pEvoNAS wherein the whole neural architecture search space is
progressively reduced to smaller search space regions with good
architectures. This is achieved by using a trained supernet for archi-
tecture evaluation during the architecture search using genetic al-
gorithm to find search space regions with good architectures. Upon
reaching the final reduced search space, the supernet is then used to
search for the best architecture in that search space using evolution.
The search is also enhanced by using weight inheritance wherein
the supernet for the smaller search space inherits its weights from
previous trained supernet for the bigger search space. Experimen-
tally, pEvoNAS gives better results on CIFAR-10 and CIFAR-100
while using significantly less computational resources as compared
to previous EA-based methods. The code for our paper can be found
here.

CCS CONCEPTS
• Computing methodologies→ Distributed artificial intelli-
gence; Heuristic function construction; Computer vision.

KEYWORDS
Neural architecture search, supernet, genetic algorithm

ACM Reference Format:
Nilotpal Sinha and Kuan-Wen Chen. 2022. Neural Architecture Search using
Progressive Evolution. In Genetic and Evolutionary Computation Conference
(GECCO ’22), July 9–13, 2022, Boston, MA, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3512290.3528707

1 INTRODUCTION
In the recent years, convolutional neural networks (CNNs) have
been very instrumental in solving various computer vision prob-
lems. However, the CNN architectures (such as ResNet [12], DenseNet

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’22, July 9–13, 2022, Boston, MA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9237-2/22/07. . . $15.00
https://doi.org/10.1145/3512290.3528707

Figure 1: Abstract illustration of progressive reduction of
search space along with its corresponding supernet. The
search starts from full search space (Ω4) with 4 operations
and is then progressively reduced to smaller search space re-
gions: Ω3,Ω2 with 3 and 2 operations respectively. Different
colored arrows in supernets are used to represent different
operations allowed in a specific search space.

[13] AlexNet [16], VGGNet [28]) have been designed mainly by hu-
mans, relying on their intuition and understanding of the specific
problem. Searching the neural architecture automatically by using
an algorithm, i.e. Neural architecture search (NAS), is an alternative
to the architectures designed by humans, and in the recent years,
these NAS methods have attracted increasing interest because of
its promise of an automatic and efficient search of architectures
specific to a task. Vanilla NAS methods [11] [39][40] have shown
promising results in the field of computer vision but most of these
methods consume a huge amount of computational power as it
involves training each architecture from scratch for its evaluation.
Vanilla evolutionary algorithm (EA)-based NAS methods also suf-
fers from the same huge computational requirement problem. For
example, the method proposed in [25] required 3150 GPU days of
evolution.

In this paper, we propose a method called pEvoNAS (Neural
Architecture Search using Progressive Evolution), which involves pro-
gressively reducing the search space by identifying the search space
regions with good solution through a genetic algorithm. The fit-
ness/performance of an architecture in any search space is estimated
using a supernet which is created using the allowed operations in
a particular search space. A supernet represents all possible archi-
tectures in the search space while sharing the weights among all
the architectures. As illustrated in Figure 1, the architecture search
starts from the full search space (Ω4) with 4 operations for 3 nodes

https://github.com/nightstorm0909/pEvoNAS
https://doi.org/10.1145/3512290.3528707
https://doi.org/10.1145/3512290.3528707

GECCO ’22, July 9–13, 2022, Boston, MA, USA Nilotpal Sinha and Kuan-Wen Chen

Operations 5 3 2
Kendall Tau 0.16 0.17 0.35

Table 1: Correlation score (Kendall Tau) at different number
of operations.

and a supernet, 𝑆Ω4 , is created with the 3 nodes and 4 different
colored arrows representing compound edges (i.e. parallel opera-
tions) between the nodes. Reducing the search space to Ω3 and Ω2
involves reducing the number of operations between any two nodes
to 3 and 2 respectively, which is reflected in their corresponding
supernets, (𝑆Ω3 , 𝑆Ω2). The use of supernet for architecture evalu-
ation results in reduction of search time as compared to vanilla
EA-based methods. Also, it can be observed that the supernet for
the larger search space (e.g. 𝑆Ω3) includes all the operations present
in the supernet for the smaller search space (e.g. 𝑆Ω2). So, instead of
intializing the smaller supernet, e.g. 𝑆Ω2 , with random weights, it
inherits the respective weights from the previous bigger supernet,
𝑆Ω3 . This is known as supernet weight inheritance.

Our contributions can be summarized as follows:
• We designed a framework of progressively reducing the
search space to regions in the search space with good solu-
tions using genetic algorithm.
• We also show the effectiveness of the weight inheritance
for supernet wherein a supernet for a smaller search space
inherits weights from the trained supernet for the bigger
search space.
• We also created a visualization of the progressive reduction
of search space performed by pEvoNAS to get insights into
the search process and show that pEvoNAS indeed reduces
the search space to good quality regions in the search space.

2 MOTIVATION
The use of supernet for architecture evaluations results in degraded
architecture search performance because of the inaccurate perfor-
mance estimation by the supernet. This was first reported in [2] and
they showed that the co-adaptation among the operations in the
compound edge leads to low correlation between the predicted per-
formance via supernet and the true architecture performance from
training-from-scratch. In other words, the effect of co-adaptation is
due to the combined operations in the compound edge. Following
the logic, it seems reasonable that the supernet prediction will im-
prove as number of operations reduce in the compound edge. For
example, in Figure 1, the supernet 𝑆Ω3 has 3 operations between
any two nodes as compared to 2 operations in 𝑆Ω2 .

We designed a controlled exeriment to test the assumption that
as we reduce the number of operations in compound edge, the per-
formance prediction of supernet improves. We use NAS-Bench-201
[9] search space, which has 5 operations in the full search space.
First, we train the supernet created using the operations in the full
search space for 50 epochs and then compare the supernet predicted
architecture performance of all the architectures in the search space
with the ground truth provided in NAS-Bench-201. We randomly
reduce the number of operations from 5 to 3 operations and create
a supernet for the new smaller search space with weights inherited

from previous trained supernet. We repeat the training of the new
supernet again for 50 epochs and then comparing its prediction.
Lastly, we repeat the process again for the new random search space
of 2 operations. In Table 1, the correlation coefficient, Kendall’s Tau
[14], is used to measure the correlation between estimated accuracy
via supernet and ground truth accuracy and found that it increases
as we reduce the number of operations considered between any two
nodes in the supernet. Based on this observation, we use evolution
to find smaller regions with good solutions while using supernet
for the architecture evaluation in the search spaces.

3 RELATEDWORK
The various NAS methods can be classified into two categories:
gradient-based methods and non-gradient based methods.

Gradient-Based Methods: In general, these methods, [20][8]
[36][7], relax the discrete architecture search space to a continuous
search space by using a supernet. The performance of the supernet
on the validation data is used for updating the architecture using
gradients. As the supernet shares weights among all architectures
in the search space, these methods take lesser time in the evaluation
process and thus shorter search time. However, thesemethods suffer
from the overfitting problem wherein the resultant architecture
shows good performance on the validation data but exhibits poor
performance on the test data. This can be attributed to its preference
for parameter-less operations in the search space, as it leads to rapid
gradient descent, [3]. In contrast to these gradient-based methods,
our method does not suffer from the overfitting problem because
of its stochastic nature.

Non-Gradient Based Methods: These methods include rein-
forcement learning (RL) methods and evolutionary algorithm (EA)
methods. In the RL methods [39] [40], an agent is used for the gen-
erating neural architecture and the agent is then trained to generate
architectures in order to maximize its expected accuracy on the
validation data. These accuracies were calculated by training the
architectures from scratch to convergence which resulted in long
search time. This was improved in [24] by using a single directed
acyclic graph (DAG) for sharing the weights among all the sampled
architectures, thus resulting in reduced computational resources.
The EA based NAS methods begin with a population of architec-
tures and each architecture in the population is evaluated on the
basis of its performance on the validation data. The popluation is
then evolved on the basis of the performance of the population.
Methods such as those proposed in [25] and [35] used gradient
descent for optimizing the weights of each architecture in the pop-
ulation from scratch in order to determine their accuracies on the
validation data as their fitness, resulting in huge computational
requirements. In order to speed up the training process, in [26], the
authors introduced weight inheritance wherein the architectures in
the new generation population inherit the weights of the previous
generation population, resulting in bypassing the training from
scratch. However, the speed up gained is less as it still needs to
optimize the weights of the architecture. Methods such as that pro-
posed in [31] used a random forest for predicting the performance
of the architecture during the evaluation process, resulting in a
high speed up as compared to previous EA methods. However, its
performance was far from the state-of-the-art results. In contrast,

Neural Architecture Search using Progressive Evolution GECCO ’22, July 9–13, 2022, Boston, MA, USA

Figure 2: (a) Architecture created by stacking cells. (b) Archi-
tecture representation for a search space with 3 operations
and 4 nodes. The thickness of the arrow in the supernet is
proportional to the weight given to an operation. (c) Illustra-
tion of selecting an architecture in the supernet. The high-
lighted cell represents the selected operation between any
two nodes.

our method achieved better results than previous EAmethods while
using significantly less computational resources.

4 PROPOSED METHOD
4.1 Search Space and Architecture

Representation
Following [24][25] [40] [20][8][7][23] [18], the architecture is cre-
ated by staking together cells of two types: normal cells which
preserve the dimentionality of the input with a stride of one and
reduction cells which reduce the spatial dimension with a stride
of two, shown in Figure 2(a). As illustrated in Figure 2(b), a cell
in the architecture is represented by an architecture parameter, 𝛼 .
Each 𝛼 for a normal cell and a reduction cell is represented by a ma-
trix with columns representing the weights of different operations
𝑂𝑝 (.)𝑠 from the operation space O (i.e. the search space of NAS)
and rows representing the edge between two nodes. For example,
in Figure 2(b), 𝛼 (0, 1) represents the edge between node 0 and node
1 and the entries in the row represent the weights given to the three
different operations.

4.2 Performance Estimation
We used a supernet [20] to estimate the performance of an archi-
tecture in the search space. It shares the weights among all archi-
tectures in the search space by treating all the architectures as the
subgraphs of a supergraph. As illustrated in Figure 2(b), the supernet
uses the architecture parameter, 𝛼 , by normalizing it using softmax.
The directed edge from node 𝑖 to node 𝑗 is the weighted sum of
all 𝑂𝑝 (.)𝑠 in O where the 𝑂𝑝 (.)𝑠 are weighted by the normalized
𝛼 (𝑖, 𝑗) . This can be written as:

𝑓 (𝑖, 𝑗) (𝑥 (𝑖)) =
∑

𝑂𝑝∈O

𝑒𝑥𝑝 (𝛼 (𝑖, 𝑗)
𝑂𝑝
)∑

𝑂𝑝′∈O 𝑒𝑥𝑝 (𝛼
(𝑖, 𝑗)
𝑂𝑝′)

𝑂𝑝 (𝑥 (𝑖)) (1)

where 𝛼 (𝑖, 𝑗)𝑜𝑝 represents the weight of the operation 𝑂𝑝 (.) in the
operation space O between node 𝑖 and node 𝑗 . This design choice al-
lows us to skip the individual architecture training from scratch for
its evaluation because of the weight-sharing nature of the supernet,
thus resulting in a significant reduction of search time. The supernet
is trained on training dataset for a certain number of epochs using
Stochastic Gradient Descent (SGD), [34] with momentum. During
training, random architecture parameter, 𝛼 , is sent to the supernet
for each training batch in an epoch so that no particular sub-graph
(i.e. architecture) of the super-graph (i.e. supernet) receives most of
the gradient updates.

The performance of an architecture is calculated using the trained
supernet on the validation data, also known as the fitness of the
architecture. As illustrated in Figure 2(c), in order to select an ar-
chitecture, A, in the supernet, a new architecture parameter called
discrete architecture parameter, 𝛼 is created with the following en-
tries:

𝛼
(𝑖, 𝑗)
𝑂𝑝

=

{
1, if 𝑂𝑝 (𝑥 (𝑖)) present in 𝐴

0, otherwise
(2)

Using 𝛼 , the architecture,𝐴, is selected in the supernet and the accu-
racy of the supernet on the validation data is used as the estimated
fitness of 𝐴.

4.3 Search Space Reduction
Reducing the search space involves reducing the number of opera-
tions considered between any two nodes. This is done by selecting
the top-k operations in each row of the 𝛼 where k represents the
number of operations for the new reduced search space. For ex-
ample, in Figure 3, the top-2 operations (𝑂𝑝2,𝑂𝑝3) are selected in
𝛼 (1, 2) from the old search space, Ω3, to create a new search space
Ω2. Since all the operations present in Ω2 are also present in Ω3, the
supernet for Ω2, (i.e. 𝑆Ω2), can be created in 2 ways: (i)With Super-
net Weight Inheritance: Here, the smaller search space supernet
inherits/copies the weights from the previous bigger search space

Figure 3: Abstract illustration of reduction of search space
from a bigger search space with 3 operations to smaller
search space with 2 operations. The highlighted cells are the
operations that have been removed from the search space.
𝑊

𝑂𝑝 (.)
𝑛1,𝑛2 represents the weights of the allowed operations be-

tween node 𝑛1 and node 𝑛2. (𝑊𝑂𝑝 (.)
𝑛1,𝑛2)

′ represents randomly
initialized weights.

GECCO ’22, July 9–13, 2022, Boston, MA, USA Nilotpal Sinha and Kuan-Wen Chen

supernet. (ii)Without Supernet Weight Inheritance: Here, the
smaller search space supernet is created with random weights. For
example, in Figure 3, the weights of the operations between node
1 and 2 for 𝑆Ω2 are inherited from 𝑆Ω3 while the weights of the
operations in (𝑆Ω2)′ are randomly intialized.

Algorithm 1: pEvoNAS
Input: Population size 𝑁𝑝𝑜𝑝 , training data𝔇𝑡𝑟 , validation

data𝔇𝑣𝑎 , training epochs 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 , list of operation
numbers 𝑂𝑝 , convergence number 𝑁𝑐𝑜𝑛𝑣 .

Output: Best architecture, 𝐸𝑏𝑒𝑠𝑡 .
1 foreach 𝑜𝑝 ∈ 𝑂𝑝 do
2 if smaller search space then

/* Search space reduction */

3 Reduce search space to 𝑜𝑝 operations, Ω𝑜𝑝 , using
𝐸𝑏𝑒𝑠𝑡 ;

/* Weight inheritance */

4 Create supernet, 𝑆Ω𝑜𝑝 , with weights𝑊 inherited
from previous supernet;

5 else // For full search space

6 Initialize supernet, 𝑆Ω𝑜𝑝 , with random weights𝑊
for full search space;

7 end
8 TrainSupernet(𝑆Ω𝑜𝑝 ,𝑁𝑒𝑝𝑜𝑐ℎ𝑠 ,𝔇𝑡𝑟);

/* Architecture search using evolution */

9 𝐸𝑏𝑒𝑠𝑡 ← EA(Ω𝑜𝑝 , 𝑆Ω𝑜𝑝 , 𝑁𝑐𝑜𝑛𝑣 ,𝔇𝑣𝑎 , 𝑁𝑝𝑜𝑝);
10 if Final search space then
11 return 𝐸𝑏𝑒𝑠𝑡

12 end
13 end

4.4 pEvoNAS
The entire process is summarized in Algorithm 1. It begins with a
list of number of operations, 𝑂𝑝 , to which the search space is to be
reduced. For each operation number, 𝑜𝑝 ∈ 𝑂𝑝 , a supernet, 𝑆Ω𝑜𝑝 , is
created for the search space, Ω𝑜𝑝 . If it is the first search space (i.e.
full search space) then the weights of 𝑆Ω𝑜𝑝 are randomly initialized,
otherwise they are inherited from the previous search space trained
supernet. The supernet, 𝑆Ω𝑜𝑝 , is then trained for 𝑁𝑒𝑝𝑜𝑐ℎ𝑠 epochs.
The evolutionary algorithm (EA) then performs the architecture
search in Ω𝑜𝑝 . It starts with a population of 𝑁𝑝𝑜𝑝 architectures,
which are sampled from a uniform distribution on the interval [0, 1).
Fitness of each individual in the population is evaluated using the
trained 𝑆Ω𝑜𝑝 . The population is then evolved using crossover and
mutation operations to create the next generation population re-
placing the previous generation population. The best architecture,
𝐸𝑏𝑒𝑠𝑡 , in each generation does not undergo any modification and
is automatically copied to the next generation. This ensures that
the algorithm does not forget the best architecture learned thus far
and gives an opportunity to old generation architecture to compete
against the new generation architecture. The process of popula-
tion evaluation and then evolution is repeated until 𝐸𝑏𝑒𝑠𝑡 does not
change for 𝑁𝑐𝑜𝑛𝑣 generations, showing the convergence to an archi-
tecture. 𝐸𝑏𝑒𝑠𝑡 is then used to reduce the search space. The whole

process is repeated until the search space is reduced to the final
search space, Ω𝑓 𝑖𝑛𝑎𝑙 . For Ω𝑓 𝑖𝑛𝑎𝑙 , 𝐸𝑏𝑒𝑠𝑡 is returned as the searched
architecture. The pseudocodes for the supernet training and the
evolutionary algorithm are given in the supplementary.

Figure 4: Abstract illustration of the evolution process using
crossover and mutation.

Crossover and Mutation Operations: Crossover combines 2
parents (𝑃1, 𝑃2), selected through tournament selection [10], to cre-
ate a new child architecture, which may perform better than the
parents. In tournament selection, a certain number of architectures
are randomly selected from the current population and the most
fit architecture from the selected group becomes the parent. We
get 𝑃1 and 𝑃1 on applying tournament selection two times which
are then used to create a single child architecture. This is done
by copying the edge between 𝑛𝑜𝑑𝑒𝑖 and 𝑛𝑜𝑑𝑒 𝑗 , from either 𝑃1 or
𝑃2, with 50% probability, to the child architecture between 𝑛𝑜𝑑𝑒𝑖
and 𝑛𝑜𝑑𝑒 𝑗 . Mutation refers to a random change to an individual
architecture in the population. The algorithm uses the mutation
rate [10], which decides the probability of changing the architec-
ture parameter, 𝛼𝑖, 𝑗 , between node 𝑖 and node 𝑗 . This is done by
re-sampling 𝛼𝑖, 𝑗 from a uniform distribution on the interval [0, 1).
As illustrated in Figure 4, 𝛼0,1

𝑐ℎ𝑖𝑙𝑑
and 𝛼1,2

𝑐ℎ𝑖𝑙𝑑
are copied from 𝑃1 and

𝑃2 respectively during crossover while applying mutation to 𝛼0,2
𝑐ℎ𝑖𝑙𝑑

in the child architecture.

5 EXPERIMENTS
5.1 Search Spaces
In this section, we report the performance of pEvoNAS in terms
of a neural architecture search on two different search spaces: 1)
Search space 1 (S1) [20] and 2) Search space 2 (S2)[9]. In S1, we
search for both normal and reduction cells where each node 𝑥 (𝑗)
maps two inputs to one output. Here, each cell has seven nodes
with first two nodes being the output from previous cells and last
node as output node, resulting in 14 edges among them. There are
8 operation in S1, so each architecture is represented by two 14x8
matrices, one each for normal cell and reduction cell. In S2, we
search for only normal cells, where each node 𝑥 (𝑗) is connected

Neural Architecture Search using Progressive Evolution GECCO ’22, July 9–13, 2022, Boston, MA, USA

to the previous node 𝑥 (𝑖) (i.e. 𝑖 < 𝑗). It is a smaller search space
where we only search for the normal cell in Figure 2(a). It provides
a unified benchmark for almost any up-to-date NAS algorithm
by providing results of each architecture in the search space on
CIFAR-10, CIFAR-100 and ImageNet-16-12. Here, each cell has four
nodes with first node as input node and last node as output node,
resulting in 6 edges among them. There are 5 operations in S2, so
each architecture is represented by one 6x5 matrix for the normal
cell.

5.2 Dataset
CIFAR-10 and CIFAR-100 [15] has 50K training images and 10K
testing images with images classified into 10 classes and 100 classes
respectively. ImageNet [5] is well known benchmark for image
classification containing 1K classes with 1.28 million training im-
ages and 50K images test images. ImageNet-16-120 [4] is a down-
sampled variant of ImageNet where the original ImageNet is down-
sampled to 16x16 pixels with labels ∈ [0, 120] to construct ImageNet-
16-120 dataset. The settings used for the datasets in S1 are as fol-
lows:
• CIFAR-10: We split 50K training images into two sets of size
25K each, with one set acting as the training set and the
other set as the validation set.
• CIFAR-100: We split 50K training images into two sets. One
set of size 40K images becomes the training set and the other
set of size 10K images becomes the validation set.

The settings used for the datasets in S2 are as follows:
• CIFAR-10: The same settings as those used for S1 is used here
as well.
• CIFAR-100: The 50K training images remains as the training
set and the 10K testing images are split into two sets of size
5K each, with one set acting as the validation set and the
other set as the test set.
• ImageNet-16-120: It has 151.7K training images, 3K validation
images and 3K test images.

5.3 Implementation Details
5.3.1 Supernet Training Settings: In general, the supernet suf-
fers from high memory requirements which makes it difficult to fit
it in a single GPU. For S1, we follow [20] and use a smaller supernet,
called proxy model which is created with 20 stacked cells and 16
initial channels. It is trained on both CIFAR-10 and CIFAR-100 with
SGD for 50 epochs (i.e. 𝑁𝑒𝑝𝑜𝑐ℎ𝑠), which is chosen based on the
experiment conducted in S2, shown in Figure 5(a). All the other
settings are also same for both datasets i.e. batch size of 64, weight
decay _ = 3 × 10−4, cutout[6], initial learning rate [𝑚𝑎𝑥 = 0.025
(annealed down to 0 by using a cosine schedule without restart[21])
and momentum 𝜌 = 0.9. For S2, we do not use a proxy model as the
size of the supernet is sufficiently small to be fitted in a single GPU.
For training, we follow the same settings as those used in S1 for
CIFAR-10, CIFAR-100 and ImageNet16-120 except batch size of 256.

5.3.2 Architecture evaluation: Here, the discovered architec-
ture, 𝐸𝑏𝑒𝑠𝑡 (i.e. discovered cells), at the end of the architecture
search is trained on the dataset to evaluate its performance for
comparing with other NAS methods. For S1, we follow the training

Figure 5: Tests conducted for hyperparameter selection in
S2. Test accuracy vs (a) training epochs of supernet, and (b)
mutation rate.

settings used in DARTS [20]. Here, a larger network, called proxy-
less network [17], is created using 𝐸𝑏𝑒𝑠𝑡 with 20 stacked cells and
36 initial channels for both CIFAR-10 and CIFAR-100 datasets. It
is then trained for 600 epochs on both the datasets with the same
settings as the ones used in the supernet training above. Following
recent works [24][25][40] [20][18], we use an auxiliary tower with
0.4 as its weights, path dropout probability of 0.2 and cutout [6]
for additional enhancements. For ImageNet, 𝐸𝑏𝑒𝑠𝑡 is created with
14 cells and 48 initial channels in the mobile setting, wherein the
input image size is 224 x 224 and the number of multiply-add oper-
ations in the model is restricted to less than 600M. It is trained on 8
NVIDIA V100 GPUs by following the training settings used in [3].

Table 2: Comparison of pEvoNAS with other NAS methods
in S1 in terms of test accuracy (higher is better) on CIFAR-
10.

Architecture Top-1 Params GPU Search
Acc. (%) (M) Days Method

ResNet[12] 95.39 1.7 - manual
DenseNet-BC[13] 96.54 25.6 - manual
ShuffleNet[38] 90.87 1.06 - manual
PNAS[18] 96.59 3.2 225 SMBO
RSPS[17] 97.14 4.3 2.7 random
NASNet-A[40] 97.35 3.3 1800 RL
ENAS[24] 97.14 4.6 0.45 RL
DARTS[20] 97.24 3.3 4 gradient
GDAS[8] 97.07 3.4 0.83 gradient
SNAS[36] 97.15 2.8 1.5 gradient
SETN[7] 97.31 4.6 1.8 gradient
AmoebaNet-A[25] 96.66 3.2 3150 EA
Large-scale Evo.[26] 94.60 5.4 2750 EA
Hierarchical Evo.[19] 96.25 15.7 300 EA
CNN-GA[33] 96.78 2.9 35 EA
CGP-CNN[30] 94.02 1.7 27 EA
AE-CNN[32] 95.7 2.0 27 EA
NSGANetV1-A2[23] 97.35 0.9 27 EA
AE-CNN+E2EPP[31] 94.70 4.3 7 EA
NSGA-NET[22] 97.25 3.3 4 EA
pEvoNAS-C10A 97.52 3.6 1.20 EA
pEvoNAS-C10B 97.36 3.5 1.31 EA
pEvoNAS-C10C 97.27 3.0 1.41 EA
pEvoNAS-C10rand 96.83 3.37 0.11 random

GECCO ’22, July 9–13, 2022, Boston, MA, USA Nilotpal Sinha and Kuan-Wen Chen

Table 3: Comparison of pEvoNAS with other NAS methods
in S1 in terms of test accuracy (higher is better) on CIFAR-
100.

Architecture Top-1 Params GPU Search
Acc. (%) (M) Days Method

ResNet[12] 77.90 1.7 - manual
DenseNet-BC[13] 82.82 25.6 - manual
ShuffleNet[38] 77.14 1.06 - manual
PNAS[18] 80.47 3.2 225 SMBO
MetaQNN[1] 72.86 11.2 90 RL
ENAS[24] 80.57 4.6 0.45 RL
AmoebaNet-A[25] 81.07 3.2 3150 EA
Large-scale Evo.[26] 77.00 40.4 2750 EA
CNN-GA[33] 79.47 4.1 40 EA
AE-CNN[32] 79.15 5.4 36 EA
NSGANetV1-A2[23] 82.58 0.9 27 EA
Genetic CNN[35] 70.95 - 17 EA
AE-CNN+E2EPP[31] 77.98 20.9 10 EA
NSGA-NET[22] 79.26 3.3 8 EA
pEvoNAS-C100A 82.59 3.0 1.25 EA
pEvoNAS-C100B 82.44 3.1 1.28 EA
pEvoNAS-C100C 82.23 3.3 1.22 EA
pEvoNAS-C100rand 81.03 2.8 0.15 random

Table 4: Comparison of pEvoNAS with other NAS methods
in S1 in terms of test accuracy (higher is better) on ImageNet.

Architecture Test Accuracy (%) Params +× GPU Search
top 1 top 5 (M) (M) Days Method

MobileNet-V2, ([27]) 72.0 91.0 3.4 300 - manual
PNAS, ([18]) 74.2 91.9 5.1 588 225 SMBO
NASNet-A, ([40]) 74.0 91.6 5.3 564 1800 RL
NASNet-B, ([40]) 72.8 91.3 5.3 488 1800 RL
NASNet-C, ([40]) 72.5 91.0 4.9 558 1800 RL
DARTS, ([20]) 73.3 91.3 4.7 574 4 gradient
GDAS, ([8]) 74.0 91.5 5.3 581 0.83 gradient
SNAS, ([36]) 72.7 90.8 4.3 522 1.5 gradient
SETN, ([7]) 74.3 92.0 5.4 599 1.8 gradient
AmoebaNet-A, ([25]) 74.5 92.0 5.1 555 3150 EA
AmoebaNet-B, ([25]) 74.0 91.5 5.3 555 3150 EA
AmoebaNet-C, ([25]) 75.7 92.4 6.4 570 3150 EA
NSGANetV1-A2, ([23]) 74.5 92.0 4.1 466 27 EA
pEvoNAS-C10A 74.9 92.4 5.1 567 1.20 EA
pEvoNAS-C100A 73.2 91.3 4.3 478 1.25 EA

5.3.3 EvolutionaryAlgorithmSettings: The architecture search
begins with the full search space for both the search spaces. So,
for S1, the architecture search begins with the search space with 8
operations which is then progressively reduced to smaller search
space regions with 5 operations and then finally to 2 operations.
While, for S2, the architecture search begins with the search space
with 5 operations which is then progressively reduced to search
spaces with 3 and 2 operations. Following [31][32], the evolutionary
algorithm (EA), for both S1 and S2, uses a population size of 20 in
each generation. For the tournament selection, 5 architectures are
chosen randomly from the current population and the best best
architecture among them becomes the parent. We apply the tourna-
ment selection 2 times to get 2 parents for the crossover operation.
Mutation rate of 0.1 was chosen based on the experiment conducted

in S2, shown in Figure 5(b). The evolutionary search runs until the
best architecture, 𝐸𝑏𝑒𝑠𝑡 , is repeated for 10 generations (i.e. 𝑁𝑐𝑜𝑛𝑣).
All the above training and architecture search were performed on
a single Nvidia RTX 3090 GPU.

5.4 Results
5.4.1 Search Space 1 (S1): We performed 3 architecture searches
on both CIFAR-10 and CIFAR-100 with different random number
seeds; their results are provided in Table 2 and Table 3. The re-
sults show that the cells discovered by pEvoNAS on CIFAR-10 and
CIFAR-100 achieve better results than those by human designed,
RL based, gradient-based and EA-based methods. On comparing
the computation time (or search cost) measured in terms of GPU
days, we found that pEvoNAS performs the architecture search
in significantly less time as compared to other EA-based methods
while giving better search results. GPU days for any NAS method
is calculated by multiplying the number of GPUs used in the NAS
method by the execution time (reported in units of days). All the
discovered architectures for S1 are provided in the supplementary.

We followed [18][20][24] [25][40] to compare the transfer capa-
bility of pEvoNAS with that of the other NAS methods, wherein
the discovered architecture on a dataset was transferred to another
dataset (i.e. ImageNet) by retraining the architecture from scratch
on the new dataset. The best discovered architectures from the ar-
chitecture search on CIFAR-10 and CIFAR-100 (i.e. pEvoNAS-C10A
and pEvoNAS-C100A) were then evaluated on the ImageNet dataset
in mobile setting and the results are provided in Table 4. The re-
sults show that the cells discovered by pEvoNAS on CIFAR-10 and
CIFAR-100 can be successfully transferred to ImageNet, while using
significantly less computational resources than EA based methods

Figure 6: Comparision of pEvoNAS with (a) gradient-based
methods, (b) EA-based method, (c) RL method and (d) ran-
dom search on CIFAR-10 for the search space S2.

Neural Architecture Search using Progressive Evolution GECCO ’22, July 9–13, 2022, Boston, MA, USA

Table 5: Comparison of pEvoNASwith other NASmethods onNAS-Bench-201 (i.e. S2)[9] withmean± std. accuracies onCIFAR-
10, CIFAR-100 and ImageNet16-120 (higher is better). Optimal refers to the best architecture accuracy for each dataset. Search
times are given for a CIFAR-10 search on a single GPU.

Method Search CIFAR-10 CIFAR-100 ImageNet-16-120 Search
(seconds) validation test validation test validation test Method

RSPS [17] 7587 84.16 ± 1.69 87.66 ± 1.69 59.00 ± 4.60 58.33 ± 4.64 31.56 ± 3.28 31.14 ± 3.88 random
DARTS-V1 [20] 10890 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00 gradient
DARTS-V2 [20] 29902 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00 gradient
GDAS [8] 28926 90.00 ± 0.21 93.51 ± 0.13 71.14 ± 0.27 70.61 ± 0.26 41.70 ± 1.26 41.84 ± 0.90 gradient
SETN [7] 31010 82.25 ± 5.17 86.19 ± 4.63 56.86 ± 7.59 56.87 ± 7.77 32.54 ± 3.63 31.90 ± 4.07 gradient
ENAS [24] 13314 39.77±0.00 54.30 ± 0.00 15.03 ± 00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00 RL
EvNAS [29] 22445 88.98±1.40 92.18±1.11 66.35±2.59 66.74±3.08 39.61±0.72 39.00±0.44 EA
pEvoNAS 4509 90.54±0.57 93.63±0.42 69.28±2.13 69.05±1.99 40.00±3.22 39.98±3.76 EA
pEvoNAS (w/o inherit) 4509 86.86±2.50 89.83±3.16 67.90±2.09 68.21±2.48 36.70±6.60 35.91±7.92 EA
ResNet N/A 90.83 93.97 70.42 70.86 44.53 43.63 manual
Optimal N/A 91.61 94.37 73.49 73.51 46.77 47.31 N/A

Figure 7: Visualizing the search space by plotting the ground truth accuracies of all architectures in the search space. The
x-axis represents all 15,625 architectures in the search space S2 [9] and the y-axis represents the true test accuracies. (a) Search
space reduction using pEvoNAS. (b) Comparison of search space reduction using pEvoNAS and random search. (c) Comparison
of search space reduction using pEvoNAS with weight inheritance (inherit) and no weight inheritance (w/o inherit).

5.4.2 Search Space 2 (S2): We performed 3 architecture searches
each on CIFAR-10, CIFAR-100 and ImageNet-16-120 and their re-
sults are provided in Table 5. The results show that pEvoNAS out-
performs most of the NAS methods except GDAS [8] on CIFAR-100

GECCO ’22, July 9–13, 2022, Boston, MA, USA Nilotpal Sinha and Kuan-Wen Chen

and ImageNet-16-120. However, GDAS performs worse when the
size of the search space increases as can be seen for S1 in Table 2.
In Figure 6, we compare the progression of the search of pEvoNAS
with that of other NAS methods. From the figure, we find that
gradient-based method like DARTS, [20], suffers from overfitting
problem wherein it converges to parameter-less operation, skip-
connect (i.e. a local optimum) [3][37] [9]. In contrast, pEvoNAS does
not get stuck to a local optimum architecture due to its stochastic
nature. We also find that pEvoNAS converges to a solution much
faster than other NAS methods.

6 FUTHER ANALYSIS
6.1 Visualizing the Architecture Search
For analyzing the architecture search, we use S2 [9] to visualize
the search process as it provides the true test accuracies of all the
architectures in the search space. As illustrated in Figure 7(a), the
search process is visualized by plotting all the architecures present
in a given search space. From the figure, we find that the archi-
tecture search begins with the full search space (i.e. 5 operations)
and is then progressively reduced to smaller search spaces (i.e. 3
operations and 2 Operations). More specifically, pEvoNAS reduces
the search spaces to regions with high quality architectures and
finally leading to the final search space (i.e. 2 operations) containing
all architectures with top test accuracies.

6.2 Ablation Studies
6.2.1 ComparisonwithRandomSearch: Here, the search space,
S1, is randomly reduced to the final search space (i.e. # Operation:
2), Ω𝑟𝑎𝑛𝑑

2 , and then a trained supernet is used to evaluated 100
random architectures in Ω𝑟𝑎𝑛𝑑

2 . The best architecture is then re-
turned as the final architecture, reported in Table 2 and Table 3
as pEvoNAS-C10rand and pEvoNAS-C100rand for CIFAR-10 and
CIFAR-100 respectively. We found that the random search performs
worse than pEvoNAS while taking lesser search time. To analyze
the random search, we visualize the search space discovered us-
ing the random search in S2, shown in Figure 7(b), by randomly
reducing the search space to smaller search spaces (i.e. 3 operations
and 2 Operations). From the figure, we can see that the random
search space reduction selects the search space with both good
and bad quality architectures which results into degraded output
architecture.

6.2.2 Effectiveness of Weight Inheritance: To illustrate the
effectiveness of the weight inheritance of supernet, we perform
the architecture search without weight inheritance in the search
space S2 (given in Table 5) and found degraded search performance
on all 3 datasets. We further analyze the differences in the search
processes by plotting the search spaces discovered by pEvoNAS
with inheritance and without inheritance respectively in Figure 7(c).
From the figure, we see that the final search space discovered by
not using weight inheritance contains both low and high quality
architectures as compared to only high quality architectures for
pEvoNAS with weight inheritance. This reduction to lower quality
search space shows the effectiveness of the weight inheritance of
supernet during the search process.

7 CONCLUSION
The goal of this paper was to mitigate the noisy fitness estimation
nature of the supernet by progressively reducing the search space
to smaller regions of good quality architecture. This was achieved
by using a trained supernet for architecture evaluation during the
architecture search while using genetic algorithm to find regions in
the search space with good quality architectures. The search then
progressively reduces the search space to these regions and contin-
ues to search using a smaller supernet which inherits its weights
from previous supernet. The use of trained supernet for evaluating
the architectures in the population allowed us to skip the training
of each individual architecture from sratch for its fitness evaluation
and thus resulting in the reduced search time. We applied pEvoNAS
to two different search spaces to show its effectiveness in gener-
alizing to any cell-based search space. Experimentally, pEvoNAS
reduced the search time of EA-based search methods significantly
while achieving better results on CIFAR-10 and CIFAR-100 datasets
in S1 search space. We also visualized the search process using
the NAS benchmark, NAS-Bench-201[9] and found that pEvoNAS
progressively reduces the search space to smaller search spaces
with top accuracy architectures.

ACKNOWLEDGMENTS
This work was supported in part by the Ministry of Science and
Technology of Taiwan (MOST 110-2628-E-A49-012-, MOST 110-
2634-F-A49-006-, and MOST 111-2420-H-369-001-). Furthermore,
we are grateful to the National Center for High-performance Com-
puting for computer time and facilities.

REFERENCES
[1] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2017. Designing

Neural Network Architectures using Reinforcement Learning. International
Conference on Learning Representations (2017).

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc
Le. 2018. Understanding and simplifying one-shot architecture search. In Inter-
national Conference on Machine Learning. PMLR, 550–559.

[3] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. 2019. Progressive differentiable
architecture search: Bridging the depth gap between search and evaluation. In
Proceedings of the IEEE International Conference on Computer Vision. 1294–1303.

[4] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. 2017. A downsampled
variant of imagenet as an alternative to the cifar datasets. arXiv preprint
arXiv:1707.08819 (2017).

[5] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Fei-Fei Li. 2009. ImageNet: a
large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition. 248–255.

[6] Terrance DeVries and Graham W Taylor. 2017. Improved regularization of
convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552
(2017).

[7] Xuanyi Dong and Yi Yang. 2019. One-shot neural architecture search via self-
evaluated template network. In Proceedings of the IEEE International Conference
on Computer Vision. 3681–3690.

[8] Xuanyi Dong and Yi Yang. 2019. Searching for a robust neural architecture in
four gpu hours. In Proceedings of the IEEE Conference on computer vision and
pattern recognition. 1761–1770.

[9] Xuanyi Dong and Yi Yang. 2020. NAS-Bench-201: Extending the Scope of Re-
producible Neural Architecture Search. In International Conference on Learning
Representations. https://openreview.net/forum?id=HJxyZkBKDr

[10] Agoston E Eiben, James E Smith, et al. 2003. Introduction to evolutionary computing.
Vol. 53. Springer.

[11] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Neural architecture
search: A survey. arXiv preprint arXiv:1808.05377 (2018).

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE

https://openreview.net/forum?id=HJxyZkBKDr

Neural Architecture Search using Progressive Evolution GECCO ’22, July 9–13, 2022, Boston, MA, USA

Conference on Computer Vision and Pattern Recognition. 4700–4708.
[14] Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2

(1938), 81–93.
[15] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features

from tiny images. (2009).
[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in Neural Information
Processing Systems. 1097–1105.

[17] Liam Li and Ameet Talwalkar. 2020. Random search and reproducibility for neural
architecture search. In Uncertainty in Artificial Intelligence. PMLR, 367–377.

[18] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li,
Fei-Fei Li, Alan Yuille, Jonathan Huang, and Kevin Murphy. 2018. Progressive
neural architecture search. In Proceedings of the European Conference on Computer
Vision (ECCV). 19–34.

[19] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray
Kavukcuoglu. 2018. Hierarchical representations for efficient architecture search.
In International Conference on Learning Representations. https://openreview.net/
forum?id=BJQRKzbA-

[20] Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. DARTS: Differentiable
architecture search. In International Conference on Learning Representations. https:
//openreview.net/forum?id=S1eYHoC5FX

[21] Ilya Loshchilov and Frank Hutter. 2017. SGDR: Stochastic Gradient Descent
with Warm Restarts. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net. https://openreview.net/forum?id=Skq89Scxx

[22] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar, Kalyanmoy Deb,
Erik Goodman, and Wolfgang Banzhaf. 2019. Nsga-net: neural architecture
search using multi-objective genetic algorithm. In Proceedings of the Genetic and
Evolutionary Computation Conference. 419–427.

[23] Zhichao Lu, Ian Whalen, Yashesh Dhebar, Kalyanmoy Deb, Erik Goodman, Wolf-
gang Banzhaf, and Vishnu Naresh Boddeti. 2020. Multi-objective evolutionary
design of deep convolutional neural networks for image classification. IEEE
Transactions on Evolutionary Computation (2020).

[24] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Effi-
cient neural architecture search via parameters sharing. In Proceedings of the 35th
International Conference onMachine Learning (Proceedings of Machine Learning Re-
search, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan,
Stockholm Sweden, 4095–4104. http://proceedings.mlr.press/v80/pham18a.html

[25] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2019. Regularized
evolution for image classifier architecture search. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 33. 4780–4789.

[26] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-
matsu, Jie Tan, Quoc V Le, and Alexey Kurakin. 2017. Large-scale evolution of
image classifiers. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org, 2902–2911.

[27] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[28] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[29] Nilotpal Sinha and Kuan-Wen Chen. 2021. Evolving neural architecture using
one shot model. In Proceedings of the Genetic and Evolutionary Computation
Conference. 910–918.

[30] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. 2017. A genetic
programming approach to designing convolutional neural network architectures.
In Proceedings of the genetic and evolutionary computation conference. 497–504.

[31] Yanan Sun, Handing Wang, Bing Xue, Yaochu Jin, Gary G Yen, and Mengjie
Zhang. 2019. Surrogate-assisted evolutionary deep learning using an end-to-end
random forest-based performance predictor. IEEE Transactions on Evolutionary
Computation 24, 2 (2019), 350–364.

[32] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G Yen. 2019. Completely au-
tomated CNN architecture design based on blocks. IEEE transactions on neural
networks and learning systems 31, 4 (2019), 1242–1254.

[33] Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Jiancheng Lv. 2020.
Automatically designing CNN architectures using the genetic algorithm for
image classification. IEEE transactions on cybernetics 50, 9 (2020), 3840–3854.

[34] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. 2013. On the
importance of initialization and momentum in deep learning. In International
conference on machine learning. PMLR, 1139–1147.

[35] Lingxi Xie and Alan Yuille. 2017. Genetic cnn. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision. 1379–1388.

[36] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. 2019. SNAS: stochastic
neural architecture search. In International Conference on Learning Representations.
https://openreview.net/forum?id=rylqooRqK7

[37] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox,
and Frank Hutter. 2020. Understanding and robustifying differentiable archi-
tecture search. In International Conference on Learning Representations. https:

//openreview.net/forum?id=H1gDNyrKDS
[38] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufflenet: An ex-

tremely efficient convolutional neural network for mobile devices. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 6848–6856.

[39] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement
learning. arXiv preprint arXiv:1611.01578 (2016).

[40] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018. Learning
transferable architectures for scalable image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 8697–8710.

https://openreview.net/forum?id=BJQRKzbA-
https://openreview.net/forum?id=BJQRKzbA-
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=Skq89Scxx
http://proceedings.mlr.press/v80/pham18a.html
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=H1gDNyrKDS
https://openreview.net/forum?id=H1gDNyrKDS

	Abstract
	1 Introduction
	2 Motivation
	3 Related Work
	4 Proposed Method
	4.1 Search Space and Architecture Representation
	4.2 Performance Estimation
	4.3 Search Space Reduction
	4.4 pEvoNAS

	5 Experiments
	5.1 Search Spaces
	5.2 Dataset
	5.3 Implementation Details
	5.4 Results

	6 Futher Analysis
	6.1 Visualizing the Architecture Search
	6.2 Ablation Studies

	7 Conclusion
	Acknowledgments
	References

