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A B S T R A C T

This paper proposes MAGE — A Malware Antigen Generating Evolutionary algorithm that is capable of
generating unseen variants of a given source malware. MAGE evolves malware variants by employing code
transformation functions as mutation operators and intra-population Jaccard similarity metric as fitness
function. By virtue of these design choices, MAGE is capable of generating active malware variants with
diverse code structure variations while retaining the maliciousness of the source malware. These malware
variants (similar to biological antigens) generated throughout the run of MAGE forms a potential dataset of
malware variants. The dataset can be used to train an adaptive Antivirus engine to learn the code structure
variations that make up the space of malware variants. This could augment the engines ability to detect unseen
malware variants, thus preventing attacks from the same. The efficacy of MAGE has been demonstrated with
two malware viz. Timid , a COM infector and Intruder, an EXE infector. The simulation experiments demonstrate
the potential and versatility of MAGE towards generating diverse malware variants.
1. Introduction

Malicious programs and software have been prevalent since the
early 1970s with the Creeper virus first appearing on the ARPANET.
This, followed by the Elk Cloner and the Brain in the 1980s with latter
as the first PC virus in the wild, heralded the age where even machines
are prone to diseases (Dwan, 2000). Naturally, the genesis of anti-
virus programs too date back to the early 1970s starting with Reaper
(though a benevolent virus itself but developed to get rid of Creeper).
Since then a number of virus and anti-virus programs have appeared
with the latter combating the former and vice versa. With the advent
of the digital age, the security of end users’ computers largely rests
with effective Anti-Virus (AV) scanners making anti-virus programs
indispensable (Mawgoud et al., 2021).

However, despite their widespread use, it is also well known that
these AV scanners struggle to identify the maliciousness of a pro-
gram/file/software as even minor modifications to code structure result
in the malware (used interchangeably with virus henceforth in this
paper) variants evading detection (Malanov & Kamlyuk, 2012). Most
AV scanners find it difficult to identify malware variants as they are
minor modifications in the malware code and thus do not match with
the pre-identified malware signature. This poses a major challenge for
anti-malware researchers developing malware scanning engines as they
are unable to predict and identify all the possible variants without
manual intervention. To combat this, anti-malware companies are now
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embracing Artificial Intelligence & Machine Learning (Bose et al., 2020;
Chen et al., 2018; Khalilian et al., 2018; Liu et al., 2020; Paul & Kumar,
2017; Santacroce et al., 2020; Stiborek et al., 2018; Wadkar et al.,
2020), Deep Learning (Yazdinejad et al., 2020; Zhong & Gu, 2019)
and Evolutionary Algorithm (Afaneh et al., 2013; Divya & Muniasamy,
2015; Wu & Banzhaf, 2010) based strategies to detect malware and
its variants. However, the performance (in terms of accuracy and false
positives) of these learning algorithms are dependent on the underlying
data set used for training and classification and are severely affected
by the lack of availability of such publicly available labelled data
sets (Apruzzese et al., 2018).

The development of such data sets demand creating a large num-
ber of malware variants possibly through code modifications. Most
importantly, the code modifications should also ensure and result in
a diverse set of malware variants that serve as good representatives of
the malware variants’ space. This malware variants’ data set creation is
a herculean task if attempted through manual approach. Consequently,
we need to resort to automated methods to create malware variants.
In this paper, we present an evolutionary algorithmic approach to
evolve valid and potential (capable of evading effective anti-virus
scanners) variants of a given malware. These evolved malware vari-
ants (similar to biological antigens) can then be presented to malware
analysis engines to train and improve their malware detection algo-
rithms thereby providing active acquired immunity to the end system
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against the existing numerous malware variants. The Evolutionary Al-
gorithm (EA) presented in this paper, called MAGE - Malware Antigens
Generating Evolutionary algorithm, employs well-known code transfor-
mation functions to mutate malware code structure to evolve potential
active malware variants. MAGE also employs an intra-population Jac-
card similarity fitness function to ensure that the mutated variants are
diverse in terms of code structure variations.

Using the well known COM infector virus ‘‘Timid’’ as source, MAGE
was able to mutate the assembly level code structure using transforma-
tion functions to evolve a number of effective and unique Timid virus
variants. The evolved variants were able to successfully evade over
60 well known antivirus scanners with as high as 90% evasion rate.
The choice of transformation functions as mutations and crossovers,
ensure that every chromosome generated during the course of MAGE’s
run to be an active Timid virus variant thus making MAGE a poten-
tial automated approach to assist anti-malware researchers towards
generating a data set of virus variants. The generic nature of MAGE
towards generating virus variants has been demonstrated on another
EXE infector virus Intruder.

Specifically, our contributions in this paper are:

• An evolutionary algorithm (MAGE) to evolve potential virus vari-
ants from a single source virus towards creating a virus database.

• The choice of transformation functions and a Jaccard similarity
based intra-population fitness function which serves as generic
primitives for evolving assembly code structural modifications.

• Validation on two viruses (COM infector and EXE infector)
• MAGE as an Evolutionary Engine for antivirus researchers to

generate valid & diverse variants for any given malware.

It is worth pointing out that the focus of this proposed work is to-
wards demonstrating the potential of MAGE in generating unique virus
variants and so creating a virus variants’ data set than on the evasion
efficacy of the dataset itself. This dataset could serve as antigens and be
used to augment an antivirus scanners’ ability to detect unseen malware
variants thus preventing infection.

The rest of the paper is organized as follows: Section 2 reviews
the related works in the literature aligning with the proposed work;
Section 3 presents the design of MAGE for evolving diverse malware
variants; Section 4 details simulation design, studies and analyses;
finally Section 5 concludes the paper.

2. Background & related work

A computer virus is a program that can infect other programs by
modifying them to include a possibly evolved copy of itself (Cohen,
1987) causing widespread destruction while remaining undetected.
Consequently, antivirus (AV) scanners detect and prevent viruses from
causing mayhem. The scanners use binary analysis techniques (roughly
classified into static, dynamic and symbolic or concolic analysis) to
analyse potentially malicious program executables to build its human
readable representation for automated detection (Murali et al., 2020).
Key features of the virus are identified/extracted to form a signature.
The antivirus scanner scans all new binaries in the computing en-
vironment for these signature patterns which identify the malicious
entity.

Alternatively, Biological Immune Systems (BIS) are also used as
models which attempt to detect and purge the virus from the computing
environment (Lamont et al., 1999). The BIS are comparable to AV
systems where both have a ‘‘detector’’ to differentiate between host and
non-host elements; a ‘‘classifier’’ to isolate non-host elements and group
them based on their characteristics; a ‘‘cleansing agent’’ to eliminate
the non-host element and a ‘‘memory’’ to identify such elements and
the corresponding action taken for future responses. However BIS are
usually used as Intrusion Detection Systems (IDS) meant to identify
potential attacks in a network while AV systems focus on malware
detection on the host device and evolutionary algorithms have been
2

used successfully to evolve exploits (attacks) to automate the testing of
IDS (Dasgupta, 2012; Kayacık et al., 2011). These strategies utilized
system processes, API calls and other anomaly detection techniques
to evolve exploits. However, this paper focuses on generating mal-
ware (antigens) variants for AV systems rather than BIS and uses
the underlying assembly code structure of the malicious executables
to generate diverse variants. The aim is not restricted to generating
variants that evade the antivirus scanner, rather, it is centred around
the possibility of generating diverse variants of a given malicious code
(without affecting the functionality of the malware) so as to build a
reliable malware variant dataset.

Most of the recent work available concentrates on generating signa-
tures for malware analysis, detection and classification. Noreen et al.
(2009a) proposed the first formal literature available that discussed the
possibilities of joining the two domains of malware and evolutionary
algorithms. The authors use a version of the email worm Bagle to
validate the application of evolutionary algorithms in malware. The
worm genome was represented as a collection of all the attack features
such as date, port number, domain, email body, email subject, etc. The
mutation was also on the application level by changing the content
in the features. Shuffling between @hotmail.com, @msn.com, etc. for
the domain feature could be considered as an example of the mutation
in the domain feature. However, the genome representation, mutation,
etc, remains in the application domain and consequently implies that
the solution is not scalable towards other applications and is useful only
if the application domain remains constant. In the case of computer
viruses, such constant factors are extremely rare. Subsequently, Noreen
et al. (2009b) proposed using formal grammar and genetic operators
to evolve malware. The authors formally designed the mini44 malware
using Backus–Naur form or Backus Normal Form (BNF) grammar to
form the production rules and leverage evolutionary algorithms to build
code based on the grammar designed. Their work is an interesting
direction towards malware evolution, however, creating grammars for
each malware in order to evolve variants is in itself a tedious task.

Cani et al. (2014) proposed two ways to make use of evolutionary
algorithms for proactive defence, namely ‘‘Code Generation’’ and ‘‘Code
Integration’’. The focus of their work is in the code integration aspect
which attempts to identify locations within valid executable which
could hide malicious code. The code generation aspect is more related
to this proposed work. The authors make use of a general purpose
EA toolkit 𝜇GP (Squillero, 2005) to generate the virus, however, the
authors are unable to emphatically state that the evolved program still
retains the malicious character of the original. Castro et al. (2019) used
genetic programming to demonstrate that malware can be evolved.
It is interesting to note that their work implements byte level mu-
tations that modify the Windows Portable Executable (PE) files (as
detailed by Anderson et al. (2018) and includes manipulating debug
info, packing or unpacking the file, etc.) by injecting modifications into
the Windows PE files. However, as the authors point out, 53% of the
malware variants generated were corrupt. Our proposed work aims to
show that an alternate approach using vanilla virus source with an
intra-population similarity based fitness function at its core is able to
generate a far more divergent collection of valid virus variants which
would be more useful to improve the AV scanners. However, it is worth
mentioning that the GP based approach in Castro et al. (2019) can
also be adapted for diversity. More recently, Menéndez et al. (2021)
made use of evolutionary computation to evolve an entropy based
polymorphic packer (El Empaquetador Evolutivo (EEE)) that entered
into a co-evolutionary arms race with Virus Total. Their work also
studied Virus Totals learning rate and detection rate by analysing the
EEE generated variants which were detected by Virus Total (which took
3 days to learn the patterns and two days to forget them). In fact, in
a prior work, the author (Menéndez et al., 2019) stated that entropy
played a significant role in detecting patterns altered by concealment
strategies. The summary of similar work is given in Table 1. At this

juncture, it is also worth mentioning that there are techniques that
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Table 1
Summary of similar work.

Authors Variation
type

Adaptable? Comment

Noreen et al. (2009a) Application
level

N Feature based variations
are not adaptable to code
level changes

Noreen et al. (2009b) Grammatical N Defining grammar for
malware is a challenge

Cani et al. (2014) Code level N Focus of work is on
identifying locations within
an EXE to hide malicious
code

Castro et al. (2019) Code level Y Computes similarity of
generated variant with
source as a measure of
diversity

Menéndez et al. (2019) Code level N Focus is on packers as a
wrapper over the malicious
code and not vanilla
malware

enlist the byte code to randomly modify the malware structure (Lin &
Stamp, 2011; Madenur Sridhara & Stamp, 2013; Tamboli et al., 2014;
Venkatachalam & Stamp, 2011) and direct it towards evading detection
by antivirus scanners. While this proposed work does discuss evasion,
it is focused on generating divergent variants to assist AV scanners (and
does not focus on concealment/obfuscation strategies). The entropy of
each of the evolved variants have been calculated to observe the level
of diversity on our proposed evolutionary algorithm towards generating
valid virus variants from vanilla assembly code.

EAs have also been used in the mobile malware domain to test
the available AV solutions (Aydogan & Sen, 2015; Meng et al., 2016;
Xue et al., 2017; Zheng et al., 2012) in an effort to obfuscate mo-
bile malware, confuse the AV systems to misclassify the malware
and/or evolve variants to test the AV systems themselves as well. In
fact, Babaagba et al. (2020a) were successfully able to evolve diverse
malware variants in the android environment using the MAP-Elites
Algorithm and subsequently were able to validate that the evolved
variants were useful in training various machine learning algorithms as
well (Babaagba et al., 2020b). The feature descriptor used by Babaagba
et al. (2020a) is of particular interest as the structural similarity metrics
used a combination of cosine similarity, fuzzy string match, levenshtein
distance, normalized compression distance and results from jplag and
sherlock plagiarism detectors. All these values were then averaged to
between 0 and 1. However, since this work focuses on generating
diverse yet active virus variants capable of affecting the traditional
Microsoft Windows operating system, the underlying language for mu-
tations is the assembly language instructions. Consequently, many of
the standard string matching approaches such as fuzzy hashing are
quite poor when working on the assembly code (Haq & Caballero,
2021). This is further complicated by the fact that the disassembled
assembly code would consist of a very large number of repeated strings
(as the instruction set is usually limited), thus requiring extremely
large computation resources (and resulting in hardware crashes), to use
any string matching/ n-gram approaches to identifying text similarity.
Therefore, only the metrics that can be effectively used without large
computation resources requirements are used for generating diverse
malware variants. A this juncture, it is worth mentioning that genetic
algorithms are frequently used in malware detection and classification
problems for feature selection (Al-Sahaf & Welch, 2019; Harahsheh
et al., 2022) as well as to generate detection rules (Jerbi et al., 2021).
The algorithms are used to augment the capabilities of existing machine
learning and deep learning models using dynamic analysis features
alongside prediction accuracy, precision, recall, etc.

The proposed work is significantly different from existing strategies
as it does not attempt to generate signatures, rather, given a single
3

Fig. 1. Snippet of chromosome (malware) representation in MAGE. Linear representa-
tion where a single malicious program is the chromosome and each line of code is a
gene in the chromosome.

malware assembly code structure, evolutionary algorithms are used to
transform the underlying assembly code structure so as to generate
a diverse set of variants of the input malware. Existing reverse engi-
neering tools such as the Interactive Disassembler (IDA), Radare2, etc.,
can be used to extract the assembly code structure from a malware
executable and MAGE is applied on the reversed assembly code. The
generic code transformation functions employed by MAGE ensure that
the malware thus generated retain its functionality while resulting in a
valid executable.

3. Automated generation of malware variants using MAGE

The standard strategy to evade AV systems is to transform a virus
code into a modified code structure, yet retaining its original behaviour,
thereby masquerading the same virus as an acceptable computer pro-
gram. The typical virus code transformation methods (called transfor-
mation functions henceforth in this paper) include modifying control
flow, transforming data and changing code layout (Hosseinzadeh et al.,
2018). This paper intends to employ EAs to automatically transform the
code structure of a given virus code using the above mentioned trans-
formation functions as code mutations in order to generate potential
virus variants. At this juncture, we reiterate that the focus and potential
of the work is on generating/evolving diverse virus variants rather than
attempting to evade AV scanners. Formally, this EA based automated
generation of malware variants can be stated as follows.

Given a virus code 𝐶 (and the possibility of a large number of potential
variants 𝐶 ′

𝑖 , {∀𝑖 → 1, 2, 3,… , 𝑛; 𝑛 → ∞}, EA based malware variant
generation problem is to apply an Evolutionary Algorithm 𝐸 on 𝐶 to
generate potential variants 𝐶 ′

𝑗 {𝑗 → 1,… , 𝑁𝑃 }; 𝑁𝑃 is the population
size (with 𝐶 ′

𝑗 ⊂ 𝐶 ′
𝑖 possibly good representation of variant space), using

transformation functions 𝐹𝑗 for code mutation i.e. 𝐶 ′
𝑗 = 𝐹 (𝐶), where 𝐹𝑗 ⊂

{𝜓𝑝, 𝜏𝑞 , 𝜎𝑟}∀𝑗 𝑝, 𝑞, 𝑟 → 1, 2, 3,… , 𝑛 (comprising chosen code transformation
function instances (𝑝, 𝑞, 𝑟) respectively from control flow modification (𝜓),
data transformation (𝜏) and code layout change (𝜎) and 𝐹 is the combi-
nation of transformation functions 𝐹𝑗s) such that the maliciousness of each
of the generated variants is retained, the resultant variant dataset is diverse
in nature and the generated variants evade good number of if not all of the
well-known industry standard AV scanners.

Timid, a well-known COM infector virus targeting Microsoft Win-
dows OS has been chosen as the candidate virus for all simulation
experiments and The Little Black Book of Computer Viruses (Ludwig,
1991) provides the source for the virus. The infection process of the
virus involves searching the current directory for uninfected files and
attaching itself to the end of these uninfected files. It does not traverse
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Fig. 2. Code transformation functions employed as mutation operators in MAGE.
multiple directories or files and so can be easily contained. It also does
not perform any destructive actions such as file deletion and the like.
It merely copies itself (infects) onto any COM files in current directory.
Since this is also well known, it can easily be detected by antivirus
scanners. The virus is also very small, consisting of only 264 bytes of
machine language instructions, is reasonably safe (i.e. controllable) and
the compilable assembly code of the virus is also available in public
domain.

Factors such as code availability in public domain, the ability to
control the virus (i.e. prevent accidental spread) and easy detection
by most of the existing AV scanners (thus helping with checking the
extent of virulence as a result of evolution), as well as related litera-
ture (Cani et al., 2014), led to this choice of the candidate virus for
the simulation experiments. As the static malware analysis operations
are predominantly on the assembly code of malware to develop the
signatures required for AV systems, this work employs MAGE on the
assembly code of Timid virus. Consequently each chromosome in the
population is the entire assembly code (program) of Timid (or possibly
its variants) with each line of code (i.e., each instruction) representing
a gene. The genotype is the complete genetic makeup of the malware
and a snippet of the genotype is shown in Fig. 1. Except for the header
4

and footer portions of the malware code file (that stores information on
the size of the file, meta-data about the code part, and details regarding
the data part), the genotype is the same as the phenotype. The Fig. 1
clearly shows the instruction sequence that will be followed by the
malware upon being executed. While the individual files are linear, the
diversity is between the files are brought in through the evolution of
the virus code. This linear representation of code using the genotype,
when combined with careful choice of variation operators (mutation
and crossover), that act upon the instruction (gene level), will ensure
that every chromosome generated, as the evolution progresses, to be
an active virus entity.

Often computer virus variants are created manually by using a
combination of code transformation functions to modify the virus code
structure. This in turn modifies the virus signature and helps it to evade
AV scanners. Transformation functions thus serve as potential tools to
masquerade computer viruses. A careful choice of transformation func-
tion instances, provided as mutation operators, will facilitate MAGE
to compose and try out different combinations of those operations
on different code locations of the input computer virus. The stan-
dard transformation functions include control flow modification, data
transformation and code lay-out change. There are a number of code
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transformation instances under each of the above said three functions.
By way of an example, modifying code control flow includes strategies
such as code reordering, instruction transformation, polymorphism,
adding fake instructions etc. (Hosseinzadeh et al., 2018).

As the proposed work employs MAGE to mutate assembly level code
structure of a given virus, the code transformation function instances
have to be appropriately selected. Operations such as adding fake
instructions, control flow reordering involving fixed JMP, JNZ, JZ and
untouchable block insertion were chosen as the mutation operations.
Fig. 2 shows a pictorial description of the chosen code transformation
function instances. A snippet of the original Timid source code is shown
in Fig. 2(a) and acts as the reference to demonstrate the other mutation
operators. The JMP operator serves in a similar manner to a function
call in usual programming environments. This changes the overall flow
of execution by inserting another branch into the code flow structure as
shown in Fig. 2(b). With respect to the instructions JZ and JNZ, they are
usually preceded by a CMP instruction which verifies if the two values
in the given register location are equal. If they are, then the zero flag
is set. Figs. 2(e) and 2(f) show that the jump or call is itself conditional
based on the current status of the zero flag.

Fake or bogus insertions are when instructions that have no effect
on the assembly code are injected into the code itself. One of the
most popular such instructions is NOP (Fig. 2(d)) which performs no
action, but makes it harder to identify code memory locations for static
analysis. Similarly, the untouchable block, as shown in Fig. 2(c) also
inserts multiple lines of junk code into the assembly code structure,
but this is preceded by a JMP command which, during execution,
skips these inserted lines thereby ensuring code flow continuity while
circumventing static pattern based analyses. It is worth pointing out
that the chosen strategies do not change the nature of the virus but
always result in active executable yet retaining the maliciousness. In
addition, they have the potential to evade AV scanners; they are generic
enough to be primitives for any virus assembly code mutations and they
facilitate simple to complex code structure modifications.

A single-point crossover operator is also employed in MAGE to assist
the mutation operators towards exploring the space of virus variants.
As the crossover operator can be very disruptive more often yielding
invalid executables as offsprings, the choice of crossover point (which
we call pivot point) is very crucial. The pivot point is selected in such
a manner that it does not interrupt any sequential execution of the
assembly code. However identifying the similar pivot points across
chromosomes is no straightforward task. We instruct MAGE to make
this pivot point absolute by choosing it on the input computer virus
itself and apply the mutation operations on code structures either above
or below the pivot point. These code structures above and below the
pivot point will be subjected to a variety of mutation combinations
in the population across generations. Consequently, despite the abso-
lute pivot point, swapping blocks above and below the pivot point
results in sufficient code structure variety thus assisting in exploring
the virus variant space. Fig. 3 depicts the crossover operation. Along
with the code transformation mutation functions, the pivot point based
crossover operator ensures that every chromosome evolved throughout
the course of MAGEs’ run is a valid active variant of the source
malware.

The intention behind the automated malware generation using
MAGE is to generate variants as diverse as possible in terms of the
assembly code structure and not focused on generating virus variants
evading AV scanners. Such a diverse set of variants form a potential
data set to augment AV scanners and to enable them to detect unseen
variants of the given computer virus. Besides in preliminary experi-
ments it has been observed that even the most rudimentary mutations
(code transformations) of a given computer virus enabled it to evade
a number of AV scanners. A fitness function, based on the evasion
of AV scanners as a matter of fact, misleads MAGE to resort to the
most rudimentary and simplest of code transformations to achieve the
goal of evasion (Murali & Shunmuga Velayutham, 2020). Instead, a
5

Fig. 3. Single point crossover on malware code (pivot point shown as line).

fitness function involving code similarity has the potential to drive
evolution to apply variation operators in such a way that more and
more dissimilar code structures get generated resulting in diverse virus
variants.

Given a population of chromosomes, Jaccard similarity index be-
tween each chromosome and the rest of the population (i.e. 𝑁𝑃 − 1
chromosomes) as well as the original source virus is calculated. Jaccard
similarity index measures similarity between two assembly code sets 𝑆1
and 𝑆2:

𝐽 (𝑆1, 𝑆2) =
𝑆1 ∩ 𝑆2
𝑆1 ∪ 𝑆2

=
𝑆1 ∩ 𝑆2

|𝑆1| + |𝑆2| − 𝑆1 ∩ 𝑆2
(1)

where 0 ≤ 𝐽 (𝑆1, 𝑆2) ≤ 1. This intra-population Jaccard similarity index
calculation results in a 𝑁𝑃 -dimensional similarity vector for each of the
chromosome in the population where 𝑁𝑃 is the population size. The
fitness value for each chromosome is the Euclidean distance between its
intra-population similarity vector and the mean vector computed from
the intra-population similarity vectors of all the chromosomes in the
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population. The fitness function, thus, can be defined as

𝐹 = ‖�̄� − 𝑆𝑖‖ (2)

with

𝑆𝑖 = (𝐽 (𝑐1, 𝑐𝑖), 𝐽 (𝑐2, 𝑐𝑖),… , 𝐽 (𝑐𝑁𝑃 , 𝑐𝑖), 𝐽 (𝐶, 𝑐𝑖)) (3)

where �̄� is the mean vector of all intra-population similarity vectors
in the population, 𝑆𝑖 is the intra-population similarity vector of the
𝑖th chromosome, 𝑐1,… , 𝑐𝑁𝑃 is the rest of the population comprising all
chromosomes except 𝑐𝑖, 𝐶 is the source virus code and 𝐽 (𝑐𝑗 , 𝑐𝑖) is the
Jaccard similarity index between a 𝑗th and 𝑖th chromosome. As can be
seen from Eq. (2), the larger the distance between the intra-population
similarity vector of a chromosome from the mean similarity vector, the
more diverse the chromosome in terms of code structure from the rest
of the chromosomes in the population. This intra-population similarity
based fitness function drives MAGE to employ code transformation
mutation functions in such a way that diverse code structure variations
are effected on malware code.

Algorithm 1: Overview of MAGE
Input: A single known virus
Output: Pool of Distinct Virus Variants

1 Generate Initial Population using code transformation mutation
functions each with a probability 𝑝𝑚;

2 while Maximum number of generations yet to be reached do
3 for every chromosome i in current population do
4 Generate a similarity vector 𝑆𝑖 (Eq. (3));

5 Generate mean vector �̄� for current population;
6 for every chromosome i in current population do
7 Compute fitness 𝐹 = ||�̄� − 𝑆𝑖||;
8 if unable to create EXE then
9 End Run ;
10 else
11 Continue ;

12 while population size limit not reached do
13 Select two parent chromosomes through tournament

selection;
14 Perform single-point crossover with a probability 𝑝𝑐 ;
15 Apply code transformation mutation functions each with a

probability 𝑝𝑚 on each of the resultant offspring ;
16 Add each evolved child to the next generation population;

Fig. 4 illustrates the antigen evolution process using MAGE as
he generation engine and algorithm 1 gives the overview of MAGE.
s each chromosome generated throughout the course of MAGE is a
otential variant, the emphasis has been on generating more diverse
alware variants (i.e. N× G variants where 𝑁 is the population size and

G is the total number of generations) by making MAGE a generational
evolutionary algorithm. Experiments regarding the choice of the fitness
functions and variation operators that resulted in MAGE are discussed
in Section 4. We performed the experiments on the understanding that
32-bit executables work not just in a 32-bit environment, but also a
64-bit environment. MAGE has the flexibility to accept the updated
transformation functions applicable to the underlying architecture and
also has the potential to work equally effectively on a 64-bit architec-
ture with only the instruction set being changed. By way of example,
Fig. 5 shows the disassembled code of ‘‘Gen_Heur_PonyStealer_4’’ - A
malware first seen in 2018 that usually steals passwords. The disas-
sembly was performed using the free version of IDA pro - an extremely
popular reverse engineering tool. IDA pro supports only a ‘‘generic
assembler for 80 × 86 processors’ (hex-rays, 2022) and this assem-
bly code cannot be directly reassembled or recompiled (Wang et al.,
2015)’’. Therefore, while this reverse engineered assembly code cannot
be tested to generate a valid executable, MAGE can be applied by
slightly updating the constraints of the transformation functions to
6

suit the 64-bit instruction set during implementation. Since the code
Table 2
Parameters used by MAGE to identify apt similarity function.

Parameter Value

Population size (NP) 20
Number of runs 5
𝑃𝑚 0.8
𝑃𝑐 0.2
Maximum generation (G) 1000
Input malware (𝜁) Timid
Representation Linear
Fitness function Jaccard and Cosine

transformations employed by MAGE are logical transformations, the
effect of the functions would remain the same irrespective of the
‘‘modernness’’ of the virus. The only additional challenge would be
identification of the constraints such as the code prologue/epilogue
markers during implementation of the algorithm and there is no change
in the algorithm itself. Thus MAGE works even with modern malware.
It is also worth reiterating that MAGE is also a generic evolutionary
engine that can be applied to multiple malware corpora.

4. Simulation design, results and analysis

The simulation studies, as it involves computer viruses, demand a
secure test environment. We used an Intel© Core™ i5-2400 CPU @
3.10 GHz with 4 CPU cores, 8 GB RAM and a 1 TB hard disk running
a 64-bit Linux Mint system having a guest virtual machine running a
32 bit Windows 7 OS, as the test environment. This ensured that the
virus variants generated during the experiments conducted, did not
escape the test environment and spread. The guest virtual machine
used 3 CPU cores and 4 GB of RAM with an execution cap of 80%.
Regular snapshots of the virtual machine was taken to keep track of
any changes the system might exhibit. The guest Windows OS also had
a copy of the Microsoft Macro Assembler (MASM) which is required
to make the virus an executable capable of infecting the Windows OS.
It is worth mentioning that the 32-bit operating system was chosen as
it is possible for programs designed for a 32-bit OS to run on a 64-bit
system, but not vice versa — i.e., it is backward compatible. This is
because the assembly instruction set (X86 instruction set) that serves
as the underlying assembly code language for the 32-bit operating
system continues to be valid for the 64-bit operating system (using X64
instruction set). Even the addressing modes of the X64 architecture is
similar to the X86 architecture and instructions, such as JMP, CALL,
etc., that implicitly refer to the instruction pointer and the stack pointer
treat them as 64 bits registers on x64 (Marshall & Martis, 2023).
Therefore, this ensures that the proposed algorithm MAGE works as
designed, irrespective of the underlying assembly code architecture.

Both the choice of code transformation functions and the Jac-
card similarity index based intra-population fitness function have been
based on preliminary experiments with MAGE. The initial experiments
focused on identifying the apt transformation functions from the lit-
erature keeping in mind the constraints posed by the assembly code.
This involved simulating and rejecting several transformation functions
(like code substitution, identifier renaming etc.) as they were found
unsuitable for the assembly code mutation. Since the work used the
Microsoft Macro Assembler (MASM), it is also a requirement that
the resultant transformations ensured that the file size remains under
the 64 KB limit as code bloat is a common factor in EAs (Banzhaf
et al., 1998). During the course of these experiments, it was also noted
that MASM converts all conditional jump statements into short jumps.
Consequently, the choice of code transformation functions also had to
ensure that the original Timid virus code itself did not break post the
application of such transformations. Also, since the focus is on evolving
malware variants from the source, no other obfuscation techniques or
packers were employed during the experiment.
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Fig. 4. Malware variant generation process using MAGE.
The choice of similarity as a metric of fitness was influenced by Cas-
tro et al. (2019) where the authors had calculated the differences
between a given malware variant and the original malware with respect
to the PE executables. Consequently, the proposed intra population
similarity is explored as a fitness metric to evolve divergent virus
variants a from vanilla virus source. This work also explores the use of
a number of similarity metrics to find such a metric that would guide
MAGE to evolve malware variants with diverse code structures. By
way of an example, Fig. 6 shows a comparative performance between
Cosine and Jaccard similarity metrics used in an experiment and the
EA parameters for the same are depicted in Table 2. The mutations were
found to drive the divergence and so were given a higher probability
of occurrence over the crossover operation. The intention was to have
a moderate population size while simulating MAGE for as high as 1000
7

generations. Fig. 6 plots the fitness values of 20,020 malware variants
(20 variants in initial population and the 20 000 malware variant code
structures generated during the course of 1000 generations). It is worth
pointing out that 5 such simulation runs were carried out and Fig. 6 is
the resultant fitness values distribution of one such run. In fact all the
runs displayed similar characteristics. As Fig. 6 shows, Jaccard similar-
ity based fitness function displays lesser variation i.e as MAGE evolves
the malware variants tend to be more and more dissimilar amongst
themselves compared to the Cosine similarity based fitness function
with latter resulting in variants with both similar and dissimilar code
structure characteristics. The latter, by virtue of measuring the angle
between 2 vectors, identifies even minor variations in the code level
thereby displaying higher variations (Xia et al., 2015). The intended
objective was to generate more and more diverse variants in terms of
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Fig. 5. Code of Gen_Heur_PonyStealer_4 disassembled using IDA pro.

code structures within the population in each generation led to the
choice of Jaccard as the effective similarity metric for MAGE. It is worth
pointing out that all the 20 000 malware variants in fact are potential
enough to be considered a malware variant data set for the chosen
malware (i.e Timid virus in this case).

Experiments were conducted, with similar setup as above for 500
generations with population size as 20, to study the effectiveness of
three different fitness function candidates. Fitness function 𝛼 (Castro
et al., 2019) explores the impact of the local minima in promoting
diversity. This function computes Jaccard similarity index between
each of candidate variants in the population against the source Timid
malware alone (i.e. 𝐽 (𝐶, 𝑐𝑖)) and identifies the best candidate (where
the best is the candidate with the least similarity with the source mal-
ware). The fitness function 𝛽 is an intra-population Jaccard similarity
based fitness function. This function calculates the distance between
each candidate in the population and the mean vector of the Jaccard
similarity of candidates within the population (as shown in Eqs. (2)
and (3)). The candidate farthest from the mean vector are marked as
the best fit candidate. The fitness function 𝛾 explores that possibility
of evading AV scanners to also have a role to play in generating
diverse variants. This fitness function utilized AV evasion ratio as the
fitness function (no. of AV engines detected/no. of total AV engines),
occasionally interspersed with the similarity based fitness function to
observe the performance efficacy. We utilized VirusTotal (2021)1 which
allowed over 60 industry standard Anti-virus engines to evaluate the AV
evasion ratio of all the chromosomes at the end of every 25 generations.
The evasion ratio of each and every chromosome will be assigned as
their respective fitness value (just for that one generation after every
25 generations) which will further be used in the tournament for parent
selection. In fact such an interspersed manner of using fitness functions,
has precedence in the literature (Shahrzad et al., 2020) and therefore
the effect of 𝛾 (as a fitness function utilizing two different metrics in an
interspersed manner) in encouraging diversity was also explored. The
EA parameters for these experiments are shown in Table 3. The aim of
the experiments were to identify the apt fitness metric that could be
used by MAGE to evolve diverse malware variants.

1 https://www.virustotal.com/.
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Table 3
Parameters used by MAGE to explore different fitness functions.

Parameter Value

Population size (NP) 20
Number of runs 5
𝑃𝑚 0.8
𝑃𝑐 0.2
Maximum generation (G) 500
Input malware (𝜁) Timid
Representation Linear
Fitness function 𝛼, 𝛽 and 𝛾

To verify that the variants generated by MAGE using the fitness met-
rics 𝛼, 𝛽 and 𝛾 are indeed divergent, the Shannon entropy of the evolved
variants are also calculated. In order to calculate the Shannon entropy,
each virus executable was first read as a bytestream. This bytestream
was then split into chunks of 256 bytes as suggested by Menéndez et al.
(2019). Then the Shannon entropy for each chosen chunk(i.e. 𝐻(𝑈𝑖))
is calculated by (Eq. (4)):

𝐻(𝑈𝑖) = −
∑

𝑏∈𝑈𝑖

𝑝(𝑏)𝑙𝑜𝑔2𝑝(𝑏) (4)

with 𝑝(𝑏) being the probability of a byteb within the 𝑗th chunk 𝑈𝑗 of
a variant 𝑐𝑗 . In order to establish a baseline, the original timid.exe
file entropy was calculated and found to be 0.073566 (rounded to 6
decimal places). The Mann–Whitney U test (a popular non-parametric
hypothesis test) was used to compare the resultant population post
evolution by MAGE using each fitness metric candidate. The Mann–
Whitney U test is usually used to test the hypotheses 𝐻0 which states
that two populations (arising from the pairwise fitness metric experi-
ments) are equal and the research hypothesis 𝐻1 stating that the two
populations are different. For any Mann–Whitney U test, the theoretical
range of U is from 0 to 𝑛1 × 𝑛2 where 𝑛1 and 𝑛2 are the corresponding
sizes of the respective populations. The lower value of U implies that
the hypothesis 𝐻0 is false and supports the research hypothesis 𝐻1.
The 𝑝 value of the Mann–Whitney U test calculates the probability of
the sample results occurring by chance. According to MacFarland and
Yates (2016), 𝑝 ≤ 0.05 is used by most explorative analyses. However,
it is also not uncommon to see exploratory biological analyses use a
more stringent level of 𝑝 ≤ 0.01. While a low value of 𝑝 is sufficient
to reject the hypothesis 𝐻0, a large 𝑝 value does not conclude that 𝐻0
is true, it just implies that there is no compelling evidence to reject
the hypothesis. Therefore for the simulation experiments, only when 𝑈
is low and 𝑝 ≤ 0.01 it implies that the two distributions are different
(i.e. the research hypothesis 𝐻1 is correct).

Fig. 7 compares the results of MAGE execution using fitness metric
𝛼 against the candidate fitness metric 𝛽 and shows that the intra-
population similarity based fitness function (𝛽) evolved variants which
are progressively becoming dissimilar to each other as reflected in
decreasing similarity values as the generation proceeds. It should be
noted that all comparative experiments used the same random seed to
ensure a fair comparison for evolution. After 500 generations, with 𝛼
as the fitness metric, the median entropy was 0.077785 ± 0.003035.
This confirms that there is only a 5.74% increase in entropy which
validated the inference from Fig. 7 that the variants being generated
are only marginally different from the source timid virus. However,
when the same analysis was conducted with 𝛽 as the fitness metric,
the median entropy was found to be 0.319802 ± 0.104216. This is a
334.71% increase in entropy and shows that increasingly divergent
variants can be generated from a single vanilla source. Further, the
Mann–Whitney U Test results on the similarity of variants generated
using 𝛼 and 𝛽 show that the distributions are indeed different with
𝑈 = 1 and 𝑝 = 1.62 × 10−165. The low 𝑝 value here indicates that
the data did not occur by chance and therefore the two groups are
indeed different. A comparison of the entropy levels of 𝛼, 𝛽 and 𝛾 are
depicted in Fig. 10 with the entropy results of 𝛽 and 𝛾 analysed later in

https://www.virustotal.com/
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Fig. 6. Comparison of Jaccard and Cosine metrics.
Fig. 7. Similarity of generated Timid virus variants using metrics 𝛼 and 𝛽.

the paper. Fitness metric 𝛽 subjects each variant to compete against a
number of varied code structures thus promoting population diversity.
In addition, the evolved variants increasingly become dissimilar to the
source Timid virus thus becoming potential candidates for a malware
variants data set. Fig. 8 plots the similarity between the most dissimilar
(best) variant from each generation and the source Timid virus when
MAGE was run with a population size NP of 100 for a maximum of 1000
generations (G). As the figure shows and reiterates, MAGE generates
Timid variants which are increasingly becoming dissimilar to the source
Timid virus. When considered in its entirety, the evolution of MAGE
generates Timid variants of varied level of dissimilarity with source
virus thus effectively representing the space of Timid’s variants.

Fig. 9 shows the performance of the fitness metric 𝛽 and the
interspersed fitness function (𝛾) in terms of the most dissimilar Timid
variants evolved in each generation. Interestingly, as the figure shows,
𝛽 is capable of evolving dissimilar variants in spite of not having a
direct feedback about the evasion ratio of evolved structures albeit
in every 25 generations. It is worth noting that a fitness function
based only on AV evasion ratio will not guide the evolution towards
dissimilar, unique and diverse code structures (unlike 𝛽 and 𝛾) towards
realizing a potential data set of effective malware antigens. From Fig. 9
it can also be observed that the level of divergence of both 𝛽 and 𝛾 are
quite similar. To verify the same, the Shannon entropy of the variants
evolved by each fitness function candidate was also calculated (Fig. 10).
9

Fig. 8. Similarity values of best chromosomes against source malware obtained by
MAGE with N = 100 and G = 1000.

Fig. 9. Similarity values of best chromosomes calculated against source using
intra-population similarity method (𝛽) and interspersed fitness method (𝛾).

It is observed that variants evolved by 𝛽 show marginally higher levels
of entropy. After 500 generations, with 𝛽 as the fitness metric, the
median entropy was observed to be 0.319802 ± 0.104216 while the
median entropy with 𝛾 as the candidate fitness function was 0.298603
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Fig. 10. Entropy values of best chromosomes calculated between variants generated
using 𝛼, 𝛽 and 𝛾 fitness metrics.

Table 4
Comparison of fitness measures.

Fitness measure Mean similarity Mean entropy Mann Whitney U test

𝛼a 0.923645 0.077785 Same
𝛽 0.271541 0.319802 Diverse
𝛾 0.280414 0.298603 Diverse

aAdapted from Castro et al. (2019).

± 0.094504. Interestingly, the Mann–Whitney U Test results resulted
n 𝑈 = 1 which is very low and indicative that the distributions are
ifferent. However, the 𝑝 value obtained was 0.0886 which is greater
han our set limit of 0.01. Considering this stringent value of 𝑝, 𝐻0

cannot be conclusively rejected and so it can be concluded that the
populations are not very different.

Based on the results (best value is marked as bold and summarized
in Table 4), it is evident that MAGE is able to evolve the most divergent
variants with 𝛽 as the fitness function. From Fig. 10 it is quite clear that
the fitness metric 𝛼 (used by Castro et al., 2019) is unable to introduce
significant changes in the vanilla executables of the generated virus
variants while the proposed metrics 𝛽 and 𝛾 are able to not just induce
significant changes in the generated executables, but also ensure that
the resultant variant population is diverse. While the variants evolved
by both 𝛽 and 𝛾 are quite similar, 𝛽 does show a minor increase with
respect to the entropy of the generated virus variants. Coupled with
the fact that the time taken to evolve the variants is very low when
compared to MAGE with 𝛾 as the fitness function, the intra-population
based similarity metric (𝛽) appears to be the better fit out of the
three candidates to drive the evolution in MAGE. Therefore subsequent
experiments primarily utilize 𝛽 as the fitness function in MAGE.

MAGE, with this intra-population similarity based fitness function
(𝛽) combined with the choice of code transformation mutation func-
tions, will not only evolve variants that are dissimilar from the source
malware but also will ensure diversity amongst the evolved variants in
terms of the code structure variations. By way of an example, Fig. 11,
shows snippets of the same assembly code function in the original Timid
(refer Fig. 11(a)), after the 1st generation (refer Fig. 11(b)) and after
100 generations (refer Fig. 11(c)) with the latter two sampled from
random chromosomes. Fig. 11(c) shows the complex code control flow
evolved by MAGE by virtue of the variation operators as well as the fit-
ness function where the convolutions of the control flow can be clearly
observed even in such a small code snippet. It is worth mentioning that
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despite such complex control flows, the code transformation functions
do not break the original malware assembly code structure and ensure
that all the evolved variants to be active malware.

The evolved diverse code structures possibly represent the variants’
space of the employed source malware as MAGE evolved those variants
using code transformation functions with emphasis on the unique code
structure variations. Also, by virtue of the code structure variations,
every chromosome that is evolved during the course of MAGE’s run is a
potential malware variant. It is then worth observing the anti-malware
evasion ability of chromosomes that are evolved throughout the run
of MAGE. Using VirusTotal, it was found that 29 anti-virus engines
that were able to detect the source malware i.e. Timid. However in the
simulation experiments reported, the evolved variants continued to be
scanned with the full set of over 60 anti-virus engines (from VirusTotal)
to verify whether any of the evolved variants are detected by other
anti-virus engines not part of the above 29 anti-virus engines.

As these 29 anti-virus engines are capable of detecting the Timid
virus, the anti-virus evasion ability of each Timid variant can be quan-
tified by the number of anti-virus engines those variants are capable of
evading from detection. It is definitely worth mentioning that if all the
MAGE evolved variants are detected by even any one of the above listed
anti-virus engines, it is a testimony to the fact that all the chromosomes
evolved by MAGE are active malware. In fact it indeed has been verified
that all variants of Timid evolved by MAGE has been detected as a
virus by at least 1 or 2 AV engines. Fig. 12 shows the number of
Anti-Virus engines that detected the most dissimilar Timid variant in
each generation for both the intra-population similarity based fitness
function and the interspersed fitness function cases (with population
size as 20 for 100 generations). Though experiments were conducted
for over 100 generations, the limit of 100 was selected as there were
minimal changes in the detection ratio after 100 generations and so this
served as a viable limit.

Interestingly, the intra-population similarity based fitness function,
i.e. 𝛽 (with no knowledge about the evasion ability of evolved struc-
tures) displayed a very competitive performance with that of the in-
terspersed fitness function (𝛾) case. Additionally, in the case of MAGE
evolved variants with the intra-population similarity based fitness func-
tion, there were a few scanners from the remaining AV engines (other
than the 29 that initially detected the source virus Timid), that were
ble to identify the virus variants evolved by MAGE as malware.
able 5 shows a list of AV scanners that detected the original Timid

virus. It can be noticed that while the virus is known to be Timid,
AV scanners identify it under different names. For example, it can
be noticed that Scanner 6 detects the original Timid virus as ‘‘Timid-
305’’, Scanner 16 detects it as ‘‘Malware.Timid#4’’ and Scanner 15
detects the same virus as ‘‘A Variant of Acceptance’’. The table also
showcases an interesting observation where one of the candidates
generated during the initial generation (Table 1 - Evolved Timid) was
detected by 29 AV scanners. Antivirus Scanner 6, which classified
the original timid virus as ‘‘Timid-305’’, now classified the evolved
candidate as ‘‘DOSMalware-gen [𝑇 𝑟𝑗]’’. Also, Scanner 11 which did not
etect the original version of Timid detected the MAGE evolved variant
s ‘‘𝑀𝑎𝑙𝑤𝑎𝑟𝑒@#342𝑟81𝑟5𝑢𝑚𝑛𝑑8’’ while Scanners 23 & 24 consistently
etected both the original and evolved Timid as ‘‘𝑈𝑛𝑖𝑣∕𝑗.𝑑𝑟’’. This

further emphasizes the fact that MAGE is capable of evolving potential
malware variants without changing or affecting their functionality.

The simulation results above demonstrate that MAGE, by virtue
of the code transformation mutation functions and intra-population
similarity based fitness function (𝛽), is capable of evolving diverse non-
trivial assembly code structure variations for a given source Timid mal-
ware without changing or affecting the original malicious behaviour.
These code structure variations have displayed good AV evasion per-
formance as well. Consequently, the Timid variants evolved throughout
the run of MAGE forms a potential data set which can be employed to
train an adaptive AV engine to possibly augment its ability to detect the
unseen Timid variants. In fact it can be argued that MAGE can use the

assembly code of any source malware to evolve a number of potential
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Fig. 11. Effect of transformation functions in Timid assembly code - A snippet.

Fig. 12. Count of AV scanners detecting unique candidates of each generation.
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Table 5
List of AV scanners that detected the original Timid virus and the name(s) under which the virus has been
detected. The AV Scanner names have been changed to ensure anonymity.
AV name Original timid Evolved timid

𝑆𝑐𝑎𝑛𝑛𝑒𝑟1 𝐺𝑒𝑛 ∶ 𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎 𝐺𝑒𝑛𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎
𝑆𝑐𝑎𝑛𝑛𝑒𝑟2 𝑉 𝑖𝑟𝑢𝑠.𝐷𝑂𝑆.𝑇 𝑖𝑚𝑖𝑑.𝑛!𝑐 𝑉 𝑖𝑟𝑢𝑠.𝐷𝑂𝑆.𝑇 𝑖𝑚𝑖𝑑.𝑛!𝑐
𝑆𝑐𝑎𝑛𝑛𝑒𝑟3 𝑉 𝑖𝑟𝑢𝑠 ∶ 𝐷𝑂𝑆∕𝑇 𝑖𝑚𝑖𝑑.𝑓𝑑𝑑𝑏9066 𝑉 𝑖𝑟𝑢𝑠𝐷𝑂𝑆∕𝑇 𝑖𝑚𝑖𝑑.1708550𝑎
𝑆𝑐𝑎𝑛𝑛𝑒𝑟4 𝐺𝑒𝑛 ∶ 𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎 𝐺𝑒𝑛𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎
𝑆𝑐𝑎𝑛𝑛𝑒𝑟5 𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝐸𝐷11𝐹2 𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝐸𝐷11𝐹2
Scanner6 Timid-305 DOS Malware-gen[Trj]
𝑆𝑐𝑎𝑛𝑛𝑒𝑟7 𝑇 𝑖𝑚𝑖𝑑 − 305 𝐷𝑂𝑆𝑀𝑎𝑙𝑤𝑎𝑟𝑒 − 𝑔𝑒𝑛[𝑇 𝑟𝑗]
𝑆𝑐𝑎𝑛𝑛𝑒𝑟8 𝑇 𝑖𝑚𝑖𝑑#4 𝐷𝑂𝑆∕𝑇 𝑖𝑚𝑖𝑑.𝑦𝑦𝑟𝑞𝑎
𝑆𝑐𝑎𝑛𝑛𝑒𝑟9 𝐺𝑒𝑛 ∶ 𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎 𝐺𝑒𝑛𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎
𝑆𝑐𝑎𝑛𝑛𝑒𝑟10 𝑊 𝑖𝑛.𝑇 𝑟𝑜𝑗𝑎𝑛.𝑇 𝑖𝑚𝑖𝑑 − 4 𝑊 𝑖𝑛.𝑇 𝑟𝑜𝑗𝑎𝑛.𝑉 306 − 1
Scanner11 FALSE(No detection) Malware@#342r81r5umnd8
𝑆𝑐𝑎𝑛𝑛𝑒𝑟12 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠(𝑠𝑐𝑜𝑟𝑒 ∶ 85) 𝑚𝑎𝑙𝑤𝑎𝑟𝑒(𝑎𝑖𝑠𝑐𝑜𝑟𝑒 = 85)
𝑆𝑐𝑎𝑛𝑛𝑒𝑟13 𝐺𝑒𝑛 ∶ 𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎(𝐵) 𝐺𝑒𝑛𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎(𝐵)
𝑆𝑐𝑎𝑛𝑛𝑒𝑟14 𝐺𝑒𝑛 ∶ 𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎 𝐺𝑒𝑛𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎
𝑆𝑐𝑎𝑛𝑛𝑒𝑟15 𝐴𝑉 𝑎𝑟𝑖𝑎𝑛𝑡𝑂𝑓𝐴𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒.311 𝐹𝐴𝐿𝑆𝐸(𝑁𝑜𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛)
Scanner16 Malware.Timid #4 Malware.DOS/Timid.yyrqa
𝑆𝑐𝑎𝑛𝑛𝑒𝑟17 𝐺𝑒𝑛 ∶ 𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎 𝐺𝑒𝑛𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎
𝑆𝑐𝑎𝑛𝑛𝑒𝑟18 𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝐴𝐴𝑊 𝑇 𝑖𝑚𝑖𝑑.𝐴!𝑡𝑟
𝑆𝑐𝑎𝑛𝑛𝑒𝑟19 𝐺𝑒𝑛 ∶ 𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎 𝐺𝑒𝑛𝑇 𝑟𝑜𝑗𝑎𝑛.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟.𝑎𝑎𝑊@𝑎𝑎𝑎𝑎𝑎
𝑆𝑐𝑎𝑛𝑛𝑒𝑟20 𝐺𝑒𝑛.𝐷𝑜𝑆.𝐹 𝑖𝑙𝑒𝐼𝑛𝑓𝑒𝑐𝑡𝑜𝑟 𝐷𝑂𝑆.𝑇 𝑖𝑚𝑖𝑑
𝑆𝑐𝑎𝑛𝑛𝑒𝑟21 𝑉 𝑖𝑟𝑢𝑠.𝐷𝑂𝑆.𝑇 𝑖𝑚𝑖𝑑.305.𝑎 𝑉 𝑖𝑟𝑢𝑠.𝐷𝑂𝑆.𝑇 𝑖𝑚𝑖𝑑.305.𝑎
𝑆𝑐𝑎𝑛𝑛𝑒𝑟22 𝑚𝑎𝑙𝑤𝑎𝑟𝑒(𝑎𝑖𝑠𝑐𝑜𝑟𝑒 = 83) 𝑚𝑎𝑙𝑤𝑎𝑟𝑒(𝑎𝑖𝑠𝑐𝑜𝑟𝑒 = 83)
𝑆𝑐𝑎𝑛𝑛𝑒𝑟23 𝑈𝑛𝑖𝑣∕𝑗.𝑑𝑟 𝑈𝑛𝑖𝑣∕𝑗.𝑑𝑟
𝑆𝑐𝑎𝑛𝑛𝑒𝑟24 𝑈𝑛𝑖𝑣∕𝑗.𝑑𝑟 𝑈𝑛𝑖𝑣∕𝑗.𝑑𝑟
𝑆𝑐𝑎𝑛𝑛𝑒𝑟25 𝑇 𝑟𝑜𝑗𝑎𝑛 ∶ 𝑊 𝑖𝑛32∕𝑂𝑐𝑐𝑎𝑚𝑦.𝐶𝐹8 𝑇 𝑟𝑜𝑗𝑎𝑛𝑆𝑐𝑟𝑖𝑝𝑡∕𝑊 𝑎𝑐𝑎𝑡𝑎𝑐.𝐶!𝑚𝑙
𝑆𝑐𝑎𝑛𝑛𝑒𝑟26 𝐺𝑒𝑛𝑒𝑟𝑖𝑐∕𝑉 𝑖𝑟𝑢𝑠.𝐷𝑜𝑆.877 𝐺𝑒𝑛𝑒𝑟𝑖𝑐∕𝑉 𝑖𝑟𝑢𝑠.𝐷𝑜𝑆.877
𝑆𝑐𝑎𝑛𝑛𝑒𝑟27 𝑀𝑎𝑙∕𝐺𝑒𝑛𝑒𝑟𝑖𝑐 − 𝑆 𝑀𝑎𝑙∕𝐺𝑒𝑛𝑒𝑟𝑖𝑐 − 𝑆
Scanner28 Timid.305 FALSE(No detection)
𝑆𝑐𝑎𝑛𝑛𝑒𝑟29 𝑊 𝑖𝑛32.𝑉 𝑖𝑟𝑢𝑠.𝐴𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒.𝐸𝑑𝑦𝑞 𝐷𝑜𝑠.𝑉 𝑖𝑟𝑢𝑠.𝑇 𝑖𝑚𝑖𝑑.𝐻𝑡𝑚𝑠
𝑆𝑐𝑎𝑛𝑛𝑒𝑟30 𝑉 𝑖𝑟𝑢𝑠.𝐷𝑂𝑆.𝑇 𝑖𝑚𝑖𝑑.305.𝑎 𝑉 𝑖𝑟𝑢𝑠.𝐷𝑂𝑆.𝑇 𝑖𝑚𝑖𝑑.305.𝑎
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Fig. 13. Similarity values of best chromosomes against Intruder source obtained by
MAGE with N = 20 and G = 500.

malicious variants. The validity of this argument is demonstrated by
employing MAGE to evolve variants of another malware by way of an
example.

Intruder (Ludwig, 1991), an EXE infector virus, was used as the
source malware for MAGE to demonstrate its versatility. An EXE virus
has the possibility to infect a greater number of files. The Intruder
virus is a more sophisticated virus (when compared to Timid) that can
infect EXE files and jump across directories and even across drives,
thus making it much more complex and even more dangerous. The
virus attaches itself to the end of an EXE program and gain control
when the program first starts. A tree search routine is used to list the
possible targets for infection. Conversely, if a suitable target is not
found, the virus proceeds to search for sub-directories of the currently
12

referenced directory for a suitable target. Fig. 13 shows the similarity
Table 6
Parameters used by MAGE for validation on Intruder .

Parameter Value

Population size (NP) 20
Number of runs 5
𝑃𝑚 0.8
𝑃𝑐 0.2
Maximum generation (G) 500
Input malware (𝜁) Intruder
Representation Linear
Fitness Function 𝛽

of the most dissimilar variants in the population at each generation
against the source Intruder virus. The best variants in each generation
become increasingly more dissimilar from the source as was the case
with the Timid experiments. Fig. 14 shows random Intruder assembly
code structure variations evolved by MAGE both in the intermediate
generation and in the final generation. The intricate and not so trivial
code structure variations have been evolved by virtue of the chosen
transformation functions. It is worth mentioning that the MAGE has
been employed as is, with the transformation functions and intra-
population similarity based fitness function intact (as well as other
parameters used for Timid experiments) for evolving Intruder variants
hereby demonstrating MAGEs’ ability to generalize to multiple mal-
are corpora. Table 6 presents the simulation parameters used by
AGE for validation on Intruder.

Fig. 15 shows the AV evasion ability of the best Intruder variants
volved by MAGE in every generation (for population size 20 and for
00 generations) in terms of the number of AV engines detecting them).
t is worth mentioning that 20 popular AV engines detected the source
ntruder. It is interesting to observe that the code structure variations
ffected by MAGE cause the Intruder variants to be detected by as high

as 4 and as low as zero AV engines against the 20 engines that detected
the source malware. As has been done in the case of Timid, all the best
ntruder variants have been successfully tested for their maliciousness
by allowing them to infect the virtual OS. It is worth noting that quite a
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Fig. 14. Effect of transformation functions on Intruder assembly code - A snippet.
Fig. 15. Intruder virus - AV scanners evaded.

number of Intruder variants evolved by MAGE have successfully evaded
all the AV engines from the AV engine pool.

It should be noted that with both Timid and Intruder viruses, MAGE
was successfully able to generate malicious executables consistently
for 600 generations i.e. 600 × 20 = 12,000 divergent virus variant
executables from a single vanilla source. As mentioned previously, bloat
is indeed a factor and beyond 600 generations there is the possibility of
not being able to generate a valid executable. A failure is when if even
a single candidate variant is unable to produce a successful executable.
13
For example, during one of the runs, in generation 619, the population
was able to generate only 19 successful virus variants and this is
considered as a failure as 20 successful variants are expected (since
population size was 20). It is worth pointing out that the failure in
generating active malware variants is by virtue of the MASM limitations
and not because of the variation operators (transformation functions in
particular). Multiple such runs of MAGE revealed that with 𝛽 as the
fitness metric, MAGE was able to evolve variants successfully between
600–1700 generations. During our trials, the lowest number of genera-
tions where an executable failed to be generated was in generation 619
while one of the runs also evolved successful variants as executables for
1721 generations which resulted in 1721 × 20 = 34 420 successful virus
variants being generated. A similar experiment was attempted with 𝛾
as the fitness metric. However since 𝛾 as the fitness metric involved
scanning the viruses at regular intervals (coupled with VirusTotals’
scanning restrictions), even a single run of 500 generations took up
to 72 h to complete. In comparison, with 𝛽 as the fitness metric, 500
generations was successfully completed in under 30 min and so was
used as the metric for testing the limits of the evolution with respect
to number of generations.

At this juncture, it is worth mentioning that it is possible to use
MAGE for malware generation in both 32-bit as well as 64-bit architec-
tures. However, in case of non-availability of assembly source code, a
malicious executable can be disassembled using popular disassembly
tools and MAGE can be applied on the disassembled code. In this
case, while MAGE still generates variants, it may not be possible to
create executables using the same as disassembled codes may not be
compilable. It is worth noting that MAGE’s capability remains the
same irrespective of the underlying assembly architecture. The only
change would be in the test bed setup to include the 64-bit instruction
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set of the reverse engineering tool used to generate the assembly
language code. In addition, despite the fact that MAGE has been demon-
strated to evolve diverse variants, for only two malware, viz Timid
and Intruder, the proposed assembly code transformation functions are
generic enough to transform any assembly source code. In fact, the
purpose of the viruses was to assist in designing the transformation
functions to be employed as variation operators as well as demonstrate
the potential of MAGE to introduce diversity in assembly level codes.
Consequently, experimenting MAGE with additional malware will be
merely a reiteration of MAGE’s potential that has been demonstrated
so far. It is also worth mentioning that the idea of achieving arbitrary
assembly code level diversity in an automated fashion by MAGE is
applicable to any malware, irrespective of their period of appearance,
and is relevant towards generating novel malware variants.

5. Conclusion and future directions

This paper proposed a malware antigens generating evolutionary
algorithm (MAGE) to evolve potential malware variants of a given
malware through assembly code structure transformations. Through a
linear representation of the chromosome alongside carefully designed
code transformations as variation operations, the simulation experi-
ments revealed that MAGE was able to evolve valid executable variants
of an input malware. A selective subset of code transformation func-
tions as variation operations and an intra-population Jaccard similarity
based fitness function augment MAGE to generate diverse malware
variants in terms of non-trivial dissimilar code structure variations.
Experimental evaluation using three different fitness metrics, namely 𝛼
adapted from literature), 𝛽 (intra-population Jaccard similarity based)
nd 𝛾 (function incorporating AV results alongside similarity) revealed
hat the functions 𝛽 and 𝛾 were able to evolve divergent variants of
he input malware. Further statistical analysis using Mann Whitney U
est validated that the generated variants were indeed divergent. Virus
otal (which was used to scan the evolved variants) scans revealed that
AGE was not only capable of evolving divergent variants, but the

volved variants were also misclassified by the AV scanners with a few
f the scanners wrongly identifying the virus family itself. Thus MAGE
as able to demonstrate the idea of achieving arbitrary code level
iversity in an automated fashion which is relevant towards generating
ovel malware variants.

By proactively generating variants through code transformation that
esult in valid executables, the generated variants act as instances
or a typical learning algorithm to create signatures. These signatures
ould be then updated in the antivirus database to trigger the immune
esponse if any of these viruses are discovered in a client system.
hus, these malware variants (similar to biological antigens) have
he potential to help improve adaptive AV engines to achieve active
cquired immunity against unseen variants of a given malware.

Currently, algorithms do not evolve valid/diverse variants with
igh certainty. MAGE is able to achieve this with carefully designed
ut generic code transformation functions. The simulation experiments
nvolving Timid and Intruder viruses demonstrate the versatility and
fficacy of MAGE in evolving malware variants as executables with
iverse code structures while retaining maliciousness and successfully
vading detection by over 97% of over 60 AV scanners. As every
andidate evolved throughout the run of MAGE is a potential variant,
he complete set of malware variants evolved by MAGE can serve as

valid data set for a trainable AV engine to sample and learn the
alware variants’ space. This could augment the AV engines ability

o detect unseen malware variants - a potential trait to detect zero day
alware (variants’) attack.

Our future work is a natural extension of the current work and
ould involve exploring the effect of MAGE across a variety of malware
s well as investigating the potential of evolutionary packers alongside
volved antigens to train AV engines to proactively defend against
14

nseen malware variants. Another interesting direction of our research
s the potential co-evolution of malware generation and detection,
here proactive strategies such as generative adversarial networks,
eta-heuristic algorithms automatically generate both novel malware

nd malware variants.
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