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ABSTRACT
Previous evolution based architecture search require high com-
putational resources resulting in large search time. In this work,
we propose a novel way of applying a simple genetic algorithm
to the neural architecture search problem called EvNAS (Evolv-
ing Neural Architecture using One Shot Model) which reduces the
search time significantly while still achieving better result than pre-
vious evolution based methods. The architectures are represented
by architecture parameter of one shot model which results in the
weight sharing among the given population of architectures and
also weight inheritance from one generation to the next generation
of architectures. We use the accuracy of partially trained architec-
ture on validation data as a prediction of its fitness to reduce the
search time. We also propose a decoding technique for the archi-
tecture parameter which is used to divert majority of the gradient
information towards the given architecture and is also used for
improving the fitness prediction of the given architecture from
the one shot model during the search process. EvNAS searches
for architecture on CIFAR-10 for 3.83 GPU day on a single GPU
with top-1 test error 2.47%, which is then transferred to CIFAR-100
and ImageNet achieving top-1 error 16.37% and top-5 error 7.4%
respectively.

CCS CONCEPTS
•Computingmethodologies→ Bio-inspired approaches;Ge-
netic algorithms.

KEYWORDS
One shot model, genetic algorithm, decoded architecture parameter

ACM Reference Format:
Nilotpal Sinha and Kuan-Wen Chen. 2021. Evolving Neural Architecture
Using One Shot Model. In 2021 Genetic and Evolutionary Computation Con-
ference (GECCO ’21), July 10–14, 2021, Lille, France. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3449639.3459275

1 INTRODUCTION
Convolutional neural networks have been instrumental in solv-
ing various problems in the field of computer vision. However,
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the network designs were mainly done by humans (like AlexNet
[16], ResNet [12], DenseNet [14], VGGNet [29]) on the basis of
their intuition and understanding of the specific problem. This
has led to the growing interest in the automated search of neural
architecture called Neural Architecture Search (NAS) [11][36][26].
NAS has shown some promising results in the field of computer
vision but most of these methods demand a considerable amount of
computational power. For example, obtaining the state-of-the-art
architecture for CIFAR-10 required 3150 GPU days of evolution [27]
and 1800 GPU days of reinforcement learning (RL) [37]. This is due
to the evaluation of the architectures during the search process of
the different NAS methods because most NAS methods train each
architecture individually for certain number of epochs in order to
evaluate its performance on the validation data. Recent works [26]
[1] [21] [8] [2] [7] have reduced the search time by sharing weights
among the architectures.

In this work, we propose a method called EvNAS (Evolving Neu-
ral Architecture using One Shot Model) which involves evolving a
convolutional neural network architecture with weight sharing
among the architectures for image classification task. Instead of
training each architecture from scratch for a certain number of
epochs in order to estimate its fitness, EvNAS trains a single one
shot model and uses it to estimate the fitness of an architecture. The
one shot model enables weights sharing among the architectures
resulting in 1) child architecture inheriting weights from parents
instead of retraining from scratch and 2) architectures in a given
generation also sharing weights among them, which lead to reduc-
tion in search time. The work is inspired by the representation used
for the architectures of the network in DARTS [21], which relaxes
the search space to a continuous space in order to use gradient
descent for optimizing the architecture. But these gradient based
methods [21] [34] [2] are highly dependent on the search space
and they tend to overfit to operations in the search space that lead
to faster gradient descent. By replacing the architecture search us-
ing gradient descent with architecture search using evolution, we
leverage the speedup introduced due to the weight sharing among
the architectures while resolving the overfitting problem due to the
stochastic nature of the evolution based methods. Our experiments
(Section 4), show that EvNAS outperforms previous evolution based
methods while using minimal computational resources (3.83 GPU
day on a single GPU) as compared to previous evolution based
methods.

Our contributions can be summarized as follows:

• We introduce an efficient method of applying a simple ge-
netic algorithm to the NAS problem with reduced computa-
tional requirements by using one shot model.
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Figure 1: The process of decoding the architecture parameter, 𝛼 . Better viewed in color mode. Here, we consider three oper-
ations in the operation space. (a) One shot model and its representation with arrows between the nodes representing all the
operations in the search space, (b) Discrete architecture, 𝑎𝑟𝑐ℎ𝑑𝑖𝑠 , derived from 𝛼 , (c) Decoded architecture, 𝛼 , created using
𝑎𝑟𝑐ℎ𝑑𝑖𝑠 . The thickness of the arrow is proportional to the weight given to an operation.

• We propose a decoding technique for each architecture in
the population which diverts a majority of the gradient infor-
mation to the current architecture during the training phase
and is used to calculate the fitness of the architecture from
the one shot model during the fitness evaluation phase.
• We propose a crossover operation that is guided by the pre-
dicted fitness of the partially trained architectures of the
previous generation and does not require keeping track of
the ancestors of the parent architectures.
• We achieved remarkable efficiency in the architecture search
achieving test error of 2.47% with 3.63M parameters on
CIFAR-10 in search time significantly less than previous
evolution based methods and showed that the architecture
learned by EvNAS is transferable to CIFAR-100 and Ima-
geNet.

2 RELATEDWORK
Automated Neural Architecture Search is an alternative to the hand-
crafted architectures where the machine designs the best suited
architecture for a specific problem. Several search methods have
been proposed to explore the space of neural architectures, such as
evolutionary algorithm (EA) [27][28][19][32], reinforcement learn-
ing (RL) [36][37][26], random search[17] and gradient-based meth-
ods [20][21][25][2][34]. These can be grouped into two groups:
gradient-based methods and non-gradient based methods.

Gradient Based Methods: In these methods, the neural archi-
tecture is directly optimized using the gradient information based
on the performance on the validation data. In [20][21], the discrete
architecture search space is relaxed to a continuous search space by
using a one shot model and the performance of the model on the
validation data is used for updating the architecture using gradi-
ents. This method reduces the search time significantly but suffers
from the overfitting problem wherein the searched architecture
performs very well on the validation data but exhibits poor perfor-
mance on the test data. This is mainly attributed to the preference
of parameter-less operations during the search process as it leads
to a rapid gradient descent [2]. Many regularizations have been

introduced to tackle the problem such as early stopping [34], search
space regularization [2] and architecture refinement [2]. Contrary
to the gradient based methods, the proposed method does not suf-
fer from the overfitting problem because of the stochastic nature
introduced by the mutation operation.

Non-Gradient Based Methods: These methods include rein-
forcement learning (RL) and evolutionary algorithm (EA). In RL
methods, an agent is trained to generate a neural architecture
through its action in order to maximize the expected accuracy on
the validation data. In [36][37], a recurrent neural network (RNN)
is used as an agent which samples neural architectures which are
then trained to convergence in order to obtain their accuracies on
the validation data. These accuracies are then used to update the
weights of RNN by using policy gradient methods. Both of these
methods suffered from huge computational requirements. This was
improved upon in [26], where all the sampled architectures were
forced to share weights by using a single directed acyclic graph
(DAG) resulting in the reduction of computational resources. Early
approaches based on EA such as [31][30] optimized both the neu-
ral architectures and the weights of the network which limited
their usage to relatively smaller networks. Then, methods such as
[32][27] used evolution to search for the architecture and gradi-
ent descent for optimizing the weights of each architecture which
made it possible to search for relatively large networks. However,
this resulted in huge computational requirements. To speed up the
training of each individual architecture, weight inheritance was
introduced in [28] wherein a child network inherits the parent
networks’ weights. In this work, we have used both weight inheri-
tance and weight sharing among the architectures to speed up the
search process. FairNAS [4], NSGANetV2 [22] has also proposed
evolutionary search with weight sharing which has two steps for
searching neural architecture where they optimizes the supernet in
the first step and then FairNAS performs architecture search using
evolutionary method with the trained supernet as the evaluator in
the second step while NSGANetV2 uses the weights from trained
supernet to initialize weights of an architecture and train it using
gradient descent for some epochs to evalauates its fitness during
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Figure 2: (a) Test accuracy vs Decoded architecture value (k), (b) Test accuracy vs Population size, (c) Test accuracy vs mutation
rate. All the tests are done in Search Space S1.

the architecture search. In contrast, our method combines both the
training and search process in one single stage.

3 METHODS
This section discusses different parts of the proposed algorithm and
its relationship to prior works.

3.1 Representation of Architecture
The proposed algorithm deals with a population of architectures
in each generation during the search process. Instead of having a
separate model for each architecture in a population [32][27], we
used a one shot model which treats all the architectures as subgraphs
of the supergraph while sharing the weights among all the archi-
tectures. The one shot model is composed of repeatable cells which
are stacked together to form the convolutional network. The one
shot model has two types of convolutional cells: normal cell and
reduction cell. A normal cell uses operations with stride 1 whereas
reduction cell uses operations with stride 2. A cell in the one shot
model is represented by the parameter, 𝛼 called architecture param-
eter, which represents the weights of the different operations 𝑜𝑝 (.)
in the operation space 𝑂 (i.e. search space of NAS) between a pair
of nodes. The edge between node 𝑖 and node 𝑗 can be written as:

𝑓 (𝑖, 𝑗) (𝑥) =
∑
𝑜𝑝∈𝑂

𝑒𝑥𝑝 (𝛼𝑖, 𝑗𝑜𝑝 )∑
𝑜𝑝′∈𝑂 𝑒𝑥𝑝 (𝛼𝑖, 𝑗

𝑜𝑝′)
𝑜𝑝 (𝑥) . (1)

Where 𝛼𝑖, 𝑗𝑜𝑝 refers to the weight of the operation 𝑜𝑝 in the operation
space𝑂 between node 𝑖 and node 𝑗 . The architecture is represented
by two matrices, one for normal cell and one for reduction cell,
where the row represents the edge between two nodes and the
column represents the weights of different operations from the
operation space as shown in Figure 1(a). Please refer to the original
DARTS paper [21] for more technical details. The design choice
results in weight sharing among the architectures in a given popula-
tion of architectures. It also results in weight inheritance from one
generation of architectures to the next generation of architectures
i.e. the next generation architectures are not trained from scratch
but inherit the partially trained weights from the previous genera-
tion architectures. All of these ultimately leads to the reduction of
the architecture search time using evolution.

3.2 Decoding Architecture Parameter
Architecture parameter, 𝛼 , gives variable weights to the operations
in any particular architecture which results in very noisy estimate

of fitness of the architecture. This results in the algorithm perform-
ing marginally better than the random algorithm as discussed in
Section 4.4. We propose a decoding technique, which is a process
of giving equal higher weight to the operations of the actual archi-
tecture/subgraph according to the architecture parameter, 𝛼 and
equal smaller weights to the operations of the other architectures.
This can be thought of as decoding/mapping the genotype, i.e. 𝛼 ,
to the phenotype, i.e. actual architecture [10]. The process has the
following two steps:
• For any 𝛼 , derive the discrete architecture, 𝑎𝑟𝑐ℎ𝑑𝑖𝑠 , from 𝛼

as shown in Figure 1(b).
• On the basis of the discrete architecture, 𝑎𝑟𝑐ℎ𝑑𝑖𝑠 , create an-
other architecture parameter called decoded architecture pa-
rameter , 𝛼 (as shown in Figure 1(c)), with the following
entries:

𝛼
𝑖, 𝑗
𝑜𝑝 =

{
𝑘, if 𝑜𝑝 between node 𝑖 and 𝑗 present in 𝑎𝑟𝑐ℎ𝑑𝑖𝑠

0, otherwise
(2)

where k is an integer. The design ensures that the current architec-
ture according to 𝛼 gets a majority of the gradient information to
update its parameters while the rest of the gradient information
is distributed equally among all the other architectures to update
their parameters. This results in making sure that the weights of
an architecture does not get co-dependent with the weights of the
other architecture due to the weight sharing nature of the one shot
model. It also helps in improving the estimation of the fitness of
each architecture in the population, as it gives higher equal weight
to that particular architecture operations while giving lower equal
weights to the other architecture operations. This results in the
higher contribution from a particular architecture while very low
contribution by other architectures during the fitness evaluation
step of that particular architecture from the one shot model which
also leads to a consistent estimated fitness for an architecture which
might arise from different values of 𝛼 in a given generation. This
is in contrast to the variable architecture contribution, used in the
original DARTS paper, wherein an architecture is evaluated using 𝛼
which results in very noisy estimate of its performance. We empiri-
cally found that k = 1 gives a good result and increasing the value
of k from 1 tends to deteriorate the accuracy as shown in Figure
2(a).

3.3 Training and Performance Estimation
The sharing of the network weights among the architectures in the
population, due to the one shot model representation [21], helps in
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exchanging information to the next generation population, wherein
the architectures of the next generation do not start training from
scratch. This can be thought of as child architecture model inher-
iting the weights of the parent architecture model, also known as
weight inheritance. Therefore, instead of the full training of each
architecture in the population from scratch, EvNAS partially trains
the inherited architecture model weights by using the training data.
This is done by first copying the decoded architecture parameter,
𝛼 , in Section 3.2, for the individual architecture in the population
to the one shot model and then training the network for a certain
number of batches of training examples.

To evaluate the performance of each individual architecture, its
decoded architecture parameter, 𝛼 , from Section 3.2, is first copied
to the one shot model. The model is then evaluated on the basis
of its accuracy on the validation data, which becomes the fitness
of the architecture. Note that the fitness value of each architecture
is a noisy estimate of its true accuracy on the validation data as
the architecture has been trained partially on a certain number
of training batches while inheriting its weights from the previous
generation.

3.4 Evolutionary Algorithm
The evolutionary algorithm (EA) starts with a population of archi-
tectures, which are sampled from a uniform distribution on the
interval [0, 1), and it runs for G generations. In each generation,
the one shot model is trained on the training data by using the
decoded architecture parameter 𝛼 of each individual architecture in
the population in a round-robin fashion. Then, the fitness of each
individual architecture is estimated using the decoded architecture
parameter 𝛼 . The population is then evolved using crossover and
mutation operations to create the next generation population re-
placing the previous generation population. The best architecture
in each generation does not undergo any modification and is au-
tomatically copied to the next generation. This ensures that the
algorithm does not forget the best architecture learned thus far
and gives an opportunity to old generation architecture to compete
against the new generation architecture; this is known as elitism.
The best architecture is returned after G generations. The entire
process is summarized in Algorithm 1.

Figure 3: Illustration of mutation operation

Mutation Operation: It refers to a random change to an in-
dividual architecture in the population. The algorithm uses the
mutation operator [10], which decides the probability of changing
the architecture parameter, 𝛼𝑖, 𝑗 , between node 𝑖 and node 𝑗 . This is
done by re-sampling 𝛼𝑖, 𝑗 from a uniform distribution on the interval
[0, 1) as illustrated in Figure 3.

Algorithm 1 EvNAS
Input: population P, population size N, number of selected indi-
viduals in tournament selection T, mutation rate r, total number
of training batches B, one shot model M.
for g = 1, 2, ..., G generations do

for i = 1,..., B do
Copy 𝛼 [𝑖 mod 𝑁 ] generated from 𝛼 [𝑖 mod 𝑁 ] to M and
train M on training batch[i];

end for
Calculate fitness of each individual architecture, 𝛼 in P by
copying the respective 𝛼 to M;
Set Elite, E← best architecture in P ;
Copy E to the next generation population, 𝑃𝑛𝑒𝑥𝑡 ;
for i = 2,.., N do

Use Tournament Selection for selecting 2 parents;
Use crossover to create new child from the 2 parents for
𝑃𝑛𝑒𝑥𝑡 ;
for each edge in child do

if 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚𝑅𝑎𝑛𝑑𝑜𝑚(0, 1) ≤ 𝑟 then
Apply mutation operation to the edge;

end if
end for

end for
𝑃 ← 𝑃𝑛𝑒𝑥𝑡 ;

end for
return Elite, E

Figure 4: Illustration of crossover operation

Crossover Operation: It is a process of combining parent ar-
chitectures to create a new child architecture, which may perform
better than the parents. EvNAS uses tournament selection [10] for
the parent selection process to generate the next generation ar-
chitecture population. In tournament selection, a certain number
of architectures are randomly selected from the current popula-
tion and the most fit architecture from the selected group becomes
the parent. We get parent1 and parent2 on applying tournament
selection two times which are then used to create a single child
architecture. This is done by copying the architecture parameters,
[𝛼𝑖, 𝑗 ]𝑝𝑎𝑟𝑒𝑛𝑡1 and [𝛼𝑖, 𝑗 ]𝑝𝑎𝑟𝑒𝑛𝑡2 between node 𝑖 and node 𝑗 , from
parent1 and parent2, respectively, with a certain probability to the
child architecture parameter, [𝛼𝑖, 𝑗 ]𝑐ℎ𝑖𝑙𝑑 between node 𝑖 and node
𝑗 as illustrated in Figure 4. This can be formulated as follows:

[𝛼𝑖, 𝑗 ]𝑐ℎ𝑖𝑙𝑑 =

{
[𝛼𝑖, 𝑗 ]𝑝𝑎𝑟𝑒𝑛𝑡1,with probability 0.5
[𝛼𝑖, 𝑗 ]𝑝𝑎𝑟𝑒𝑛𝑡2, otherwise

(3)
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Figure 5: Discovered cell using EvNAS-A (a) Normal Cell (b) Reduction Cell

Table 1: Comparison of EvNAS with other NAS methods on CIFAR-10 and CIFAR-100 datasets for S1 in terms of test error
(lower is better). The first block presents the performance of the hand-crafted architecture. The second block presents the
performance of other NAS methods, the third block presents the performance of our method and the last block presents the
performance of our ablation study. All the architecture search were performed using cutout. Results with †were NOT trained
with Cutout [6].

Test Error (%) Params Search Time Search
Architecture C10 C100 (M) (GPU Days) Method
DenseNet-BC [14] 3.46 17.18 25.6 - manual
PNAS [18] 3.41 - 3.2 225 SMBO
NASNet-A [37] 2.65 - 3.3 1800 RL
ENAS [26] 2.86 - 4.6 0.45 RL
DARTS [21] 2.76 ± 0.09 17.54 3.3 4 gradient-based
GDAS [8] 2.93 18.38 3.4 0.83 gradient-based
SNAS [33] 2.85 ± 0.02 - 2.8 1.5 gradient-based
SETN [7] 2.69 17.25 4.6 1.8 gradient-based
PDARTS [2] 2.50 16.55 3.4 0.3 gradient-based
AmoebaNet-A [27] 3.34 ± 0.06 18.93 3.2 3150 evolution
Large-scale Evolution† [28] 5.4 - 5.4 2750 evolution
Hierarchical Evolution† [19] 3.75 - 15.7 300 evolution
NSGANetV1-A2 [24] 2.65 17.42 0.9 27 evolution
NSGA-NET [23] 2.75 - 3.3 4 evolution
RSPS[17] 2.86 ± 0.08 - 4.3 2.7 random
EvNAS-A (Ours) 2.47±0.06 16.37 3.6 3.83 evolution
EvNAS-B (Ours) 2.62 ± 0.06 16.51 3.8 3.83 evolution
EvNAS-C (Ours) 2.63 ± 0.05 16.86 3.4 3.83 evolution
EvNAS-Rand (Ours) 2.84 ± 0.08 - 2.7 0.62 random
EvNAS-ND (Ours) 2.78 ± 0.1 - 3.8 3.83 evolution
EvNAS-NDF (Ours) 2.75 ± 0.09 - 3.1 3.83 evolution
EvNAS-NDT (Ours) 2.67 ± 0.06 - 3.5 3.83 evolution
EvNAS-Mut (Ours) 2.79 ± 0.06 - 3.4 3.83 evolution
EvNAS-Cross (Ours) 2.81 ± 0.08 - 3.2 3.83 evolution

Note that as all the architectures are sub-graph of the super-graph,
i.e. the one shot model, so, we do not have to keep track of the
ancestors [35][31] in order to apply the crossover operation.

4 EXPERIMENTS AND RESULTS
In this section, we report the performance of EvNAS in terms of a
neural architecture search on two different search spaces: 1) Search
space 1 (S1) and 2) Search space 2 (S2). The operations considered
for the cells in S1 and S2 are given in supplementary. The one
shot model is created by stacking normal cell with reduction cell
inserted at 1/3 and 2/3 of the total depth of the model (Figure 1(a)).

We then present an ablation study showing the importance of the
proposed decoded architecture parameter, 𝛼 , crossover and mutation
operations during the search process.

Initialization: Each architecture in a population is represented
by the architecture parameter, 𝛼 , which is sampled from a uniform
distribution on the interval [0, 1).

4.1 Dataset:
CIFAR-10 and CIFAR-100 [15] has 50K training images and 10K
testing images with images classified into 10 classes and 100 classes
respectively. ImageNet [5] is well known benchmark for image
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Table 2: Comparison of EvNAS with other NAS methods on ImageNet in mobile setting for S1 in terms of test error (lower is
better). The first block presents the performance of the hand-crafted architecture. The second block presents the performance
of other NAS methods and the last block presents the performance of our method.

Test Error (%) Params +× Search Time Search
Architecture top 1 top 5 (M) (M) (GPU Days) Method
MobileNet [13] 29.4 10.5 4.2 569 - manual
PNAS [18] 25.8 8.1 5.1 588 225 SMBO
NASNet-A [37] 26.0 8.4 5.3 564 1800 RL
NASNet-B [37] 27.2 8.7 5.3 488 1800 RL
NASNet-C [37] 27.5 9.0 4.9 558 1800 RL
DARTS [21] 26.7 8.7 4.7 574 4 gradient-based
GDAS [8] 26.0 8.5 5.3 581 0.83 gradient-based
SNAS [33] 27.3 9.2 4.3 522 1.5 gradient-based
SETN [7] 25.7 8.0 5.4 599 1.8 gradient-based
PDARTS [2] 24.4 7.4 4.9 557 0.3 gradient-based
AmoebaNet-A [27] 25.5 8.0 5.1 555 3150 evolution
AmoebaNet-B [27] 26.0 8.5 5.3 555 3150 evolution
AmoebaNet-C [27] 24.3 7.6 6.4 570 3150 evolution
NSGANetV1-A2 [24] 25.5 8.0 4.1 466 27 evolution
FairNAS-A [4] 24.7 7.6 4.6 388 12 evolution
FairNAS-B [4] 24.9 7.7 4.5 345 12 evolution
FairNAS-C [4] 25.3 7.9 4.4 321 12 evolution
EvNAS-A (Ours) 24.4 7.4 5.1 570 3.83 evolution
EvNAS-B (Ours) 24.4 7.4 5.3 599 3.83 evolution
EvNAS-C (Ours) 25.1 7.8 4.9 547 3.83 evolution

classification containing 1K classes with 1.28 million training im-
ages and 50K images test images. ImageNet-16-120 [3] is a down-
sampled variant of ImageNet where the original ImageNet is down-
sampled to 16x16 pixels with labels ∈ [0, 120] to construct ImageNet-
16-120 dataset. Settings used for datasets in S1 are similar to those
used in [21] and datasets in S2 are similar to those used in [9]. These
are summarized in the supplementary.

4.2 Search Space 1 (S1)
Search space (S1) is the one used in DARTS [21] where we search for
both normal and reduction cells in Figure 1(a). Here, each cell has
seven nodes with first two nodes being the output from previous
cells and last node as output node, resulting in 14 edges among them.
There are 8 operation in S1 , so each architecture is represented by
two 14x8 matrices, one each for normal cell and reduction cell.

Search Process: We perform the architecture search process
on CIFAR-10 in S1, which is divided into two stages as was done
in [21][17]. In stage 1, we perform the search process for both
normal and reduction cells on CIFAR-10 by using four different
seeds; this can be thought of as the searching stage of the algorithm.
In stage 2, the architecture found in each trial of stage 1 is evaluated
by retraining a larger network created using the same cell blocks
discovered in stage 1 for 600 epochs from scratch on CIFAR-10.
Next, we choose the best performing architecture among the four
trials, making it the final architecture searched by the algorithm.
To compare with other architecture search methods, we evaluate
the final architecture found from stage 2 by training the network
from scratch with ten different seeds for 600 epochs.

Architecture Search Settings: The training setting mainly fol-
lows the setup proposed by DARTS [21]. Because of the high mem-
ory requirements of the one shot model, a smaller network, called
proxy network [17], with 8 stacked cells and 16 initial channels is
used during the architecture search process, i.e. stage 1. For deriving
the discrete architecture, 𝑎𝑟𝑐ℎ𝑑𝑖𝑠 , each node in the discrete architec-
ture is connected to two nodes among the previous nodes selected
via the top-2 operations according to the architecture parameter 𝛼 .
For training the one shot model, we use similar settings as DARTS
[21] and are summarized in supplementary. For our evolutionary
algorithm, we use a population size of 50 in each generation, 0.1
as the mutation rate and 10 architectures are chosen randomly
during the tournament selection. The search process runs for 50
generations on a single GPU, NVIDIA 2080 Ti, where each trial
takes 0.95 day to complete and thus, taking 3.83 days to complete
stage 1. Number of generations was chosen to match the number
of epochs in DARTS [21]. Population size was chosen based on the
experiments where we ran our method for population size of 20,
30, 50 with tournament size chosen as one-fifth of the population
size, as shown in Figure 2(b). We did not go beyond 50 population
size as we wanted to have search time similar to that of DARTS.
Mutation rate was chosen based on the experiments where we ran
our method for mutation rate of 0.05, 0.1, 0.15, as shown in Figure
2(c). All our architecture search in Table 1 are done with cutout [6].

Architecture Evaluation: A larger network, called proxyless
network [17], with 20 stacked cells and 36 initial channels is used
during the selection and evaluation stage. The proxyless network
is trained using the settings in DARTS [21], summarized in sup-
plementary. The architecture discovered in the search process on
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Table 3: Comparison of EvNAS with other weight sharing based NAS methods on NAS-Bench-201 (S2) [9] with mean ± std.
accuracies onCIFAR-10, CIFAR-100, ImageNet16-120 from3 runs each (higher is better). Optimal refers to the best architecture
accuracy for each dataset. Search times are given for a CIFAR-10 search on a single GPU.

Method Search CIFAR-10 CIFAR-100 ImageNet-16-120 Search
(seconds) validation test validation test validation test Method

RSPS [17] 7587.12 84.16 ± 1.69 87.66 ± 1.69 59.00 ± 4.60 58.33 ± 4.64 31.56 ± 3.28 31.14 ± 3.88 random
DARTS-V1 [21] 10889.87 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00 gradient-based
DARTS-V2 [21] 29901.67 39.77 ± 0.00 54.30 ± 0.00 15.03 ± 0.00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00 gradient-based
GDAS [8] 28925.91 90.00 ± 0.21 93.51 ± 0.13 71.14 ± 0.27 70.61 ± 0.26 41.70 ± 1.26 41.84 ± 0.90 gradient-based
SETN[7] 31009.81 82.25 ± 5.17 86.19 ± 4.63 56.86 ± 7.59 56.87 ± 7.77 32.54 ± 3.63 31.90 ± 4.07 gradient-based
ENAS [26] 13314.51 39.77±0.00 54.30 ± 0.00 15.03 ± 00 15.61 ± 0.00 16.43 ± 0.00 16.32 ± 0.00 RL
EvNAS (Ours) 22444.78 88.98±1.40 92.18±1.11 66.35±2.59 66.74±3.08 39.61±0.72 39.00±0.44 evolution
Optimal N/A 91.61 94.37 73.49 73.51 46.77 47.31 N/A

CIFAR-10 is then trained on both CIFAR-100 dataset [15] and Im-
ageNet dataset. For CIFAR-100, the same settings as CIFAR-10 is
used to train and evaluate the proxyless network on the CIFAR-100
dataset [15]. For ImageNet, we train a network with 14 cells and 48
initial channels in the mobile setting, where the size of the input
images is 224 x 224 and the number of multiply-add operations in
the model is restricted to less than 600M. We follow the training
settings used by PDARTS [2] on 8 NVIDIA V100 GPUs.

Search Results and Transferability to CIFAR-100 and Im-
ageNet: We perform the architecture search on CIFAR-10 three
times with different random number seeds and their results are
provided in Table 1 as EvNAS-A, EvNAS-B and EvNAS-C, which
are then transferred to CIFAR-100. The cells discovered during
EvNAS-A are shown in Figure 5 and those discovered by EvNAS-B
and EvNAS-C are given in the supplementary. EvNAS-A evaluates
10K architectures during the architecture search with search time
significantly less than the previous evolution based methods [27]
[28] [19] while achieving better result than them. Following [21][2],
the discovered architecture from CIFAR-10 is then evaluated on
the ImageNet dataset and the results are provided in Table 2. The
result shows that the cell discovered by EvNAS on CIFAR-10 can
be successfully transferred to the ImageNet, achieving a top-5 error
of 7.4%. Notably, EvNAS is able to achieve better result than previ-
ous state-of-the-art evolution based methods [27] [4] while using
significantly less computational resources.

4.3 Search Space 2 (S2)
Search space (S2) is a smaller search space and is the one used in
NAS-Bench-201 [9], where we only search for normal cell in Fig-
ure 1(a). NAS-Bench-201 provides a unified benchmark for almost
any up-to-date NAS algorithm by providing results of each archi-
tecture in the search space on CIFAR-10, CIFAR-100 and ImageNet-
16-12. Here, each cell has four nodes with first node as input node
and last node as output node, resulting in 6 edges among them.
these are 5 operations in S2, so each architecture is represented by
one 6x5 matrix for the normal cell.

Search Process: We apply EvNAS with the same setting as the
one used for S1 using a single GPU, NVIDIA 2080 Ti . Following
[9], we run EvNAS three times (i.e. the stage 1 of EvNAS) on three
datasets: CIFAR-10, CIFAR-100 and ImageNet-16-120 and report
the statistics of the test and validation accuracies for each dataset.

Search Results: The search results of applying EvNAS on S2,
evaluated on CIFAR-10, CIFAR-100, ImageNet-16-120 are provided
in Table 3. We found that EvNAS outperformed all weight sharing
based methods except GDAS [8]. But GDAS performs worse when
the search space increases as can be seen in Table 1 and Table 2.
In Figure 6 (a), we show the performance of the architecture de-
rived from each algorithm in Table 3 for every epoch. We found
that EvNAS converges to an optimal architecture much faster and
does not get stuck in sub-optimal architectures like DARTS due to
mutation.

4.4 Ablation Studies
To discover the effect of the decoded architecture parameter, 𝛼 , and
the crossover and mutation operations during the search process,
we conduct the following architecture searches in both Search
Space 1 (S1) and Search Space 2 (S2) on CIFAR-10: without decoded
architecture parameter, 𝛼 , with crossover only, with mutation only
and without crossover and mutation. The search results for S1 are
provided in Table 1. To understand the dynamics during the archi-
tecture search, we also plot the test accuracy of derived architecture
at each epoch for S2 in Figure 6 (b)(c).

Without Crossover and Mutation: Here, a population of 50
architectures are randomly changed after every generation and in
the last generation, the architecture with the best performance on
the validation set is chosen as the best found architecture. Thus, the
search process evaluates only 200 architectures to come up with
the best architecture. On performing the search in S1 (listed as
EvNAS-Rand in Table 1), we found that EvNAS-Rand behaves as a
random search and shows similar results to those reported in RSPS
[17].

Without Decoded Architecture Parameter, 𝛼 : Here, we con-
duct three architecture searches where a population of 50 architec-
tures are modified through both crossover and mutation operations
without using the decoded architecture parameter, 𝛼 , (i) during the
training (EvNAS-NDT ), (ii) during the fitness evaluation of each
individual architecture in the population (EvNAS-NDF ) and (iii) dur-
ing both training and fitness evaluation (EvNAS-ND). From Table 1,
we found that both EvNAS-NDT and EvNAS-NDF perform better
than EvNAS-ND, showing that the decoded architecture parameter,
𝛼 , plays an important role during the architecture search. From
Figure 6 (b), we found that EvNAS-ND shows some randomness
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(a) (b) (c)

Figure 6: Test accuracy of derived architecture evaluated on CIFAR-10 at each epoch for S2. (a) Comparison of EvNAS with
other weight sharing based NAS methods, (b) Comparison of EvNAS with decoded architecture parameter, 𝛼 , during different
phases of the architecture search, (c) Comparison of EvNAS with crossover and mutation only.

due to the noise introduced in the fitness estimation. EvNAS-NDT
smooths out the randomness in EvNAS-ND due to the presence
of 𝛼 during fitness estimation. EvNAS-NDF shows that 𝛼 during
training is responsible for the fast convergence of EvNAS.

With Mutation Only: Here, a population of 50 architectures
are modified only through a mutation operation with 0.1 as the
mutation rate while using the decoded architecture parameter. On
performing the search in S1 (listed as EvNAS-Mut in Table 1), we
found that EvNAS-Mut performs slightly better than that of the
random search even though mutation is a random process. From
Figure 6 (c), we find that mutation behaves more like a random
process and is the exploration part of EvNAS which does not let
EvNAS get stuck in local optima.

With Crossover Only: Here, a population of 50 architectures
are modified only through a crossover operation only while using
the decoded architecture parameter. On performing the search
in S1 (listed as EvNAS-Cross in Table 1), we found that EvNAS-
Cross performs slightly better than that of the random search. From
Figure 6 (c), we find that crossover is the exploitation part of EvNAS
and is prone to getting stuck in local optima. This can be attributed
to the selection pressure [10] introduced due to the tournament
selection. This improvement of EvNAS-Cross and EvNAS-Mut over
the random search in S1 can be attributed to elitism, which does
not let the algorithm forget the best architecture learned thus far.

4.5 Discussion on Evolutionary Search vs
Gradient Based Search

The gradient based methods are highly dependent on the search
space and they tend to overfit to operations that lead to faster
gradient descent which is the skip-connect operation due to its
parameter-less nature, leading to higher number of skip-connect in
the final discovered cell [34] [9] [2]. PDARTS [2] uses a regular-
ization method to restrict the number of skip-connect to a specific
number in the final normal cell for the search space S1. PDARTS
emperically found that the optimal number of skip-connect in the
normal cell is 2, which reduces the search space resulting in faster
search time as compared to the original DARTS [21], which is a
gradient based method without any regularization applied to the

search space S1. This optimal number of skip-connect is a search
space dependent value and thus, the same PDARTS method cannot
be applied to the search space S2. Notice that without such regu-
larization of restricting the number of skip-connect to 2 in S1, the
gradient based methods, e.g. DARTS, only provides similar search
time but worse performance than ours in both S1 and S2 due to
the overfitting problem. In contrast, EvNAS does not have to worry
about the overfitting problem due to its stochastic nature and so it
is not dependent on the search space. EvNAS arrives at this optimal
solution without any regularization being applied to the search
space as can be seen in the discovered normal cells in Figure 5(a)
and all the figures in the supplementary.

5 CONCLUSIONS AND FUTURE DIRECTIONS
This paper presented an efficient method of applying a simple ge-
netic algorithm to the neural architecture search problem which
involves weight sharing among the individual architectures and
weight inheritance using a one shot model. This results in following
practical benefits: 1) the use of one shot model reduces the compu-
tational requirements as compared to other EA based methods, 2)
it solves the overfitting problem introduced in the gradient-based
methods with the use of mutation. The paper also introduces a
decoding method for the architecture parameter which is used
to improve the fitness estimation of a partially trained individ-
ual architecture from the one shot model. Experimentally, EvNAS
reduces the search time of evolution based architecture search sig-
nificantly while achieving better results on CIFAR-10, CIFAR-100
and ImageNet datasets than previous evolutionary algorithms. The
proposed method also outperforms most weight sharing based NAS
methods in NAS-Bench-201 benchmark for NAS algorithms. All
these show that the proposed method is search space agnostic.
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