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An evolutionary parsimonious 
approach to estimate daily 
reference evapotranspiration
F. Javier Ruiz‑Ortega 1,2*, Eddie Clemente 3, Alicia Martínez‑Rebollar 1 & 
J. Jassón Flores‑Prieto 1

The reference evapotranspiration (ETo) is an essential component in hydrological and ecological 
processes. The objective of this research is to develop an explicit model to estimate ETo only using 
commonly measurable meteorological parameters such as relative humidity, air temperature, and 
wind speed, where the measurements corresponding to solar radiation are omitted. The model was 
generated using Genetic Programming (GP), evaluated, and validated with reference data ETo using 
FAO56-PM. This reference data was obtained from different climates (warm-temperate and arid-
warm) and latitudes, acquired from CIMIS stations in the state of California, United States, and the El 
Porvenir station in the state of Coahuila, located in north-central Mexico. After applying the proposed 
methodology, a total of 3754 results were generated, demonstrating a significant improvement in 
the estimation of ETo compared to the Hargreaves–Samani model. A particularly noteworthy result 
revealed that our approach outperformed the Hargreaves–Samani model in the training phase by 
27%, and in the testing phase by 16%, on average. In order to achieve a generalized model, a dataset 
encompassing meteorological stations in two different climates (warm-temperate and arid-warm) and 
various latitudes was utilized. The obtained outcome unveiled a highly effective model for estimating 
ETo in diverse climatic contexts, eliminating the need for local adjustments. This model significantly 
surpassed the Hargreaves–Samani model, exhibiting superior performance by 17% during the training 
phase and 18% during the testing phase. These results conclusively underscore the capability of our 
approach to provide more accurate and reliable ETo estimates. These results conclusively underscore 
the capability of our approach to provide more accurate and reliable ETo estimates. Finally, to validate 
the model, four different datasets with climates similar to those used for model creation (warm-
temperate, warm-arid) and different latitudes were employed. The validation stage results clearly 
indicate the superiority of our reference evapotranspiration ETo11 model over the Hargreaves–Samani 
model by 51% in warm-temperate climates. For the dataset with arid-warm climate, our model 
continued to show satisfactory results, surpassing the Hargreaves–Samani model by 8%. GP emerges 
as an innovative and effective alternative for simplified model development. This approach introduces 
a novel paradigm that facilitates the efficient development of models, standing out for its simplicity 
and effectiveness in generating solutions.

Evapotranspiration (ET) is the combination of two separate processes, the first of which is the loss of water from 
the soil surface by evaporation and the second of which is crop transpiration. Evaporation and transpiration occur 
simultaneously, and there is no easy way to distinguish between these two phenomena. Since ET represents a vital 
component of the hydrological cycle, its precise estimation is necessary for the management of water resources, 
the hydrological balance of basins, and drainage system irrigation. The main climatic parameters that affect ET 
are solar radiation, temperature of the air, relative humidity, and wind speed.

In 1921, Cummings introduced an initial energy balance equation, which was later integrated by Penman in 
1948 with a mass-transfer equation grounded in Dalton’s research, culminating in the formulation of the Pen-
man equation. A crucial parameter in this equation was the Bowen ratio, first published in 1926. Subsequently, 
following Penman’s contributions, another significant advancement occurred in 1965 by Monteith. He refined 
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Penman’s equation initially designed for a single leaf, giving rise to the Penman–Monteith model. This model, 
serving as the foundation for the FAO56-PM Reference Crop model, marked a pivotal milestone in the evolution 
of evaporation estimation techniques. McMahon and his collaborators provide a crucial discussion on the theory 
and fundamental definitions, along with a critical assessment of the models developed to date1.

The rate of evapotranspiration from a surface of reference, occurring without water constraints, is known as 
evapotranspiration of the reference crop, called ETo2.

However, it has significant limitations. Primarily, it requires a substantial amount of detailed data to obtain 
reliable results, which can be a challenge in situations of irregular data availability3. Additionally, the imple-
mentation of the model can be intricate, especially regarding the calculation of surface resistance, as indicated 
by previous studies4. These identified limitations underscore the imperative need to develop alternative models 
that streamline data collection and reduce computational complexity. On the other hand, the FAO recommends 
the Hargreaves–Samani model for places where only temperature data are available. Although it is true that the 
model only works with temperature differences, the calculation of daily ETo could be subject to errors due to 
the influence of the temperature range5.

A study conducted by6 provides a solution to the issue of the Hargreaves model by proposing an adjustment 
to suit the specific characteristics of semi-arid climates, typically Mediterranean, characterized by extremely hot 
and dry summers. This modification aims to enhance the accuracy of the original model by more appropriately 
accounting for the climatic peculiarities inherent in such environments, thereby enabling a more effective and 
reliable application in those contexts. However, it’s worth noting that the proposed solution is limited to a single 
climate type, and regional adjustments will be necessary for its implementation.

The estimation of ETo can be broadly grouped into three categories: (1) models entirely based on physical 
principles that incorporate the fundamentals of mass and energy conservation; (2) semi-physical models that 
specifically address mass or energy conservation; and (3) black-box models relying on artificial neural networks, 
empirical relationships, and fuzzy and genetic algorithms7. Currently, in addition to the mentioned models, 
remote sensing models have been developed and applied for ETo estimation. These models utilize data collected 
by remote sensors, such as satellite images, to assess and calculate ETo with greater precision8.

Some experts, as mentioned in the literature7,9, have delved into the application of genetic algorithms with the 
purpose of standardizing certain models to enhance estimation accuracy. These initiatives have placed particular 
emphasis on methods like Hargreaves and remote sensing technologies such as MODIS (Moderate Resolution 
Imaging Spectroradiometer). The primary goal of this approach is not only to refine the accuracy of estimations 
but also to ensure greater consistency and reliability in the results derived from these models and techniques. 
It is important to note that, despite these advancements, these models require specific adjustments to achieve 
a more precise adaptation to the particular conditions of the region under study. This recognition underscores 
the need to consider local factors in the application of these models to guarantee more accurate and contextually 
relevant estimations.

At present, evolutionary computation techniques such as GP, artificial neural networks, and neurofuzzy 
models have been used for modeling hydrological processes10–14. These techniques have the ability to model 
nonlinear complex processes and can estimate ETo accurately. However, their success depends on various fac-
tors such as the quantity and quality of the data, the selection of the model structure, and the required model 
parameters. In13, the authors estimated ETo using relative humidity and air temperature data. The authors used 
two strategies for handling data. The first strategy was clustering by climate type, and the second strategy used 
past meteorological data as input to the models. The techniques used in that study were a neural network and a 
support vector machine as well as six empirical equations; the latter showed the lowest performance. However, 
models generated through machine learning techniques such as artificial neural networks and support vector 
machines are perceived as black boxes due to their intrinsic complexity and internal algorithms involving mul-
tiple layers of interconnected nodes. This lack of transparency can lead to distrust and reluctance in their use, 
as they do not provide a clear explanation of the relationship between input variables and the obtained results. 
Additionally, the models were developed with clusters of data from weather stations with similar climates, which 
may result in inaccurate performance in regions with significantly different climatic conditions. ETo has also 
been addressed using genetic algorithms11 used daily climatic variables obtained from the California Irrigation 
Management Information System CIMIS15 of the Davis, Hasting, Suisun, Dixon, and Oakville stations. The 
authors evaluated the performance of genetic algorithms against various empirical models, such as Jensen–Haise, 
Hargreaves–Samani, Jones-Ritchie, the Turc method, and models based on solar radiation. However, despite the 
authors reporting good performance compared to other conventional methods, the new model uses the same 
input parameters as the FAO-PM reference model, limiting its applicability in areas where the necessary informa-
tion is unavailable. Other authors, such as16, applied GP to estimate ETo in the Basque Country (northern Spain). 
The developed models used the meteorological parameters of relative humidity, solar radiation, air temperature, 
and wind speed. Although the models proposed by11,16 yield quite satisfactory results, it is important to note that 
they use the same parameters (air temperature, relative humidity, solar radiation, and wind speed) as the FAO-
PM model. This similarity limits their implementation in locations where not all parameters are available. In17, 
the authors compared artificial neural networks using the standard Penman‒Monteith method. They worked 
with two datasets obtained from the Davis station of CIMIS. The variables used were solar radiation, maximum 
temperature, minimum temperature, maximum relative humidity, minimum relative humidity, wind speed and 
ETo obtained with the Penman‒Monteith standard method as the objective value. The results show that the 
artificial neural network model can be trained locally to predict ETo values better than the standard Penman‒
Monteith method. However, despite the authors reporting positive performance, the new model uses the same 
input parameters as the Penman–Monteith reference model, limiting its applicability in areas where necessary 
information is not available. Additionally, being trained locally implies that, for use in another region, it will 
need to undergo a new training process.
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Random forest models and generalized regression neural networks were used by18 to estimate ETo for the 
period 2009–2014 at two meteorological stations in China. The results show that the random forest model and 
the generalized regression network can be successfully applied to accurately estimate daily ETo. However, the 
random forest model may perform slightly better than the generalized regression neural network in estimating 
daily ETo. The presented models exhibit favorable performances; however, they are characterized as black-box 
models. Furthermore, it is worth noting that they were exclusively trained with a single type of climate, implying 
that if they are to be used in a region with different climatic conditions, they will need to undergo a new training 
process tailored to the specific conditions of the location.

The research conducted by19 compared different machine learning techniques for developing ETo models, 
achieving accurate results. On the other hand, the best-performing model presented involves variable net radia-
tion, which often remains unavailable, limiting its implementation. Similarly, the models were generated for a 
humid climate. The extreme support machine in combination with genetic algorithms was employed by20 to 
develop models for estimating ETo. They found that the combination of these two techniques yielded accurate 
results using input variables such as Tmax, Tmin, u2, RH, and Rn/Rs, as well as Tmax, Tmin, and Rn/Rs. Nonethe-
less, these models were tailored for subtropical and plateau mountainous monsoon climates, and they utilize 
variables that are frequently unavailable, Such as solar radiation. Furthermore, these models are considered 
black-box models.

The models proposed by19,20 stand out for their higher accuracy compared to conventional models; however, 
their use of variables that are sometimes challenging to obtain, such as solar radiation, poses practical challenges. 
Additionally, these models were specifically designed for a particular climate, and their techniques, considered 
“black box,” present aforementioned disadvantages. The limitation in variable availability and climatic spe-
cialization may restrict the applicability of these models in different conditions or locations, emphasizing the 
importance of considering these limitations when assessing their suitability and applicability in broader contexts.

While some techniques found in the literature displayed in Table 1 demonstrate an accurate estimation of 
ETo, they face the challenge of being considered “black boxes,” complicating the interpretation of their results13,19. 

Table 1.   Summary of the different articles addressing the issue of evapotranspiration.

Title Parameters Technology Limitations

Evolutionary algorithm for reference evapo-
transpiration analysis9

Evapotranspiration one day ago, Evapo-
transpiration two days ago, Maximum and 
minimum temperatures, Hours of sunlight, 
Vapor pressure, Maximum and minimum 
relative humidity, Wind speed

Genetic Programming Adapted to a single climate

Genetic Programming-Based Empirical 
Model for Daily Reference Evapotranspira-
tion Estimation10

Solar radiation, Average temperature, Aver-
age relative humidity, Wind speed Genetic Programming Uses the same variables as the FAO-PM 

reference model

Generalizability of Gene Expression Pro-
gramming-based approaches for estimating 
daily reference evapotranspiration in coastal 
stations of Iran11

Maximum and minimum temperatures, 
Maximum and minimum relative humidity, 
Solar radiation, Wind speed

Linear Genetic Programming Uses the same variables as the FAO-PM 
reference model

Estimation of reference evapotranspiration 
in brazil with limited meteorological data 
using ann and svm–a new approach12

Average temperature, Average relative 
humidity

Support Vector Machine and Artificial 
Neural Networks

The techniques used are considered black-
box type, which limits their analysis

Forecasting of Reference Evapotranspiration 
by Artificial Neural Networks13

Average temperature, Average relative 
humidity, Wind speed, Sunshine hours Artificial Neural Networks The techniques used are considered black-

box type, which limits their analysis

Daily reference evapotranspiration 
modeling by using genetic programming 
approach in the Basque Country (Northern 
Spain)15

Average temperature, Average relative 
humidity, Wind speed, Solar radiation Linear Genetic Programming Uses the same varia-bles as the FAO-PM 

reference model

Estimating evapotranspiration using artifi-
cial neural network16

Solar radiation, Maximum and minimum 
temperatures, Maximum and minimum 
relative humidity, Wind speed

Artificial Neural Networks The techniques used are considered black-
box type, which limits their analysis

Evaluation of random forests and general-
ized regression neural networks for daily 
reference evapotranspiration modeling17

Solar radiation, Maximum and minimum 
temperatures, Maximum and minimum 
relative humidity, Wind speed

Random Forests and Artificial Neural 
Networks

The techniques used are considered black-
box type, which limits their analysis

Evapotranspiration evaluation models 
based on machine learning algorithms—A 
comparative study18

Net solar radiation, Sensible heat flux, Soil 
moisture content, Wind speed, Average 
relative humidity, Mean temperature

M5P Regression Tree, Bagging, Random 
Forest and Support Vector Regression

The techniques used are considered black-
box type, which limits their analysis

Genetic Algorithm-Optimized Extreme 
Learning Machine Model for Estimating 
Daily Reference Evapotranspiration in 
Southwest China19

Solar radiation, Net radiation, Maximum 
and minimum temperatures, Maximum and 
minimum relative humidity, Wind speed

Extreme Support Vector Machine with 
Genetic Algorithms

The techniques used are considered black-
box type, which limits their analysis

Evaluation of Variable-Infiltration Capacity 
Model and MODIS-Terra Satellite-Derived 
Grid-Scale Evapotranspiration Estimates in 
a River Basin with Tropical Monsoon-Type 
Climatology7

Solar radiation, Maximum and minimum 
temperatures, Maximum and minimum 
relative humidity, Wind speed

MODIS, VIC_3L adjusts MODIS with 
Genetic Algorithms

Standardizes the parameters with genetic 
algorithms

Modelling the dynamics of evapotranspira-
tion using Variable Infiltration Capacity 
model and regionally calibrated Hargreaves 
approach3

Solar radiation, Maximum and minimum 
temperatures, Maximum and minimum 
relative humidity, Wind speed

Genetic Algorithms Adjusts the Hargreaves model with genetic 
algorithms
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Furthermore, the findings presented involve the use of variables such as solar radiation and net radiation, the 
acquisition of which is hindered by the high costs associated with the necessary measurement equipment11,16. 
Additionally, a significant portion of the models has been designed to adapt to specific climates, posing compli-
cations in terms of generalization as they require a new training process when applied to climates different from 
those used during their development19. These challenges underscore the need to address the interpretability of 
the employed techniques and to develop more adaptable models that consider climatic variability to enhance 
their applicability in diverse contexts.

As evidenced in Table 1, the majority of the proposals under analysis share similarities in terms of the input 
variables used, aligning closely with the FAO-PM reference model. These proposals mostly adopt techniques 
considered as “black box.” However, an additional group of approaches stands out, aiming for the standardiza-
tion of models such as Hargreaves and remote sensing techniques like MODIS through adjustments, employing 
genetic algorithms or kriging interpolation. It is important to note that some of these proposals are limited to 
the use of a single climatic dataset during their evaluation.

Within the scope of our research, we aim to develop an explicit model for easy evaluation. Our proposal is 
based on the use of commonly measurable variables, such as temperature, relative humidity, and wind speed. The 
primary objective is to achieve a precise approximation to the FAO-PM reference model. By opting for widely 
recorded variables, our intention is not only to simplify the model evaluation but also to enhance its practical 
applicability in environments where conventional meteorological data are available. This approach aims to con-
tribute to the generation of more accessible and effective models in the field of evapotranspiration estimation.

In contrast, techniques like GP, by generating explicit models, offer advantages in terms of interpretability, 
facilitating the understanding, validation, and debugging of the model. The generalization capability and the 
incorporation of expert knowledge reinforce the utility of explicit models, highlighting their applicability in 
environments requiring a deep understanding of the domain. In this context, we have conceived a generalized 
and explicit model, enriched with expert knowledge in its formulation. This innovative approach utilizes easily 
measurable parameters such as temperature, relative humidity, and wind speed. It stands out for its ability to make 
accurate ETo estimations, surpassing the Hargreaves–Samani model. Furthermore, its versatility is evident in 
its applicability to two different climates: arid-warm and warm-temperate. This model not only optimizes result 
interpretation but also emerges as a valuable and adaptable tool for various climatic conditions, enhancing its 
utility in heterogeneous environments.

GP has emerged as an evolution of traditional genetic algorithms, maintaining the same principle of natural 
selection. What is now intended is to solve problems through the induction of programs and algorithms. It is 
in this possibility where all the potential of GP resides, as it allows the automated development of programs, 
understood in a broad sense, that is, as algorithms in which, based on a series of inputs, a series of outputs is 
generated. In this way, for example, a mathematical equation could be induced using GP.

Throughout history, extensive research has been conducted with the purpose of estimating Reference ETo 
using standard meteorological data. In this context, sustained efforts have been focused on reducing the number 
of variables and, consequently, the meteorological data required for the estimation of ETo1.

In our research, the FAO Penman‒Monteith method (FAO56-PM) is considered to be the knowledge expert 
since it is based on robust physical bases and explicitly incorporates physiological parameters and aerodynam-
ics. The objective of this research is to generate an explicit model to estimate the ETo in at least two different 
climates without local adjustment using meteorological variables such as relative humidity, air temperature, 
and wind speed. The estimation of ETo was performed for arid-warm and warm-temperate climates. In this 
case, commonly measurable climatic parameters (relative humidity, air temperature, and wind speed) are used, 
disregarding solar radiation. For the development and validation of our model, we used databases obtained from 
CIMIS and a database of the El Porvenir station in the state of Coahuila, located in north-central Mexico. In 
our model performance evaluation, we utilize statistical indicators such as the root mean square error (RMSE) 
and the coefficient of determination R2, comparing the obtained results with the Hargreaves–Samani models 
and the reference model.

The implementation of our ETo model based solely on temperature, relative humidity, and wind speed data 
will offer significant benefits to the community. By simplifying the process and reducing dependence on complex 
meteorological data, this approach becomes more accessible and economically viable, especially valuable in 
areas with limited resources or less developed meteorological infrastructure. The widespread application of the 
model, adaptable to at least two different climates (warm temperate, warm arid), will enable efficient irrigation 
management in agriculture. This will result in water use optimization, significantly contributing to environmental 
sustainability. The positive impact of this approach will be notably reflected in agricultural planning and water 
resource management, generating tangible benefits for local communities in terms of sustainability and efficiency. 
The successful implementation of our model will not only improve water efficiency in agriculture but also result 
in lower production costs, thus strengthening the economic viability of agricultural communities.

The main contributions of this research are the following:

•	 The generation of an analytical model using GP, climatic parameters (relative humidity, air temperature, and 
wind velocity) and the use of expert knowledge to estimate the daily ETo.

•	 A generalized model to be used in at least two types of climate (arid and temperate) with results that are 
comparable to the state of the art.

•	 A methodology that could be employed to discover a function that estimate the ETo under specific restric-
tions
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The article is organized as follows: “Materials and methods” section shows the materials and methods; 
“Results” section. In “Discussion” section presents the results, “Discussion” section presents the discussion, and 
“Conclusions and future work” section presents the conclusions and future work.

Materials and methods
In this section, we provide a detailed explanation of the FAO56-PM reference model and the Hargreaves–Samani 
model, along with some generalities about GP. Subsequently, we elaborate on the model development process, 
addressing aspects ranging from data acquisition, organization, and preprocessing to the execution of the evo-
lutionary algorithm, as illustrated in Fig. 1. This comprehensive approach aims to offer a complete and under-
standable view of the methodological framework used in constructing our model, highlighting key stages and 
the sequence of actions that led to its final formulation.

The FAO56‑PM reference method
The FAO Penman‒Monteith method called (FAO56-PM), Eq. (1), is recommended as the standard method for 
estimating ETo. However, this estimation poses a challenge when the availability of meteorological data is limited. 
The FAO56-PM method requires parameters for its application, such as the slope of the vapor pressure curve, ∆ 
[kPa/°C]; the net surface solar radiation, Rn [MJ m2 dia−1]; the thermal flux density of the soil, G [MJ m2 dia−1]; 
the psychrometric constant, γ [kPa°C−1]; the mean air temperature, Tmean [°C]; the speed of the wind, u2 [M/s]; 
the saturation vapor pressure, es [kPa]; and the actual vapor pressure, ea [kPa]. These parameters are a function 
of air temperature, soil temperature, relative humidity, solar radiation, atmospheric pressure, wind speed, etc.2.

In this study, the FAO56-PM method Eq. (1) has been used as a reference to evaluate the results of the inves-
tigation due to the absence of experimental values for ETo.

The Hargreaves–Samani method
The FAO currently recommends the Hargreaves–Samani Eq. (2) in cases where only temperature data are 
available21. This is the result of seeking a standardization of the different existing empirical methods to estimate 
ETo with reduced data22–24.

where Tmax represents the maximum temperature [°C]; Tmin represents the minimum temperature [°C]; and Ra 
represents the extraterrestrial radiation [MJ m2dia−1]. However, the Hargreaves–Samani equation underestimates 
the ETo value2.

(1)ETo =
0.408�(Rn − G)+ γ 900

Tmean+273
u2(es − ea)

�+ γ (1+ 0.34u2)

(2)ETo = 0.0023Ra

√

Tmax − Tmin ∗ (Tmean + 17.8)

Figure 1.   Flowchart of the evolutionary process. From a training dataset, the GP proposes various types of 
models with the aim of identifying the one that best fits the behavior of ETo within a specific time range.  Source: 
Author and collaborators’ work.
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Genetic programming
Genetic programming (GP) is a domain-independent technique in which computer programs evolve to solve 
problems. GP is based on the Darwinian principle of survival of the fittest as well as analogies to natural genetic 
operations such as reproduction and mutation25. GP builds a population of individuals (mathematical models) 
from different combinations of a set of mathematical expressions randomly. Once the population is initialized, 
the fitness of each individual is evaluated on the basis of some objective function. Fitness is a numerical value 
that is assigned to each individual based on its performance. The better the fitness of an individual is, the higher 
the probability of passing to the next generation or having offspring. In each generation, the models are modi-
fied by applying genetic operators: selection, crossover, and mutation25. Each individual is represented in the 
form of a syntactic tree. The crossover operator generates new models so that the search space of the problem is 
thoroughly sampled. The crossover is performed by selecting two parents from the population and exchanging 
the corresponding subtree structures in a corresponding random area through a randomly chosen point. The 
crossover operator produces two offspring with different characteristics. The crossover point between Parents 1 
and 2 is shown in Fig. 2 with a dotted line; the structures of the corresponding subtrees are swapped, giving rise 
to Children 1 and 2. The number of models that intersect depends on the probability set in the parameters of the 
evolutionary algorithm. Mutation involves the random alteration of the syntax tree at the branch or node level. 
This alteration is made based on the established mutation probability. The mutation introduces new offspring into 
the population and thus avoids falling into a local optimum. Figure 3 shows the mutation operator. These new 
models form the basis for the next generation. Each model of the population can be considered to be a potential 
solution to the problem. Figure 4 shows the flowchart of GP. In GP the coding of individuals is performed in the 
form of a tree, where the interior nodes represent the functions and the terminal nodes represent the variables 
and constants (See Fig. 5).

The GP technique has the ability to work with limited data Pioneering research, such as that conducted by26,27, 
has underscored the intrinsic ability of GP to adapt and evolve solutions in environments with small datasets. 
Specific strategies for handling limited data, including genetic operators and diversity control techniques, have 
been proposed to enhance the effectiveness of GP in extracting patterns under these conditions. Furthermore, 

Figure 2.   Crossover operator.  Source: Author and collaborators’ work.

Figure 3.   Mutation operator.  Source: Author and collaborators’ work.
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studies such as28 have explored GP’s adaptability to problem complexity, enabling the effective representation of 
patterns even in situations with sparse data.

Genetic programming to estimate reference evapotranspiration
Database
The direct measurement of ETo is complex and is usually estimated indirectly through measurements of climatic 
parameters.

The databases used in the development of our model were obtained from CIMIS, which houses various 
weather stations located in different regions of the state of California, United States. A noteworthy feature of 
CIMIS is that it provides the necessary variables to calculate ETo using the FAO-PM reference model. Addition-
ally, it is important to highlight that CIMIS is an open database, facilitating access and availability of information 
for the scientific and academic community and one from the state of Coahuila in north-central Mexico. Informa-
tion on the CIMIS database can be acquired free of charge, from www.​cimis.​water.​ca.​gov. Data are available in the 
database at hourly and daily time scales, and includes solar radiation, air temperature, soil temperature, relative 
humidity, vapor pressure, wind speed, wind direction and precipitation. The total incoming solar radiation is 
measured by employing pyranometers at a height of 2.0 m above the ground. Air temperature is measured at a 
height of 1.5 m above the ground by using a thermistor. Soil temperature is measured at 15 cm (6 inches) below 
the soil surface. The relative humidity sensor is sheltered in the same enclosure with the air temperature sensor at 
1.5 m above the ground. Wind speed is measured by utilizing three-cup anemometers at 2.0 m above the ground. 
Wind direction is measured by using a wind vane at 2.0 m above the ground. Wind direction values range from 
0 to 3608 (both being true north) and are adjusted for declination of the Earth’s axis. Rainfall is measured by 
employing tipping bucket rain gauges.

The databases for the construction of the model cover a period from 2011 to 2015 and 2019 on a daily scale. 
The selection of these periods is due to having fewer missing data.

GP, as an evolutionary computational approach, has a remarkable ability to work efficiently with small datasets 
compared to artificial neural networks, which require a large amount of data. In line with this characteristic, 
we have decided to use small datasets from CIMIS. This choice does not imply a restriction derived from the 

Figure 4.   Genetic programming flowchart.  Source: Author and collaborators’ work.

Figure 5.   Syntax tree solution.  Source: Author and collaborators’ work.

http://www.cimis.water.ca.gov
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availability of the database, as we acknowledge that it is accessible. Instead, it is based on the inherent suitability 
of GP to extract patterns and generate effective solutions in data-constrained environments. This approach allows 
us to explore and leverage the capability of GP to address complex problems and extract meaningful knowledge 
even when the amount of available data is limited. Since an analytical model is obtained, it can be easily verified 
across different time intervals. In this context, the main objective of the work is to present the methodology for 
estimating an ETo model. The type of climate was defined based on the climatic classification of29. To choose the 
training and testing databases, geographical diversity and climatic variability were considered as criteria. The 
databases used for training and testing consist of 4 weather stations located in different geographic locations, with 
2 stations having arid-warm climate and the other two with warm-temperate climate, as detailed in Table 2. As 
for the selection of databases for validation, different stations were chosen compared to those used in the training 
and testing phases but with similar climates. To validate the model, 4 different weather stations were used, with 
3 of them having warm-temperate climate and 1 with arid-warm climate, as shown in Table 3. The attributes 
of the databases used are: maximum temperature (Tmax [°C]), minimum temperature (Tmin [°C]), maximum 
relative humidity (HRmax [%]), minimum relative humidity (HRmin [%]), and daily mean wind speed (u2 [m/s]).

Figures 6 and 7 were extracted from Google Maps30 and subsequently customized following the guidelines 
published in31. The figures display the geographical locations of the weather stations used in the training, testing, 
and validation phases of our model.

Data preprocessing
An exploratory analysis of the databases was conducted to identify potential incorrect, missing, or improperly 
recorded data. During this analysis, it was observed that the CIMIS databases contained records with missing data 
In accordance with32, a strategy to address this situation is to use the standard method for imputing missing data, 
as proposed by33. This approach involves replacing missing values with the average under similar meteorological 
conditions within a time window of ± 7 days.

Table 2.   Features of the databases used for training and testing.

No Database Latitude Longitude Elevation (masl) Climate
Mean Annual 
temperature (°C)

Mean Annual 
rainfall (mm) Period

1 El Porvenir 25.7811 − 103.3130 1112.00 Arid-warm (BWh) 18.0–22.0 250 Feb-Dic 2019

2 Davis 38.5357 − 121.7763 18.288 Warm-temperate 
(Csa) 16.8 613 2011–15

3 Calipatria 33.0431 − 115.4158 − 33.528 Arid-warm (BWh) 6.0–42.0 76 2011–15

4 McArthur 41.0637 − 121.4560 1008.888 Warm-temperate 
(Csb) 9.4 1441 2011–15

Table 3.   Features of the databases used for validation.

No. Database Latitude Longitude Elevation (masl) Climate
Mean Annual 
temperature (°C)

Mean Annual rainfall 
(mm) Period

1 Modesto 37.6452 − 121.1877 10.668 warm-temperate (Csa) 17.6 474 2019

2 Oakville 38.4284 − 122.4102 60.655 warm-temperate (Csc) 15.0 594 2015

3 Meloland 32.8061 − 115.4462 − 16.764 arid-warm (BWh) 6.0–42.0 76 2019

4 Ferndale 40.6044 − 124.2431 6.4008 warm-temperate (Csb) 9.9 1617 2019

Figure 6.   Weather stations used for training and testing.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:6736  | https://doi.org/10.1038/s41598-024-56770-3

www.nature.com/scientificreports/

As a result, 334 records were collected from the El Porvenir station during the period from February to 
December 2019. Additionally, 1826 records were obtained from each of the CIMIS stations, spanning from 
January 2011 to December 2015, as shown in Table 2.

Subsequently, a preprocessing operation was carried out to standardize the units in which the original data 
were registered: the temperature was recorded in [°F] and covered to [°C]; the wind speed data were recorded 
in [mph] and then converted to [m/s]; and solar radiation was initially recorded in [Ly/day] and then converted 
to [W/m2] using the conversion factor Ly/day/2.065 = [W/m2] provided by CIMIS.

The databases from El Porvenir, Davis, Calipatria, and McArthur were used to create three different datasets 
(DS01, DS02, and DS03), as shown in Table 4. These datasets were utilized in both the training and testing phases.

The datasets were consolidated as follows: DS01 incorporates data from the El Porvenir station, represent-
ing an arid-warm climate (BWh); DS02 includes data from the Davis station with a warm-temperate climate 
(Csa); and DS03 is formed by integrating data from four meteorological stations (El Porvenir, Davis, Calipatria 
y McArthur) covering at least two different climates [arid-warm (BWh) and warm-temperate (Csa)]. Table 4 
shows the three datasets and their characteristics.

Each daily dataset shown in Table 4 was divided into 80% for training and 20% for testing. Uniform sampling 
was performed to obtain the test data (i.e., one out of every five data items was taken for the test set, and the 
remainder was used for the training set). The structure of the daily training and test datasets is shown in Table 5.

To validate the results, four meteorological stations with different geographical locations than those used 
in the training and testing phases were included, as detailed in Table 3. These stations were used to create four 
distinct datasets: DS04, associated with the Modesto station; DS05, linked to the Oakville station; DS06, corre-
sponding to the Meloland station; and DS07, related to the Ferndale station. Table 6 presents the characteristics 
of the datasets used in the validation process. This approach ensures the robustness of the model by assessing its 
performance under varied geographical conditions.

The choice of the ETo11 model was based on the simplicity of its structure, the number of input parameters, 
and the accuracy it demonstrated during the training and testing stages, as observed in Table 12. While there are 
other models available, due to space constraints, we exclusively utilized the ETo11 Model.

Figure 7.   Weather stations used for validation.

Table 4.   Dataset created for model development.

No Dataset Contains data from the station Records

1 DS01 El Porvenir 334

2 DS02 Davis 1826

3 DS03 El Porvenir, Davis, Calipatria, McArthur 5812

Table 5.   Structure of training and test datasets.

Tmax  (°C) Tmin  (°)C HRmax (%) HRmin (%) Daily mean (U2) (m s−1) DOY (Day of the Year)

24.9 3.9 69 22 0.55 32

25.4 6.4 76 21 0.70 33

27.8 6.8 69 21 0.59 34

27.4 9.4 66 28 0.56 35

24.8 9.0 73 26 0.74 36

26.7 15.2 60 27 1.3 38
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Construction of the proposed model with genetic programming
For the development of the model, the GPLab library was used in the MatLab environment. This tool proved 
to be essential for designing and analyzing our model, providing advanced functionalities and facilitating the 
implementation of specific algorithms needed for our research objectives. The choice of the GPLab library was 
based on its versatility, effectiveness, and ability to address the particular challenges of our project, enabling us 
to achieve accurate and meaningful results within the scope of our study.

GP has provided a new way of analyzing and optimizing water resources due to its ability to solve complex 
problems with one or more objectives. These problems were classified as intractable with traditional methods 
since their models can be discontinuous and nondifferential, with mixed and integral variables and with a high 
dimensionality34.

Before applying GP to a problem, five preparatory steps must be performed according to John25. These five 
steps consist of determining the set of terminals, the set of functions, the fitness function, the parameters to 
control the execution, and the method to designate a result.

Determining the set of terminals.  The set of terminals represents the independent variables of the model not 
yet discovered. The set of terminals (along with the set of functions) are the elements from which GP attemps 
to build a model to solve the problem posed. In our research, during the process of selecting the set of functions 
and terminals, we conducted various experiments using genetic programming. This methodology enables the 
evolutionary algorithm to discriminate functions and terminals that are not relevant in model construction, 
preserving only those elements that have a higher degree of utility. Additionally, we relied on the valuable expert 
knowledge provided by the Penman–Monteith reference model. Since evaluating the Penman–Monteith model 
involves a series of essential steps, we based our procedures on these, integrating them into the evolutionary 
algorithm to enhance the robustness and precision of our approach. This combined approach of genetic pro-
gramming and expert knowledge from Penman–Monteith has proven to be integral in selecting functions and 
terminals, improving the quality and effectiveness of our models. Table 7 shows the set of terminals chosen for 
the evolutionary algorithm.

Determining the set of functions.  Functions are the mathematical operators that are applied to the different 
terminals. In our research, the basic operators +, −, * and / were used in conjunction with √x, √x, x2, x3, ln(x), 
exp(x), sin(x), cos(x), and arctan(x) functions used in hydrological studies35,36. The set of functions included 
the hyperbolic functions normally used to discover physical phenomena37. The set of functions is presented in 
Table 8.

Determining the fitness functions.  The evolutionary process is governed by the measure of fitness. Each indi-
vidual in the population is run and then evaluated using the fitness function to determine its performance. The 
aptitude function (along with the functions and terminals) establishes the search space and allows the quality 
of the individuals to be evaluated. In this case, it must take positive real values. In our investigation, we chose 
to apply the RMSE Eq. (3) Use a fitness function to evaluate the difference between the predicted value and the 
target value. Therefore, the fitness function is defined as follows:

where n is the total number of data points and Pi and Oi are the predicted and target ETo values, respectively. The 
better the fitness of an individual is, the higher the probability of passing to the next generation.

Determining the parameters of the evolutionary algorithm.  The main parameters for controlling the execution 
of the evolutionary algorithm are the population size, the maximum number of generations in the initialization 
method, the selection method, the crossover probability, and the mutation probability. In our research, the val-
ues assigned to the parameters are observed in Table 9.

Determining the method to designate a result.  Each execution requires the specification of a termination cri-
terion to decide when to terminate and a method of designating results. The solutions were obtained by taking 
an RMSE < 1 in training. To stop the evolutionary algorithm, we use the maximum number of generations estab-
lished in the algorithm parameters as the stop criterion.

(3)RMSE =

√

∑

n

i=1
(Pi − Oi)

2

n

Table 6.   Dataset created to validate the ETo11 model.

No. Dataset Contains data from the station: Year Records

1 DS04 Modesto 2019 265

2 DS05 Oakville 2015 342

3 DS06 Meloland 2019 336

4 DS07 Ferndale 2019 149
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Table 7.   Terminals used in the evolutionary process.

Index Terminal Description Mathematical expression

1 ∆ Slope of the vapor pressure curve � =
4098

[

0.618∗exp
(

17.27∗T
T+237.3

)]

(T+237.3)2

2 TMax Maximum temperature

3 TMin Minimum temperature

4 Tprom Average temperature

5 HRMax Maximum relative humidity

6 HRMin Minimum relative humidity

7 u2 Wind speed

8 rs Solar radiation

9 ds solar declination δ = 0.409 ∗ sin
(

2π
365

|J − 1.39
)

10 G Soil temperature

11 Pi pi number π

12 reflexion Albedo or reflection coefficient of the crop = 0.23

13 gt Total degrees

14 lt Latitude

15 P Atmospheric pressure P = 101.3
(

293−0.0065z
293

)5.26

16 γ Const. psychrometric γ =
cpP

ǫ�

17 RadSolar Solar radiation

18 eoTmin Saturation vapor pressure temp. min eoTmin = 0.618 ∗ exp
(

17.27∗Tmin
Tmin+237.3

)

19 eoTmax Saturation vapor pressure temp. max eoTmax = 0.618 ∗ exp
(

17.27∗Tmax
Tmax+237.3

)

20 es Saturation vapor pressure es =
eoTmin+eoTmax

2

21 ea Current vapor pressure ea =
eo

Tmin∗HRmax
100

+eo
Tmax ∗HRmin

100

2

22 es-ea

23 dr Relative Distance from the Earth to the Sun dr = 1+ 0.033 ∗ cos
(

2π
365

|J
)

24 ds

25 ws Radiation Angle ws = arccos[−tan(∅)tan(δ)]

26 N Photo period N =
24

π
∗ ws

27 Ra Extraterrestrial Radiation Ra =
24∗60

π
Gscdr

28 rs Solar radiation

29 rns net shortwave radiation

30 rnl net longwave radiation

31 rn net radiation

32 Constant 0.408

33 Constant 900

34 Constant 273

35 Constant 1

36 Constant 0.34

Table 8.   Functions used in the evolutionary process.

Index Function Expression Index Function Expression

1 Sine sin(x) 9 Hyperbolic Tangent tanh(x)

2 Cosine cos(x) 10 Square Root
√
x

3 Tangent tan(x) 11 Power Xy

4 Arc Sine asin(x) 12 Exponent ex

5 Arc Cosine acos(x) 13 Sum +

6 Arc Tangent atan(x) 14 Subtraction −

7 Hyperbolic Sine sinh(x) 15 Multiplication *

8 Hyperbolic Cosine cosh(x) 16 Division /
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In our research, three datasets from different climates based on29 classification were tested as input for the 
formulation of models with GP see Table 4. After exploratory testing, it was necessary to adjust the configura-
tion of the process. The evolutionary algorithm was run fifty times for the DS01 and DS02 datasets, obtaining 
2076 and 1408 solutions, respectively. For the DS03 dataset, the evolutionary algorithm was executed 30 times 
using the same parameters established, resulting in 270 solutions. In total, the evolutionary process obtained 
3754 solutions (see Table 10).

The evaluation of the models was carried out with 20% of the data reserved for testing of the DS01, DS02, 
and DS03 datasets. The evaluation was carried out by calculating the RMSE and the coefficient of determination 
R2; this last measure was not considered as part of the optimization of the model. RMSE and R2 are two met-
rics commonly used in the context of predictions and regression models to assess the performance of a model 
compared to actual values.

The RMSE and R2 metrics are commonly used in forecasting to assess both the accuracy and the quality of 
fit of the model. RMSE provides a measure of how close the model’s predictions are to the actual values, while 
R2 provides information about the proportion of variability that the model is capturing compared to the total 
variability in the data. Together, these metrics offer a comprehensive view of the model’s performance in terms 
of accuracy and ability to explain variability in the data. RMSE and R2 are calculated using Eqs. (3) and (4), 
respectively.

where n is the total number of data points, and Pi and Oi are the predicted ETo and, and Oi and Pi target ETo 
values, respectively.

Ethical approval and consent to participate
In the course of our investigation, no experimental procedures involving human subjects were undertaken.

Results
Evolution Statistics
This section presents a statistical analysis of the evolutionary process for the DS01, DS02, and DS03 datasets. 
The objective is to show the convergence rate of the proposed algorithm. Figure 8 shows the best fit, the average 
of the best fits, and the standard deviation of the 50 runs for the DS01 and DS02 datasets and the 30 runs for 
the DS03 dataset.

Note that, on average, solutions with a fitness measure less than one were found in the 15th, 65th, and 174th 
generations. The minimum fitness was reached for the three datasets around the 200th generation, and the aver-
age fitness converged to 0.9036, 0.9734 and 0.9668 from the 1st, 3st and 44th generations for the DS01, DS02 
and DS03 datasets, respectively.

Experimental results
The number of solutions found with GP was 3754, from which the fourteen best solutions were selected. Priority 
was given to those with the best aptitude, an RMSE less than one, the least structural complexity, and the lowest 

(4)R
2
=

[
∑

n

i=1

(

Oi − Oi

)(

Pi − Pi

)]2

∑

n

i=1

(

Oi − Oi

)
∑

n

i=1

(

Pi − Pi

)

Table 9.   Parameters of the evolutionary algorithm.

Parameter Value

Population size 200

Maximum number of generations 200

Initialization method Ramped half-and-half

Selection method ‘lexictour’

Crossover probability 80%

Mutation probability 20%

Table 10.   Solutions found.

Models

Dataset Solutions

DS01 2076

DS02 1408

DS03 270

Total 3754
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number of input parameters. The selected models are shown in Table 11. The models were labeled EToi (where 
i represents a consecutive number).

The structure of the ETo1 and ETo4 models is a function of temperature; the structure of the ETo2, ETo6, ETo7, 
ETo9, ETo10, ETo12, ETo13, and ETo14 models is a function of temperature and wind speed; and the structure 
of the ETo3, ETo5, ETo8 and ETo11 models is a function of relative humidity, temperature, and wind speed.

In this case, simple models such as ETo1 were obtained, which is a function of saturation vapor pressure, but 
the results outperform the Hargreaves–Samani model in the DS01 dataset, which corresponds to arid-warm 
climate. Similarly, some models include parameters such as solar declination, which are expressed solely in 
terms of the day of the year.

Evaluation of the models
Table 12 summarizes the performance of the models measured by RMSE and R2 for all the datasets shown in 
Table 4 used to develop the model. It can be observed that the evolutionary approach with GP is capable of learn-
ing complex and nonlinear relationships that are difficult to model with conventional techniques. For example, 
the models have a range of RMSE between 0.639 and 2.054, and R2 between 0.521 and 0.925 with 20% of the 
datasets used for model development.

The structural analysis of the models provides interesting insight into the strategies identified by the evolu-
tionary process to combine functions and terminals.

In Table 12, the results show that the ETo6 model with input parameters of temperature and wind speed was 
the best model with the test data of the DS01 dataset, with RMSE = 0.882 and R2 = 0.838. The scatter plots and time 
series in Fig. 9 show that the ETo6 model outperformed the Hargreaves–Samani model. For example, in Fig. 9a, 
the ETo6 model obtained an RMSE = 0.882, while the Hargreaves–Samani model obtained an RMSE = 2.374. On 
the other hand, in Fig. 9b, the ETo6 model obtained R2 = 0.8387, and the Hargreaves–Samani model presented in 
Fig. 9c reached R2 = 0.631. This may be because the model was developed using the DS01 dataset.

The ETo8 model that uses relative humidity, temperature, and wind speed input parameters obtained more 
accurate results in estimating the ETo with the DS02 and DS03 datasets than the Hargreaves–Samani model. 
For the DS02 dataset, Fig. 10a shows a value of RMSE = 0.639 for the ETo8 model, outperforming the Har-
greaves–Samani model, which reached a value of RMSE = 1.177. Figure 10b shows a value of R2 = 0.925 for the 

Figure 8.   Best fit, the average of the best fits, and the standard deviation of the 50 runs for the DS01 and DS02 
datasets and the 30 runs for the DS03 dataset.
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ETo8 model, while Fig. 10c shows a value of R2 = 0.741 obtained with the Hargreaves–Samani model. Likewise, 
for the DS03 dataset, Fig. 10d shows an RMSE = 0.761 for the ETo8 model, while the Hargreaves–Samani model 
shows an RMSE = 0.979. Figure 10e shows a value of R2 = 0.910 for the ETo8 model, and Fig. 10f shows a value 
of R2 = 0.844 for the Hargreaves–Samani model.

According to the results presented in Fig. 10, the model developed with GP ETo8 considerably outperforms 
the Hargreaves–Samani model. However, the model has a complex structure.

On the other hand, the model ETo11 Eq. (5) presents a relatively simple structural formulation with a range 
of results in the evaluation stage with an RMSE between 0.693 and 1.756 and R2 between 0.759 and 0.910 for 
the three datasets. Therefore, even though the ETo11 model was not the best model found, it was selected for 

Table 11.   Models obtained with genetic programming. ETo, reference evapotranspiration; H–S, Hargreaves–
Samani.

Model Mathematical expression RMSE Data set

ETo1 ETo = es
0.4718

1.041 DS01

ETo2 ETo = arctan

(

u2
dr+es+

es
dr

)

+

es
dr
dr

+

es
dr
dr
dr

0.952 DS01

ETo3 ETo =
√
ea + u2 + 2dsacos

(

u2
√√

ea + u2 ∗ u2 +
√
ds

)

+ eoTmax 0.898 DS01

ETo4 ETo = ds + 2es +
es−ea
sinh(es)

0.980 DS01

ETo5 ETo = eoTmax −
tanh(Tmin)

u2
+ eoTmin + ds + tanh(HRmax) 0.889 DS01

ETo6 ETo =
√
es + u2 + tanh(ds + Ra)+ 2ds + es + tanh) 0.882 DS01

ETo7 ETo = ws

(

acos
(

ltu2
)

+ ds +�+ es − ea
)

0.794 DS03

ETo8
ETo = tanh

(

ds + tanh(tanh(lt))

1+ tanh(atan(+tanh(es − ea))+ tanh(2eoTmax + tanh(HRmin)+ tanh(ds)))

)

+ ds

+
u2 + tanh(ds)+ ds

atan(atan(�+ eoTmax)+ atan(sin(eoTmax)))+ tanh(�)+ tanh

0.639 DS02

ETo9 ETo =
√
u2 + ds + 2(e|s − ea)+ 2ds +

√
ds 0.758 DS02

ETo10 ETo = 3ds + 2(es − ea)+ atan(u2)+ atan(atan(atan(atan(acos(900)+ sin(atan(u2)+ atan(900)+ sin(u2))+ u2))))+ u20.826 DS02

ETo11 ETo = atan(u2(es − ea))+ ds + 2atan(ds)+ atan(ds + atan(es)) 0.693 DS02

ETo12 ETo = eoTmax + ds + 2tanh(ds)+
ds+

(

ds+u2
π

)

+u2

π
0.889 DS02

ETo13 ETo = ds + eoTmax ∗ u2
reflexion 0.950 DS02

ETo14 ETo = eoTmax + u2
4
∗ 0.1325 ∗ 3ds 0.872 DS02

H–S ETo = 0.0023Ra
√
Tmax − Tmin ∗ (Tmean + 17.8)

FAO56-PM ETo =
0.408�(Rn−G)+γ 900

Tmean+273
u2(es−ea)

�+γ (1+0.34u2)

Table 12.   Statistical indices where we can observe that the ETo11 model shows greater consistency across the 
three datasets.

Model

DS01 DS02 DS03

Training Test Training Test Training Test

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

ETo1 1.131 0.763 1.041 0.775 1.720 0.601 1.706 0.600 1.839 0.679 1.830 0.683

ETo2 0.973 0.823 0.952 0.805 1.663 0.702 1.654 0.700 1.819 0.731 1.812 0.735

ETo3 0.895 0.869 0.898 0.829 1.639 0.811 1.644 0.804 1.657 0.836 1.656 0.841

ETo4 1.094 0.790 0.980 0.797 1.581 0.672 1.575 0.669 1.655 0.736 1.643 0.741

ETo5 0.894 0.849 0.889 0.831 1.861 0.573 2.036 0.521 1.945 0.680 1.959 0.680

ETo6 0.878 0.874 0.882 0.838 1.664 0.815 1.680 0.807 1.590 0.830 1.594 0.833

ETo7 1.723 0.752 1.597 0.723 0.852 0.887 0.847 0.883 0.834 0.892 0.794 0.901

ETo8 1.783 0.794 1.738 0.747 0.688 0.918 0.639 0.925 0.779 0.908 0.761 0.910

ETo9 1.726 0.753 1.632 0.709 0.806 0.887 0.758 0.896 0.898 0.889 0.869 0.894

ETo10 1.793 0.770 1.637 0.746 0.864 0.871 0.826 0.876 0.922 0.883 0.890 0.889

ETo11 1.837 0.809 1.756 0.759 0.753 0.901 0.693 0.910 0.839 0.898 0.807 0.904

ETo12 1.579 0.870 1.538 0.815 0.904 0.871 0.889 0.871 1.021 0.871 1.006 0.874

ETo13 1.804 0.881 1.769 0.812 0.915 0.861 0.950 0.845 1.083 0.829 1.076 0.830

ETo14 2.092 0.860 2.054 0.793 0.923 0.849 0.872 0.860 1.004 0.851 0.996 0.849

H–S 2.501 0.683 2.374 0.631 1.157 0.759 1.177 0.741 1.016 0.834 0.979 0.854
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the validation stage. It presents important characteristics to consider since only input parameters that depend 
on relative humidity, temperature and wind speed and its results outperform the Hargreaves–Samani model on 
all three datasets used for testing.

Model validation
To validate the ETo11 model, Eq. (5) Developed with GP, the DS04, DS05, DS06, and DS07 datasets were used 
with arid-warm and warm-temperate climates obtained from locations other than those used for their training. 
Their characteristics are shown in Table 6. The Hargreaves–Samani model was included to compare the per-
formance between these two models. Table 13 shows the values of RMSE and R2 obtained with the ETo11 and 
Hargreaves–Samani models.

The scatter and time series plots in Figs. 11 and 12 show that the ETo11 model has greater accuracy than 
the Hargreaves–Samani model with respect to the FAO56-PM model of reference for the four datasets used for 
validation. For example, Fig. 11a shows greater precision by the ETo11 model with a value of RMSE = 0.314 than 
the Hargreaves–Samani model with a value of RMSE = 0.635. Similarly, by means of a linear regression analysis, 
it can be observed in Fig. 11b,c that our model is a better fit than the Hargreaves–Samani model, with R2 =  0.978 
against R2 = 0.916 with the DS04 dataset.

For the DS05 dataset, the results continue to be favorable for the ETo11 model, as shown in Fig. 11d. Our 
model has an RMSE = 0.682 compared to an RMSE = 0.710 from the Hargreaves–Samani model. On the other 
hand, Fig. 11e,f show the results of the linear regression analysis, where it can be seen that the models obtain 
similar results in the statistical index R2, with a value of 0.918 for the two models. For the DS06 dataset, it can 
also be observed that the ETo11 model outperforms the Hargreaves–Samani model. Figure 12a shows values of 
RMSE = 1.483 obtained with our model compared to the Hargreaves–Samani model with RMSE = 1.616. Fig-
ure 12b,c show the results of R2 with values of 0.818 and 0.767 for the ETo11 and Hargreaves–Samani models, 
respectively, with the ETo11 model showing greater precision. As a result, our model aims to adhere to the refer-
ence data in the different validation datasets, making its behavior similar in Figs. 11 and 12.

(5)ETo11 = atan(u2(es − ea))+ ds + 2atan(ds)+ atan(ds + atan(es))

Figure 9.   Comparison of the ETo6 and Hargreaves–Samani models with the FAO56-PM reference model using 
test data from the DS01 dataset. (a) RMSE ETo6 and Hargreaves–Samani, (b) R2 ETo6, and (c) R2 Hargreaves–
Samani.
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Figure 10.   Comparison of the ETo8 model and the Hargreaves–Samani model with the FAO56-PM model 
using the datasets DS02 and DS03. (a) RMSE ETo8 and Hargreaves–Samani for DS02, (b) R2 ETo8 for DS02, (c) 
R2 Hargreaves–Samani for DS02, (d) RMSE ETo8 and Hargreaves–Samani for DS03, (e) R2 ETo8 for DS03, and 
(f) R2 Hargreaves–Samani for DS03.

Table 13.   Statistical indices of the ETo11 and Hargreaves–Samani models.

DataSets

ETo11
Hargreaves–
Samani

RMSE R2 RMSE R2

DS04 0.314 0.978 0.635 0.916

DS05 0.682 0.918 0.710 0.918

DS06 1.483 0.818 1.616 0.767

DS07 0.292 0.937 0.400 0.867
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These results were obtained for an arid-warm climate. However, to validate our ETo11 model in a different 
climate, we used the DS07 dataset with a warm-temperate climate. Similarly, the time series plots in Fig. 12d show 
that our model outperforms the Hargreaves–Samani model by a lower magnitude with values of RMSE = 0.292 
compared to RMSE  = 0.400. The scatter plot of Fig. 12e also shows an index of R2 = 0.937 compared to the val-
ues of R2 = 0.8672 of Fig. 12f, and it becomes clear that our model outperforms the Hargreaves–Samani model.

The structural analysis of the ETo models presented in Table 11 offers an intriguing perspective into the strate-
gies identified by the evolutionary process to combine the primitive set (functions and terminals). In this study, 
we employed a frequency of use unit, representing how often an element is utilized to generate a new model. 
Figures 13 and 14 depict the occurrence frequency of the function and terminal sets. The function and terminal 
numbers correspond to those assigned in the description provided in Tables 4 and 5.

Figure 11.   Comparison of the ETo11 model and the Hargreaves–Samani model with the FAO56-PM model 
using the datasets DS04 and DS05. (a) RMSE ETo11 and Hargreaves–Samani for DS04, (b) R2 ETo11 for DS04, 
(c) R2 Hargreaves–Samani for DS04, (d) RMSE ETo11 and Hargreaves–Samani for DS05, (e) R2 ETo11 for DS05, 
and (f) R2 Hargreaves–Samani for DS05.
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Regarding the elements belonging to the terminal set, it can be observed that ws (solar radiation angle at 
sunset) has the highest occurrence frequency, being used in 59.8% of the generated models. It is followed by 
e°Tmax (saturation vapor pressure at max. temp.), which has an occurrence frequency of 54.62%, and finally, the 
saturation vapor pressure has a frequency of 54.47%. It is noted that the GP process did not utilize the majority 
of provided terminals, indicating that the GP algorithm identified them as not strictly necessary for estimating 
ETo. Moreover, it is important to highlight that the presented ETogp models do not directly employ the basic 
climatic parameters. However, they are implicitly used in variables representing expert knowledge, such as satura-
tion vapor pressure (es), solar declination (ds), vapor pressure deficit (ea), and vapor pressure at minimum and 
maximum temperature (e°Tmax, e°Tmin), all of which belong to the Terminal set. For instance, saturation vapor 
pressure (es) is derived from vapor pressure at minimum temperature (e°Tmin) and vapor pressure at maximum 
temperature (e°Tmax), both of which are functions of minimum and maximum temperatures. Similarly, the vapor 

Figure 12.   Comparison of the ETo11 model and the Hargreaves–Samani model with the FAO56-PM model 
using the datasets DS06 and DS07. (a) RMSE ETo11 and Hargreaves–Samani for DS06, (b) R2 ETo11 for DS06, 
(c) R2 Hargreaves–Samani for DS06, (d) RMSE ETo11 and Hargreaves–Samani for DS07, (e) R2 ETo11 for DS07, 
and (f) R2 Hargreaves–Samani for DS07.
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pressure deficit (ea) is derived from the vapor pressure at minimum temperature (e°Tmin), vapor pressure at 
maximum temperature (e°Tmax), minimum relative humidity (HRmin), and maximum relative humidity (HRmax). 
This is intriguing since only temperature and relative humidity climatic parameters are used, suggesting that GP 
can identify fundamental climatic parameters for estimating ETo.

In the case of the function set, the importance of each operator was more evenly distributed. The addition 
operator was used in 92.61% of cases, while the sine operator was the least used at 11.36%. This is intriguing as GP 
can construct structurally simple models for estimating ETo. This finding suggests that the GP algorithm recog-
nized the relationship between fundamental yet effective climatic parameters in estimating the ETo phenomenon.

Statistical significance
In order to assess the statistical significance of the data, Student’s t-tests were conducted for each of the datasets 
used in the validation, as detailed in Table 14.

The results obtained with a 5% tolerance conclusively indicate that there is no significant difference between 
the means of the two models, ETo11 and FAO-PM. In this context, it cannot be stated that the models differ 
significantly in terms of their performance; therefore, both could be considered statistically equivalent based on 
the data analysis. This finding supports the consistency and reliability of both models in estimating ETo.

Discussion
In this study, a methodology was presented for developing analytical models of ETo using GP. Unlike genetic 
algorithms that optimize the parameters of a given model, GP allows for obtaining a new formulation that fits the 
acquired data. Thus, the advantage of the GP approach lies in its open-box or white-box characteristic. If we were 
to use a black-box approach (e.g., neural networks, fuzzy logic, and most statistical approaches), we would hardly 
be able to explicitly uncover the relationship among the climatic variables considered in the ETo phenomenon.

The proposed methodology offers great flexibility, as it can adapt to data from various climate types and 
account for constraints on these data. Thus, this study aimed to construct an ETo model that only takes into 
account climatic variables commonly measurable at a meteorological station, such as temperature, relative 
humidity, and wind speed.

Figure 13.   Frequency of occurrence of the terminal set.

Figure 14.   Frequency of occurrence of the function set.



20

Vol:.(1234567890)

Scientific Reports |         (2024) 14:6736  | https://doi.org/10.1038/s41598-024-56770-3

www.nature.com/scientificreports/

By implementing the proposed methodology, a total of 3754 models were successfully generated, all of which 
demonstrated a substantial improvement in ETo estimation compared to the Hargreaves–Samani model. How-
ever, a meticulous selection process was carried out, choosing only fourteen of these models based on criteria 
such as their accuracy, input parameters, and structural complexity. During the training phase, a noticeable 
superiority was evident, reaching up to 27% compared to the Hargreaves–Samani model, while in the testing 
phase, this improvement remained significant at 16%. In pursuit of achieving a generalized model, a dataset from 
meteorological stations located at various latitudes and featuring diverse climates was employed, spanning from 
warm-temperate regions to warm-arid zones.

Initially, only an arid climate was considered, and this methodology enabled the construction of models with 
a simple structure that allows for straightforward implementation. This has led us to address three main ques-
tions: Are models obtained for one region applicable to regions with slightly different conditions? Can models 
developed for the climate of one region be applied to another region with a different climate? For example, can a 
model created for an arid region be applicable to a temperate region? Is it feasible to generate a model for different 
climates, in this case, for arid and temperate climates, while restricting the input to measurements of tempera-
ture, relative humidity, and wind speed? To answer these questions, experiments and results were developed as 
described in the preceding section, demonstrating how models initially discovered for the Porvenir region in 
Coahuila, Mexico, were successfully applied to regions in southern California. It was also possible to identify 
models initially developed for an arid climate and subsequently model ETo in temperate climates. In general, 
models proposed in other research studies, such as those by16,17,19 have been developed with a specific regional 
focus. The need to reapply the methodology for their extension to different geographical areas underscores the 
limitation in their generalizability. These models, designed for particular climatic and geographical conditions, 
necessitate additional adjustments and validations when applied in different environments. The adaptability and 
transferability of these approaches to various locations and climatic contexts require careful consideration of 
environmental variations and the potential need for methodological adjustments to ensure accurate and effec-
tive application.

Finally, to validate the performance of the generalized model, four datasets from different latitudes with cli-
matic characteristics similar to those used in the model development process (warm-temperate, warm-arid) were 
employed. The results obtained in the validation phase clearly highlight the superiority of our model designated 
as ETo11 over the Hargreaves–Samani model, achieving an increase of 51% in warm-temperate climates. In the 
case of the dataset associated with warm-arid climates, our model continued to exhibit satisfactory results by 
surpassing the Hargreaves–Samani model by 8%. These robust results underscore the effectiveness and versatility 
of our methodological approach, consolidating its suitability for addressing climatic variability and geographic 
heterogeneity in ETo estimation. It is important to note that in this study, the Penman‒Monteith formulation 
has been taken as the reference standard due to its adoption by the FAO. This standard was developed using 
the definition of the reference crop, which is a hypothetical crop with an assumed height of 12 cm, a surface 
resistance of 70 s m−1, and an albedo of 0.23, representing ETo from an extensively covered surface of actively 
growing, uniformly tall green grass that is adequately irrigated21. However, in dry and desert regions where local 
environments experience aridity effects due to insufficient ETo, the FAO56-PM model tends to overestimate ETo. 
A promising approach is the use of boundary layer theory in meteorological data conditioning, which allows 
quantification of the effects of aridity on the surface38. Nonetheless, its implementation poses challenges due to 
its complexity. The intricacy of the meteorological data conditioning method makes it impractical for widespread 
use in practical applications. Nevertheless, the methodology proposed in this study can easily be adapted to other 
reference metrics, such as measurements from a precision instrument or any other estimations.

Various studies10,13,14,19,20 have explored the use of machine learning models and methods such as GP to esti-
mate ETo. The effectiveness of these approaches has been highlighted, but concerns have been raised about the 
inclusion of variables like solar radiation and the limitation to a single climate type, impacting the generalization 
of results. “Black-box” models have also shown strong but limited interpretability in their outcomes. In our case, 

Table 14.   Student’s t-test.

Metrics

Dataset DS04 Dataset DS05 Dataset DS06 Dataset DS07

Eto11 FAO-PM Eto11 FAO-PM Eto11 FAO-PM Eto11 FAO-PM

Mean 3.6647 3.6637 3.7482 3.4832 6.4708 6.0001 2.0660 1.9304

Variance 4.5185 4.5721 4.4247 3.3184 10.5677 7.2040 1.0696 0.9941

Observations 365 365 342 342 336 336 149 149

Pooled variance 4.5453 3.8715 8.8858 1.0318

Hypothesized mean difference 0 0 0 0

Degrees of freedom 728 682 670 296

t Statistic 0.0057 1.7614 2.0465 1.15237

P(T ≤ t) One-Tail 0.4976 0.0393 0.0205 0.1250

Critical t-value (One-Tail) 1.6469 1.6470 1.6471 1.6500

P(T ≤ t) Two-tail 0.9953 0.0786 0.0410 0.2500

Critical t-value (Two-Tail) 1.9632 1.9634 1.9635 1.9680

Significance level 0.05 0.05 0.05 0.05
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we have developed a model addressing these concerns by training and validating it with data from two different 
climates (arid-warm and warm-temperate), enhancing its generalization capacity. Moreover, by employing GP 
as a “white-box” approach, we achieved greater transparency and understanding of key variables influencing 
ET0. This analytical focus improves result interpretation and underscores the importance of considering climatic 
diversity for a more robust and applicable model in various environmental conditions.

On the other hand, from the point of view of39 the annual ETo at the global level is highly correlated with 
solar radiation and the average annual temperature, especially when considering power or exponential regres-
sion functions. Annual ETo exhibits the expected negative correlation with average relative humidity, while it 
appears to be uncorrelated with wind speed. As solar radiation and temperature increase, the variability of ETo 
also increases significantly. It is recommended to consider at least two explanatory variables to reduce the effects 
of heteroscedasticity in the empirical modeling of ETo. However, GP stands out for its effectiveness in solving 
complex and nonlinear problems that prove challenging to model using traditional approaches. The capability 
of GP to explore extensive search spaces, coupled with an adaptable representation of solutions in the form of 
trees or graphs, enables it to address the intrinsic complexity of systems characterized by multiple variables and 
nonlinear relationships. In our research, we aimed to use commonly measurable meteorological parameters, 
opting to forego the measurement of solar radiation due to the costly equipment required for its acquisition.

Currently, the methodology has been tested using data representing specific climates. However, in our ongoing 
effort to enhance and broaden its applicability, we are considering the implementation of the methodology in a 
wider range of climates, aiming to achieve a more robust generalization. This step towards climatic diversification 
will allow us to assess and validate the effectiveness of the methodology in diverse environments, encompassing 
a variety of atmospheric and geographic conditions. This approach will not only extend the utility of the meth-
odology but also reinforce its validity and applicability in a broader context, ensuring effective use in various 
locations and climatic scenarios. This process of expansion into diverse climates is regarded as a key direction 
for the future development of the methodology, aiming for a more solid and widespread application.

Conclusions and future work
Accurate estimation of ETo is essential for calculating irrigation requirements and, overall, for water resource 
management. GP represents a powerful tool capable of developing new models to accurately estimate ETo.

This study presents an evolutionary approach using GP techniques to develop an explicit model to estimate 
Eto. The proposed model uses the daily climatic parameters of relative humidity, temperature, and wind speed 
obtained from CIMIS stations and the El Porvenir farm. The model also takes advantage of the expert knowl-
edge provided by the FAO56-PM model. The results surpassed those of the Hargreaves–Samani model in the 
testing and validation stages. GP techniques have been shown to be a good tool for hydrological studies and 
can serve as a robust approach that can open a new field for the development of explicit formulations for many 
hydrological problems.

The model obtained can be used in arid-warm and warm-temperate climates and can be an alternative to 
the FAO-56-PM reference model in regions where only relative humidity, air temperature, and wind speed data 
are available. This methodology can be applied by taking other types of climates into account or limiting it to 
specific hydrological basins.

In future work, the consideration is to work with lysimeter data from arid areas with the aim of developing 
more accurate models based on measurements rather than estimations, aiming for broader model generaliza-
tion. On the other hand, there is a plan to expand the data sample for training and validation to include 10, 15, 
and 20 years of data.

On the other hand, specific research will be conducted in sub-tropical climates, as they pose a significant chal-
lenge for ETo models. Choosing to work in this specific climatic context will allow us to test the robustness and 
applicability of the developed model under more complex and variable conditions. This approach will contribute 
to a more comprehensive understanding of the model’s effectiveness, enhancing its generalization capability and 
utility across diverse climatic conditions.

Data availability
The datasets analyzed during the current study are available upon registration in the California Irrigation Man-
agement Information System (CIMIS) repository, https://​cimis.​water.​ca.​gov/.

Code availability
Not applicable for that section.
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