
Graph Networks as Inductive Bias for Genetic
Programming: Symbolic Models for

Particle-Laden Flows

Julia Reuter1[0000−0002−7023−7965], Hani Elmestikawy2[0000−0003−0083−2360],
Fabien Evrard2[0000−0002−5421−1714], Sanaz Mostaghim1[0000−0002−9917−5227],

and Berend van Wachem2[0000−0002−5399−4075]

1 Institute for Intelligent Cooperating Systems
2 Institute for Mechanical Process Engineering

Otto-von-Guericke-University Magdeburg, Germany
{julia.reuter | hani.elmestikawy | fabien.evrard | sanaz.mostaghim |

berend.vanwachem}@ovgu.de

Abstract. High-resolution simulations of particle-laden flows are com-
putationally limited to a scale of thousands of particles due to the com-
plex interactions between particles and fluid. Some approaches to in-
crease the number of particles in such simulations require information
about the fluid-induced force on a particle, which is a major challenge
in this research area. In this paper, we present an approach to develop
symbolic models for the fluid-induced force. We use a graph network
as inductive bias to model the underlying pairwise particle interactions.
The internal parts of the network are then replaced by symbolic mod-
els using a genetic programming algorithm. We include prior problem
knowledge in our algorithm. The resulting equations show an accuracy
in the same order of magnitude as state-of-the-art approaches for differ-
ent benchmark datasets. They are interpretable and deliver important
building blocks. Our approach is a promising alternative to “black-box”
models from the literature.

Keywords: Genetic Programming · Graph Networks · Fluid Mechanics.

1 Introduction

The rapid growth of computational power over the last decades has played an
important role in fluid mechanics research, as it enables the direct-numerical-
simulation (DNS) of flows of ever-increasing complexity. Within the field of fluid
mechanics, the simulation of the so-called particle-laden flows, i.e., cases of nu-
merous particles immersed and evolving within a fluid, is particularly challeng-
ing. Examples of particle-laden flows can be found in the flow of blood cells in
plasma, or in the fluidization of biomass particles in furnaces. Due to the com-
plex particle-particle and fluid-particle interactions, high-resolution simulations
of such flows are only limited to micro-scale systems with thousands of particles
(e.g., see [23,28]). These cannot meet the requirements of real-world applications
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commonly involving billions of particles. To overcome this issue, volume-filtered
approaches solve the flow on a lower resolution [2,7]. To close the information
gap owing to the lower simulation resolution, they require information about the
fluid-induced force acting on an individual particle Ffluid, which depends on the
above-mentioned interactions and consequently the number of particles.

Various approaches have been presented in the literature to approximate
the value of Ffluid, including empirical models [20,22], pairwise-interaction ex-
tended models [1,3] and physics-informed artificial neural networks (ANN) [25].
While empirical approaches only predict the mean force, the other methods show
promising results to also predict the variations form the mean, but often lack
explainability and predict Ffluid only with a certain error. The goal of this pa-
per is to develop interpretable symbolic models for Ffluid which can capture the
complex interactions for a large number of particles. Interpretable models for
this problem are desirable as they allow for deeper understanding and analysis
of the underlying interactions, which remain opaque in approaches up until now.

The identification of interpretable models from experimental and simula-
tion data has recently gained importance to overcome the “black-box” nature
of machine-learning algorithms such as ANNs. Genetic programming (GP) is a
suitable approach to develop human-interpretable symbolic models from data.
Given the problem of predicting Ffluid in particle-laden flows, symbolic models
allow a better understanding of the underlying interactions. However, previous
work has shown that the straightforward application of GP algorithms on DNS
data, for instance to recover the velocity field of the flow around two particles,
cannot cope with the complexity of the problem [19]. The complexity of GP al-
gorithms scales exponentially with the number of input variables and functions,
thus some pre-processing of the data and/or combination with other model re-
duction techniques is required to reduce the dimensionality of the problem [4].
In this paper, we present an approach using inductive bias to identify symbolic
models for Ffluid. Our approach comprises the following two steps:

1. Inductive bias: We first train a Graph network (GN) to predict Ffluid. This
step reduces the problem complexity and makes it tractable for GP.

2. Symbolic model: We then employ a GP algorithm to develop symbolic
models, which replace the internal ANN blocks of the GN.

Since the underlying pairwise interactions between particles are unknown, we
employ two different structures as interaction patterns. Our main contributions
are (i) the supply of high-resolution DNS data of particle-laden flows at different
volume-fractions, (ii) an extensible algorithm that combines GN and GP and
allows for different underlying structures, and (iii) a comprehensive analysis
of the resulting equations. Our experiments show promising results for Ffluid.
Moreover, the symbolic functions are concise and deliver meaningful building
blocks.
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2 Background and Related Work

Since the problem addressed in this paper is rather complex, we first give an
overview about related research in the GP area. We then introduce basic concepts
of particle-laden flows as well as related research in a separate subsection.

2.1 Genetic Programming in Physics Applications

Symbolic models (i.e., mathematical expressions) are interpretable and help to
understand underlying patterns in data. Under certain conditions, they gener-
alize better and have higher extrapolation capabilities compared to ANNs [10].
Despite all the advantages, identifying symbolic models from data is a non-trivial
task. With increased interest in symbolic models for physics applications, efforts
have been made to develop algorithms for symbolic regression, which include,
but are not limited to [5,9,12,17,21,27,30]. Population-based methods making
use of evolutionary algorithms have shown to perform well on these tasks (also
known as GP for symbolic regression).

Applications from the physics area are not new to the GP community. Twenty
years ago already, Keijzer et al. proposed a dimension penalty as additional
objective to evolve equations that are conformal with physical laws [13]. Other
approaches include grammar-based GP algorithms, which restrict the search
space to pre-defined rules (e.g., see [14,18]), and strongly typed GP [29]. However,
as pointed out by Cranmer et al. [10], high-dimensional problems are too complex
to be directly approached with GP, due to the combinatorial explosion with
increasing number of features and functions. Being a common underlying pattern
for many physics applications, they proposed a framework for problems which
can be modeled as interacting particles. Since GNs can represent this underlying
structure, they first train a GN on the available data, thus induce a bias. The
internal parts of the GN are then replaced by symbolic models. In this way, the
problem complexity for the GP algorithm is reduced.

Two recent publications address interesting problems at the intersection of
GP and fluid mechanics: Zille et al. examined the capabilities of GP algorithms
to predict known equations for the flow around a single spherical particle [31].
Reuter et al. [19] extended this approach to two particles. Their work indicates
that the problem is too complex to be directly approached with GP. The problem
addressed in the present paper has a considerably higher complexity due to the
many particles involved.

2.2 Machine Learning for Particle-Laden Flows

Particle-laden flows can be locally characterized based on the particle Reynolds
number, Re, and the particle volume fraction, ϕ. Re is a dimensionless quantity
characterizing the ratio of inertial effects over viscous effects within the fluid,
whereas ϕ is the local fraction of volume occupied by the particles in the mixture.

The identification of an accurate model for the fluid forces acting on parti-
cles is a non-trivial task, as shown by the rich recent literature on the matter
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[1,3,24,25]. Promising approaches in this area assume so-called pairwise interac-
tions between particles [1,25]. It states that in a flow locally governed by Re and
ϕ, the force Ffluid,i acting on a particle i is approximated with a sum of interac-
tions with neighboring particles depending on their relative locations rj . In this
context, the prediction accuracy increases only up to a number of considered
neighboring particles between 20 and 30 [1,25]. Although this assumption intro-
duces a certain error to the models, since only considering first-order interaction
between particles, their predictive abilities are competitive with those of other
approaches.

We are mainly interested in the data-driven approaches, which use data from
DNS to find an accurate model for Ffluid. Noteworthy publications in this area
include [15] and [16], which employ multiple linear regression on expansions
of spherical harmonics. Wachs et al. extract distributions of particle locations
within a pre-defined neighborhood from DNS data [24]. These are used to find
correlations between the force exerted on a particle and the locations of its
neighboring particles. Balachandar et al. were the first to implement an artificial
neural network (ANN) for force prediction [3]. The input data comprises the
relative particle positions within a neighborhood, as well as Re and ϕ. The ANN
severely overfits the training data. A recent publication from Wachs et al. indi-
cates that physics-inspired neural networks (PINN) can overcome the overfitting
problem [25]. A main characteristic of this approach is the parameter sharing
between neural network blocks: Making use of the pairwise interaction assump-
tion, the influence of each neighbor of a particle is calculated by a small ANN,
which is shared among all neighbors. The total force on a particle is the linear
superposition of the influences of its neighboring particles. Next to the neighbor
locations, the predictive features include the local average velocity, which can
be approximated from the particle locations. The mentioned approaches impose
an underlying form on the model, which is deduced from prior knowledge about
the problem. For example, the prior assumptions of the PINN model regard-
ing basic interactions between particles are easy to understand. However, the
transformations inside the ANN blocks remain opaque.

Building upon the works of Reuter et al. [19], Wachs et al. [25] and Cranmer
et al. [10], our goals are: First, to identify which underlying pattern describes
the data best by inducing two variants of bias through GN. Second, to overcome
the “black-box” nature of GNs by replacing the network blocks with symbolic
models. In this paper, we present an algorithm that fits the nature of the problem
at hand.

3 Proposed Methods

As depicted in Fig. 1, the overall algorithm comprises two phases: In the first
phase, a GN is trained on the input data. The inductive bias of the GN deter-
mines the internal structure, i.e., which particles interact with others and how
the influences of multiple neighboring particles are aggregated. This surrogate
model facilitates the development of symbolic models, since the general shape



Graph Networks as Inductive Bias for Genetic Programming 5

Fig. 1. Symbolic models are generated from simulation data using a GN as surrogate
model. Physical particles in the simulation translate to nodes in the GN.

→ → y =
∑

(C1 · sin(θ) + C2) · 1
r

Micro-scale DNS Graph Network Symbolic Model

of the equation is determined beforehand. Subsequently, the GP algorithm fits
symbolic models to the output of the internal structures of the GN, rather than
the actual target variable. The prediction of the target variable is achieved by ag-
gregating the symbolic models, using the same aggregation scheme as previously
employed in the GN.

3.1 Graph Networks

Many systems in physics or real-world applications can be represented by graphs,
such as spring systems [10] or particles in a particle-laden flow. This motivates
the use of GNs to model interactions between objects or particles. GNs are a
subtype of graph neural networks (GNN) [6]. They contain network models for
each internal structure of a graph.

A particle translates to a node in the GN, which is described by the node
model Φn. A system of q particles is represented by a graph with q nodes ni,
where i = 1 . . . q. A node ni has incoming and/or outgoing edges from/to the
nodes in its neighborhood Ni. The neighborhood can be defined by a number of
closest nodes to ni or all nodes within a certain distance from ni.

The edges of the graph are represented by the edge model or message
function Φe. The message function mi,j captures pairwise interactions between
two nodes ni and nj , where nj ∈ Ni. The pairwise interaction is determined
by the current state of the interacting particles, so that the input to the edge
model comprises the features of the two interacting particles. The node model
updates the state of a particle as a function of the current state of a particle ni,
as well as the aggregated incoming edge messages. Both Φe and Φn use shared
parameters for all pairwise interactions and node updates.

The global model Φg processes all aggregated messages and updated nodes.
It computes a global property g for the entire graph. The formal definition of a
GN with q nodes is as follows:
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Fig. 2. GN to predict Ffluid imposed on the red particle in a particle-laden flow, given
four particles in its neighborhood Ni: y = g(x) (left) and y = f(g(x)) (right). u∞ is
the flow velocity.

mi,j(t+ 1) = Φe(ni(t), nj(t)) (1)

ni(t+ 1) = Φn(ni(t),
∑
j∈Ni

mi,j(t)) (2)

g(t+ 1) = Φg(ni(t) . . . ,mi,j(t) . . . ), where i = 1 . . . q, j ∈ Ni (3)

A GN facilitates different ways of predicting a target variable, i.e., different
underlying structures. Since the optimal structure of the model to predict a
target variable y is unknown, our framework proposes two variants aligned with
the structure of the problem at hand:

1. y = g(x) =
∑

j∈Ni
mi,j : Only the edge model Φe is captured. The target

variable is the sum of the edge messages received by a node.
2. y = f(g(x)) = f(

∑
j∈Ni

mi,j): Both the edge model Φe and node model Φn

are captured. The target variable is a function of the summed edge messages.
Thus, the summed edge messages are an input to the node model, which
predicts the target variable.

Fig. 2 depicts these two variants using the example of a particle-laden flow. It
becomes apparent that the internal structure of a GN is separable, which means
that we can fit separate symbolic models to the outputs of the edge and node
models. This facilitates the equation fitting in the next step tremendously.

3.2 Genetic Programming

Genetic Programming is a population-based approach to develop symbolic mod-
els from data. The equations are represented as parse trees, which consist of
basic operators, functions, features and constants, often referred to as set of
primitives. New equations are formed in an evolutionary manner, by applying
crossover and mutation on selected equations from the population. With growing
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interest in symbolic regression for physics applications, the basic GP algorithm
got enhanced with techniques from the area of machine learning. An important
property is the possibility to include and fit constants in the equations, usually
achieved by a regression algorithm on top of the evolution of equations. Other
techniques are batch-wise training to process big datasets in a reasonable amount
of time, and the use of sophisticated error functions.

Algorithm The proposed GP algorithm makes use of the training features,
which can include raw data as well as pre-processed or transformed data to
induce prior knowledge about the problem. In addition, the algorithm employs
constants, which are fitted through a regression algorithm. Since no ground truth
equation is available, the choice of an appropriate function set is a non-trivial
task, with major influence on the result. Preliminary experiments and a coarse
function tuning have shown that the set of functions and operators {+, ∗, sin(◦),
cos(◦), tan(◦), e(◦), log(◦)} yields satisfactory results. The fitness function to be
minimized is the commonly used mean square error (MSE).

Depending on the underlying structures imposed by the GN, the GP algo-
rithms slightly differ:

1. y = g(x) =
∑

j∈Ni
mi,j : The symbolic model Φe′ replaces the message model

Φe, and is thus fitted to the output of the message function, which was
recorded during GN training. Constants in the resulting equations are then
refitted to the original target variable to avoid the accumulated approxima-
tion error. To this end, we employ the Levenberg-Marquardt algorithm and
use the constants found by the GP algorithm as starting values.

2. y = f(g(x)) = f(
∑

j∈Ni
mi,j) = ni: The first symbolic model Φe′ replaces

the message model Φe and follows the same procedure as in (1). The second
symbolic model Φn′

replaces the node model Φn and predicts the target vari-
able, given the influence of the neighboring particles. Thus, it receives the
summed influences

∑
j∈Ni

m′
i,j as function input. To refit the constants, the

inner function Φe′ is plugged into the outer function Φn.

Techniques for Physically Meaningful Equations Physical laws often fol-
low relatively simple equations. Thus, our GP algorithm aims at finding equa-
tions of low complexity. At the same time, these equations should be in line with
physical laws in terms of units. While approaches like grammar-based GP or a
dimension penalty as an additional objective are often effective to avoid unit
violations, they are complex to implement and sometimes restrict the search
space in an undesirable way. Recent research shows, that relatively simple tech-
niques can also yield satisfactory results [9]. To this end, our algorithm employs
a complexity measure, complexity-constrained function inputs as well as certain
building rules for the parse trees.

Complexity Measure: To compute the complexity of an equation, each oper-
ation, function, feature and constant is assigned a complexity value. The total
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equation complexity is the sum of the complexity values of the used primitives.
The complexity values were determined by a coarse hyperparameter tuning.

Binary operators like addition, subtraction and multiplication, as well as
the training features are assigned a complexity value of 1. Constants play an
important role in numerous physical laws, such as the gravity constant, to name
one. When the number of constants in an equation is unknown, they come with
the cost of overfitting the training data if too many of them appear in the
same expression. Thus, we assign a higher complexity value of 2 to constants.
Unary functions such as sin(◦), cos(◦), tan(◦), e(◦) and log(◦) apply a non-
linear transformation to the input. Consequently, they are associated a higher
complexity value of 2 compared to the basic operators. The unary operation 1

◦
is associated with a complexity of 1.

Complexity-constrained Function Inputs: Another technique to keep the ex-
pressions simple yet effective is to restrict the input of certain operations to a
maximum allowed complexity. Our algorithm restricts the input complexity of
trigonometric, logarithmic and exponential functions to 8. This means, an ex-
pression like y = sin(2.0 · x − 3.0) with an input complexity of 7 is allowed.
y = sin(2.0 · x+ log(x) + 3.0) with an input complexity of 11 exceeds the limit.

Building Rules: Preliminary experiments have shown that GP algorithms some-
times tend to include multiple nested functions in expressions, for instance
sin(cos(sin(◦))). This behavior is to be avoided, as it can lead to the model over-
fitting the training data and usually has little meaning in terms of explainability.
Consequently, we limit the nesting of trigonometric functions to a maximum of 1,
so that sin(sin(◦)) is allowed, but further nesting with any trigonometric function
is prohibited.

4 Experiment Design

We investigate the viability of the presented approach using benchmark data
from the Stokes flow (i.e., Re = 0), with four different particle-volume fractions
ϕ. For each dataset, separate models are trained for the underlying structures
y = g(x) and y = f(g(x)).

4.1 Data Generation: Simulation of Particle-Laden Flows

We consider the flow past a stationary array of monodisperse spherical particles
in the Stokes regime (Re → 0), at which the viscous forces dominate. In this
Regime, the flow is governed by the Stokes equations as follows

µ∆u−∇p = −Ffluid, (4)

∇ · u = 0, (5)

where µ is the fluid viscosity, u is the fluid velocity, p is the hydrostatic pressure
and Ffluid is the Force acting on the fluid. There is no closed-form solution for
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Fig. 3. Random array of stationary spherical particles at ϕ = 0.064

such equations in complex configurations that include more than a single spher-
ical particle. However, a solution can be built from the superposition of funda-
mental solutions due to the linearity of the governing equations. The method of
Regularized Stokeslets [8] is incorporated to construct the solution of the flow
around the array of particles. A single regularized Stokeslet solves the flow driven
by locally distributed force (Ffluid = gϕϵ(|x − x0|)) in free space, where ϕϵ is
an isotropic regularization kernel with compact support over the length ϵ. Each
particle is represented by a group of locally distributed forces to achieve the
no-slip at the particle surface.

A random array of 30 spherical particles is generated in a unit cube except for
one particle which is placed at the center of the cube. Each particle is represented
by 300 force markers. The free stream flows in x-direction with uniform velocity
u∞ = 1 m/s and the fluid viscosity is µ = 1 kg/(m s). The force Ffluid has the
three components and is computed on the particle located at the center of the
cube for 500 random particle arrangements. The scope of this paper is to predict
the streamwise force component Ffluid. We provide benchmark data for each of
the following volume fractions ϕ = [0.064, 0.125, 0.216, 0.343]. Visualization of a
sample case is shown in Fig. 3. Each training sample encompasses the following
features:

– Relative positions ri of the 29 neighboring particles
– Average fluid velocity ūf within the unit cube
– Streamwise force component Ffluid exerted by the fluid on the particle of

interest

4.2 Data Preprocessing

The raw data generated by the Stokes flow solver from Sec. 4.1 undergoes further
transformations before it serves as input to the GN. Initially, the raw particle
locations are represented in a three-dimensional Cartesian coordinate system.
Preliminary experiments have shown that the GP algorithms perform better
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Fig. 4. Spherical coordinate system with radius r, polar angle θ, and azimuthal angle φ.
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when locations are available in spherical coordinates. The GN performance re-
mains similar for both configurations. Thus, we convert the particle locations to
spherical coordinates r, θ and ϕ (see Fig. 4 for exact definition). We assume that
it behaves this way because the particle distance r plays an important role in the
underlying symbolic model. Furthermore, the trigonometric functions employed
in the function set of the GP algorithm are more meaningful with an angle like θ
and ϕ as input. This could save the algorithm an intermediate step to compute
a dimensionless quantity from the features in Cartesian coordinates.

To increase the number of available data samples, we augment the data by
rotations around the axis of the free stream. This has the added benefit of
representing symmetries around the free flow direction in our data. In this way,
a total of 3,000 samples per training set is available. We split the data with a 3:1
ration into training and test sets. Since the mean force ⟨Ffluid⟩ can already be
approximated from existing correlations [26], we will predict the deviation from
the mean force. This can have the same order of magnitude as ⟨Ffluid⟩ itself.

4.3 Algorithm Settings

The features of the neighboring particles, i.e., input features to the edge model,
are the relative position from the center particle in spherical coordinates r, θ, φ.
The training features of the center particle of interest comprise the local average
velocity in x, y and z direction, ūf

x, ū
f
y and ūf

z .
The edge and node models of the GN comprise two fully connected hidden

layers with 30 neurons each. We use the hyperbolic tangent as nonlinearity. For
both y = g(x) and y = f(g(x)) as underlying structures, the output of the edge
model is recorded during training of the GN to be used as target features of
the GP algorithm. The learning rate with an initial value of 0.002 is adjusted
during the training process. The model parameters are optimized by the Adam
optimizer. We train the model for 5000 epochs to minimize the MSE as loss
function. The GN is implemented using PyTorch Geometric [11].

Our GP algorithm is implemented in the PySR framework [9]. We run the
GP algorithm for 200 iterations, with a population size of 100 individuals. The
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multi-objective algorithm minimizes the MSE as well as the complexity value of
an equation. The best individual from the final Pareto front is identified using
a combined measure of accuracy and complexity, as implemented in [9]. The
algorithm employs the problem-specific parameters as described in Sec. 3.2, and
uses the standard configuration of PySR with regards to genetic operators and
operator probabilities.

In first trials, we observed that the nested symbolic models y = f(g(x))
are more complex than y = g(x), with a tendency to mainly using constants
in the outer equations. This can be explained by the two consecutive GP runs
for f and g. To keep the comparison fair, we want to allow the algorithm for
y = g(x) to use more constants, by reducing the constant complexity to 1. Since
the structure of an accurate equation is unknown, and fewer constants can be
beneficial for generalization, we still run experiments for y = g(x) and a constant
complexity of 2. Considering the four benchmark datasets, this makes a total
of twelve experiment instances. The training data and code for this paper are
publicly available at https://github.com/juliareuter/flowinGN.

5 Results and Analysis

Since the algorithm comprises two steps, we applied the following procedure:
The GN was trained ten times for each experiment variant. We observed sim-
ilar accuracies for all runs, which are comparable to those of state-of-the-art-
approaches [3,25]. We randomly selected one of the ten models as our basis
model. In the next step, we employed the GP algorithm to replace this basis
model with symbolic models. For statistical comparison, we perform 31 indepen-
dent realizations of the GP algorithm per experiment instance. The experiments
are analyzed regarding the overall algorithm performance, the explainability of
the resulting equations as well as validation on unseen data.

5.1 Overall Algorithm Performance

Fig. 5 displays the MSE distributions over 31 realizations for each experiment
variant. We used the Holm-Bonferroni test to compare the results for each ϕ.
The best variants are displayed in bold. For ϕ = 0.064, no statistically significant
difference between the three variants was identified.

We can observe that all experiment variants for all ϕ achieve MSE values
of similar magnitude. In general, the nested function y = f(g(x)) has a lower
spread compared to y = g(x) over 31 runs, i.e., is more reliable to achieve good
results. While the medians differ, the best models found by each algorithm have
almost the same error value. For most ϕ, no significant difference between the
constant complexities c = 2 and c = 1 for y = g(x) is observable.

5.2 Explainability of Equations

For a more profound analysis of the resulting equations, we select the best and/or
most frequently found symbolic model for each experiment variant. The con-

https://github.com/juliareuter/flowinGN
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Fig. 5. MSE for different experiment instances over 31 realizations. The variable c
indicates the constant complexity for y = g(x). Bold experiments performed best.
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stants of these equations are refitted to the original dataset, since they were
trained on the outputs of the GN edge model rather than the target variable.
Table 1 shows the refitted equations together with their MSE values on the test
dataset. For comparison, the MSE of the GN on the same dataset is displayed.

The equations are concise across all experiment instances. It becomes obvi-
ous that the algorithm settings successfully prevented function nesting as well as
complex input arguments for trigonometric, logarithmic and exponential func-
tions. Almost all equations are physically meaningful without the use of a dimen-
sion penalty or grammar-based approach, only through including prior problem
knowledge as constraints. Solely sin(r) and exp(sin(θ)) are unusual terms. While
the input comprises six features r, θ, φ, ūf

x, ū
f
y and ūf

z , mainly r and θ are used,

twice as well ūf
x comes into play.

Having a look at the MSE values, the GP equations perform slightly worse
than the GN. The errors of the symbolic models are in the same order of mag-
nitude of 10−4 as the GN, but are sometimes about 1.5 times larger. The un-
derlying structure y = f(g(x)) performs better for all benchmark datasets. The
best equations with y = g(x) as underlying structure show better performance
for c = 1 than c = 2 across all benchmark instances.

For the underlying structure y = g(x), we examined two complexity values
for constants, of c = 2 and c = 1. The constant complexity c = 1 resulted in one
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Table 1. Symbolic models with constants refitted to the original dataset.

ϕ Experiment Equation GP MSE GN MSE

y = g(x), c = 2
∑(

0.01146r + 0.01146 sin (θ) − 0.0142
)
1
r

0.000209 0.000120

0.064 y = g(x), c = 1
∑(

(0.03448r + 0.03448 sin (θ) − 0.04238) (− log (r))
)

0.000188 0.000120

y = f(g(x)) 0.0992
∑(

(r (sin (θ) − 0.1312) − 0.1983) (− log (r))
)

+ ū
f
x − 0.3177 0.000157 0.000106

y = g(x), c = 2
∑(

0.01397 sin (r) + 0.01397 sin (θ) − 0.01724
)
1
r

0.000284 0.000173

0.125 y = g(x), c = 1
∑(

0.00839 + (0.01578 sin (θ) − 0.01644) 1
r

)
0.000260 0.000173

y = f(g(x)) 0.0597
∑((

sin (θ) − 0.45368 − 0.12479
r

)
e−r

)
− 0.0616 0.000209 0.000146

y = g(x), c = 2
∑

ū
f
x

(
sin (θ) − 0.57328 − 0.10557

r

)
0.000316 0.000206

0.216 y = g(x), c = 1
∑(

0.00944 + (0.01932 sin (θ) − 0.01982) 1
r

)
0.000247 0.000206

y = f(g(x)) 0.1166
∑((

0.17448 sin (θ) − 0.08318 − 0.01419
r

)
1
r

)
− 0.1602 0.000248 0.000167

y = g(x), c = 2
∑(

(0.08249 sin (θ) − 0.07348) (− log (r)) + 0.00539
)

0.000239 0.000191

0.343 y = g(x), c = 1
∑(

(0.08749 sin (θ) − 0.07348) (− log (r)) + 0.00423
)

0.000239 0.000191

y = f(g(x)) 0.3904
∑((

0.10982esin (θ) − 0.26635
)
(− log (r)) + 0.0165

)
− 0.0421 0.000219 0.000197

Fig. 6. Insights into frequently used building blocks in the symbolic models.

additional constant for ϕ = 0.125 and ϕ = 0.216. The other instances employ the
same number of constants for both complexity values. Comparing the number
of constants of the two underlying structures, y = f(g(x)) always contains one
or two more constants than y = g(x).

Similar patterns across equations of all experiment instances can be iden-
tified. Each equation contains a building block that accounts for the distance
of a neighboring particle: The terms 1

r , − log(r) and exp(r) scale the influence
of a neighboring particle on the particle of interest, i.e., decrease with increas-
ing radius r. Furthermore, each equation contains a larger building block which
includes sin (θ) and constants or other small terms. We can assume that this
building block determines the influence of a particle, which is then scaled with
the distance to the center particle. Fig. 6 displays the function values of some of
the identified building blocks.
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Fig. 7. Normalized predictions of the deviation from the mean force ⟨Ffluid⟩, i.e.,
δ =

Ffluid−⟨Ffluid⟩
⟨Ffluid⟩

. Particles are sorted in ascending order by their target value.

5.3 Validation of Symbolic Models

Due to the complex underlying relations, overfitting to training data is a common
issue in machine learning for fluid mechanics. Thus, we validate the equations
found by the GP algorithm on a dataset with the same values of Re and ϕ, but
from a different DNS realization. Fig. 7 exemplarily depicts the normalized pre-
dictions of the deviation from the mean force ⟨Ffluid⟩ for ϕ = 0.216. The left plot
shows the predictions for 500 particles from the same realization as the training
data, and the right plot from a different realization. The plot as well as the MSE
values of 0.000247 (left) and 0.000225 (right) for y = g(x) and 0.000248 (left)
and 0.000226 (right) for y = f(g(x)) indicate that the equations identified actual
underlying patterns and did not overfit the training data. The other benchmarks
behave similarly, but are omitted here because of space reasons.

6 Conclusion and Future Work

We presented an approach to develop symbolic models for the fluid force acting
on particles in particle-laden flows from simulation data. A GN serves as surro-
gate model, from which the symbolic models are deduced using the introduced
GP algorithm. We include prior knowledge about the problem by employing a
complexity measure as well as imposing constraints on the equation generation
process. Furthermore, we preprocessed the data to make them manageable for
the GP algorithm. Since the shape of the final model is unknown, we examined
two underlying structures y = g(x) and y = f(g(x)).

Compared to state-of-the-art approaches, the presented GN achieved similar
accuracies [3,25]. The symbolic models consistently perform slightly worse than
GN, although errors of both approaches are of the same order of magnitude. A
validation on unseen data indicated that our models do not overfit. The underly-
ing structure y = f(g(x)) performed best on the provided benchmark instances.
We identified building blocks which frequently appear in equations across all
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benchmark instances. The equations also reveal which features are most influen-
tial on the target variable. Altogether, our approach offers a promising, human-
interpretable alternative to the hidden transformation in ANN blocks. Building
upon the work of Reuter et al., we scaled up from two to thirty particles.

This study confirms the applicability of our approach to the problem at hand.
In a next step, we will examine the performance of our approach on the predic-
tion of the other two force components. While most of the equations evolved are
physically meaningful, small terms such as sin(r) violate the unit system. Con-
verting all features to non-dimensional quantities, such as dividing the distance r
by the particle radius, can circumvent this issue.
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