
Towards Improving Simulations of Flows around
Spherical Particles Using Genetic Programming

Julia Reuter∗, Manoj Cendrollu†, Fabien Evrard†, Sanaz Mostaghim∗, Berend van Wachem†

Otto-von-Guericke-University Magdeburg, Germany
∗ Faculty of Computer Science

† Faculty of Process Engineering
{julia.reuter, manoj.cendrollu, fabien.evrard, sanaz.mostaghim, berend.vanwachem}@ovgu.de

Abstract—The simulation of particle-laden flows is a crucial
task in fluid dynamics, requiring high computational cost ow-
ing to the complex interactions between numerous particles.
Typically, the flow velocity is described with the equations
proposed by Stokes. While there is an analytical solution for
the Stokes flows around a single spherical particle, the Stokes
flows around many particles are still unsolved. In this paper,
we study Genetic Programming (GP) for symbolic regressions
to explore the potentials of multi-objective GP in recovering
analytical expressions for two and, in the future, N particles.
We propose a new GP approach containing building blocks
to scale up the problem and provide a new benchmark with
22 cases for this application. To identify the strengths and
limitations of GP, we generate fully resolved training data from
simulations. We compare the results of our algorithm to the
superimposition method and a multi-layer perceptron as two
baseline methods. The results show that GP can find comparable
and sometimes better solutions with smaller failure rates than
the two baseline methods. In addition, the produced solutions
by GP are explainable and certain function patterns inline with
physical laws can be identified across the benchmark problems.

Index Terms—Genetic Programming, Stokes Flow, Explain-
ability

I. INTRODUCTION

Particle-laden flows can be encountered in many natural
and engineering processes, such as the flow of blood cells
in plasma or the fluidization of biomass particles in furnaces.
Simulating the complex interactions between the particles and
the fluid is a non-trivial task. Computational simulations to
predict this flow behavior often utilize numerical approaches
to approximate the analytical solution, which are expensive
in time and computational power. Advanced machine learning
(ML) approaches such as artificial neural networks (ANN) can
be applied successfully to such complex problems to reduce
the computation time. However, they lack explainability of the
found relation between input and output, which is an impor-
tant feature in engineering problems. Genetic Programming
(GP), on the other hand, is a suitable supervised learning
method which produces human-readable equations and gives
insights into the underlying relations between input and output
variables. Albeit explainable, out-of-the-box GP approaches
are not sufficient to solve such complex problems; expert
knowledge is required to tailor the algorithm to a specific
use-case. In this paper, we use GP combined with domain
knowledge to solve the Stokes flow around two spheres, which

is an important step towards improving the simulations of
particle-laden flows.

The fluid flow around a single fixed rigid sphere is gov-
erned by a set of non-linear partial differential equations, the
Navier-Stokes (NS) equations, and its nature depends upon the
Reynolds number, Re, a dimensionless quantity characterizing
the ratio of inertial effects over viscous effects within the
fluid. Owing to the non-linearity of the NS equations, there is
no general analytical solution to this fluid-dynamics problem.
However, when Re → 0 (also referred to as the Stokes
limit, or Stokes flow) the NS equations can be approximately
linearized, and an analytical solution to the steady-state flow
over a single sphere of radius a, subject to the far-field velocity
u∞, can be derived [1]. Recent research from Zille et al. shows
that GP can solve the Stokes flow around a single sphere,
i.e. finding the known analytical solution to the problem [2].
The next step towards scaling up to N particles is to study
the flow around two spherical particles, which is the goal of
this paper. Here, we address the configuration of two inline
particles. Since there is no analytical solution for flows around
more than one sphere, the problem complexity tremendously
increases compared to the flow around a single sphere.

In this paper, we propose a novel multi-objective GP
approach to predict the Stokes flow around two spherical
particles with the goal to incorporate expert knowledge. We
conduct a performance study of the proposed approach on
a benchmark dataset, as well as a comparison to two base-
line methods from the areas of fluid dynamics and machine
learning. In addition, we provide a comprehensive analysis
of the resulting GP equations to examine their structure and
interpretability. Since, to our best knowledge, this paper is
the first to use GP for predicting the Stokes flow around
two spheres, there is no benchmark data available. Therefore,
we additionally provide a benchmark for the Stokes flow
around two inline spheres using a high-resolution simulation
environment. In our experiments, we investigate the potentials
and limitations of GP to solve the complex two particles Stokes
flow problem. The results serve as a starting point for the
application of GP to more complex fluid dynamics problems,
such as the flow around higher numbers of particles or particles
with varying radii.

II. SIMULATION OF STOKES FLOW

At low Reynolds numbers, the fluid flow is highly dom-
inated by the viscous forces and the inertial forces play a
very negligible role. One of the fundamental results of such
flows is Stokes solution for the flow past a spherical particle.
This analytical Stokes solution was considered in a related
paper [2] to generate the training data for GP. In this paper,
we aim to further explore the potential of GP to recover the
analytical expressions for 2 (and later N) particles. However,
there isn’t any general Stokes solution to generate the training
data for an array of particles. To deal with such flows and to
further include the effects of neighboring particles, we would
have to look beyond Stokes solution for more sophisticated
approaches. The theory of fundamental solutions allows us
to model such a collection of particles as external sources
of concentrated point forces. The resulting solution called as
Stokeslet represents the velocity due to these point forces.

Cortez in his work regularized Stokeslet [3] considers the
forces to be applied over a volume using a radially symmetric
smooth function ϕ rather than being concentrated at points.
Following this idea, the momentum equation could be rewrit-
ten as

−η∆u+∇p = fϕ(x− x0) (1)

where x0 is the location of point force and η refers to the
dynamic viscosity of the fluid. On further simplifications and
then introducing the regularized Green’s function Gδ which
is a solution to ∆Gδ = ϕ, and Bδ the solution to the bi-
harmonic equation ∆Bδ = Gδ , we arrive at the regularized
Stokeslet velocity in three dimensions given by

u(x) =
1

η
((f · ∇)∇Bδ − fGδ) (2)

Explicit expressions could be derived for Bδ and Gδ based
on the kernel used. Evrard et al. in their work [4] follow
a similar approach to derive the regularized Stokeslet using
a kernel based on the family of Wendland functions. The
detailed derivation of regularized velocity could be found in
[4] and the final expression is given by Equation (3).The radius
of regularization support δ characterizes the size of the kernel.

The above expression, also referred to as regularized
Stokeslet solution, is used to compute the disturbances in the
velocity field due to a point force. Each of these Stokeslet
solutions satisfies the governing equations of the Stokes flow.
Owing to the linearity of the Stokes flow, a linear combination
of these solutions also satisfies the governing equations. There-
fore, the flow around a sphere could be simply approximated
by populating its surface with a distribution of regularized
Stokeslets. The force associated with each of the Stokeslets
is chosen so as to ensure that the velocity of the fluid on the
surface of the sphere matches that of the sphere. This would
lead to a system of equations given by

u(xi) =

N∑
j=1

Mij(x1, ...xN)fj (4)

The resulting forces from the above system of equations can
be used in Equation (3) to estimate the velocity field at any
point in the domain.

As a simple numerical experiment, we compare the velocity
field around a fixed isolated sphere from Equation (3) with
the analytical Stokes solution. To begin with, we populate the
surface of the sphere with N Stokeslets using the concept
generalized spiral set as proposed in [5]. The velocity at each
of these forcing points is chosen so as to enforce a no-slip
boundary condition on the surface of the sphere. The radius
of regularization kernel support is chosen as

δ = 2

√
surface area of the sphere

N
(5)

The Rooted Mean Squared Error (RMSE) of the velocity field
differences (u−uexact) for a sphere of radius 0.25 at different
values of N is shown in Figure 1. It can be noticed that the
accuracy of regularized Stokeslet velocity field improves with
increase in number of Stokeslets.

As the results from the regularized Stokeslets were found
to be in good agreement with the analytical solution for the
flow around a single sphere, we further extend this approach to
compute the flow field around two in-line spheres separated by
a distance as illustrated in the Figure 2. This serves as training
data for GP to recover analytical expressions for flow around
two spheres.

III. GENETIC PROGRAMMING

A. Background

Stemming from the family of Evolutionary Algorithms
(EA), GP applies the principles of evolution to a population
of potential solutions to a problem. Commonly, GP indi-
viduals are represented as trees. Problem-dependent function
and terminal sets are required to construct a GP tree. While
the terminal set T contains all training features as well as
additional constants, the function set F consists of functions
that can be applied to the terminals. For each function, the
number of input arguments needs to be defined. This allows
for problem-dependent functions beyond basic operators like
addition or division, which makes GP a very flexible machine
learning approach.

Initially, a random population of individuals is created.
These solutions are refined iteratively applying the evolution-
ary principles of selection, crossover and mutation. Special
mechanisms are necessary to perform crossover and mutation
on a GP tree. In the crossover procedure, subtrees or branches
are exchanged between individuals from the current population
to create new children. For mutation, only smaller changes
in an individual are conducted, such as replacing a terminal
node by a different feature. The quality of a solution/model
is evaluated using a problem-dependent fitness function. For
regression problems, the fitness of an individual is usually a
distance measure between the target values and the produced
output. The best solutions of a population survive to the next
generation, where the process is repeated for a certain number
of generations until a stopping criterion is reached.

u =
1

120πηδ8


f(−81r7 + 400r6δ − 735r5δ2 + 540r4δ3 − 168r2δ5 + 60δ7)

+(f · x)x(63r5 − 300r4δ + 525r3δ2 − 360r2δ3 + 84δ5), if 0 ≤ r ≤ δ

f(15r−1δ8 + r−3δ10) + (f · x)x(15r−3δ8 − 3r−5δ10), if r > δ

(3)

10 100 1000 5000

0.001

0.01

0.1

Number of forcing markers N

R
M

SE

u component
v component

Fig. 1. RMS error of velocity field on the 2D plane (Z = 0)

ex

ey

d
a

er

u(r, θ)

θ
e
θ

u∞

Fig. 2. Streamlines of the Stokes flow around two spheres with radius a,
separated by a distance d

The basic GP regression algorithm optimizes for a single
objective, i.e. minimizes the distance between the desired and
the actual output. As Zille et al. showed, it can be beneficial
to include additional objectives to achieve better solutions
in the final population [2]. Such multi-objective optimization
problems (MOOP) can be formulated as

min f(x) = (f1(x), f2(x), ..., fm(x))T

s.t. x ∈ Ω
(6)

A MOOP maps the search space Ω to the objective space

M of dimension m. In GP, Ω refers to the set of all possible
models that can be created using the provided terminals T and
functions F . The solution to such MOOP is usually a set of
Pareto-optimal solutions. The concept of Pareto-dominance is
used to attain such solutions. A solution x1 is said to dominate
the solution x2, if the following conditions are met [6]: (1) The
solution x1 is no worse than x2 in all objectives, i.e. fj(x1) ≤
fj(x2) for all j = 1 . . .m. (2) The solution x1 is strictly better
than x2 in at least one objective, i.e. fj(x1) < fj(x2) for at
least one j = 1 . . .m. The Pareto-optimal solutions are not
dominated by any other solution in Ω.

B. Related Work

The main advantage of GP over other ML methods is the
potential to create human-readable equations. Especially in
the engineering or physics domain, these equations must be
conformal with physical laws to be explainable and add actual
value. Different approaches in GP have emerged to guarantee
the development of physically meaningful individuals: more
restricting approaches such as grammar-based [7] and strongly
typed [8] GP limit the programs to only create physically
meaningful solutions. Penalizing non-physical operations as
proposed in [9] is a softer concept to avoid conflicts with
physical laws: For each operation that violates physical laws,
a dimension penalty is computed and aggregated throughout
an individual. This penalty value is an additional objective to
be minimized by the algorithm. In this way, non-meaningful
individuals are guided towards being conformal with physical
laws. In addition to the dimension penalty, recent work has
shown that a rank-based correlation coefficient as a further
objective contributes positively to the evolutionary process [2].

To approach a problem as complex as ours with GP, it can
be of great use to incorporate expert knowledge in the design
of the algorithm. One way is to define tailored building blocks
that can be used alongside the standard functions. Finding
the optimal building blocks itself is a challenge that has a
considerable impact on the success of GP [10] [11].

In the broader scientific field of fluid dynamics, ML was
used to predict important model coefficients of flows, e.g. GP
models [12], [13], [14] and ANN models [15]. The resolution
of these problems is much coarser and not on a particle level
as in our work. Research concerning the specific field of the
simulation of particle-laden flows uses scaling methods to
approximate the impact of neighboring particles [16], [17].
Recent improvements in simulations of particle-laden flows are
mainly driven by new assumptions regarding particle-particle

interactions [18], [19], [20]. To improve these simulations with
ML, Balachandar et al. attempted to derive a high-resolution
flow model using an ANN, which was shown to suffer from
severe overfitting [19]. To date, there is no GP approach known
to the authors to improve simulation of particle-laden flows
on a particle level. A basic study on the Stokes flow around
a single sphere was conducted by Zille et al. [2].

IV. PROPOSED METHODS

A. Overall Algorithm

Based on the recent research for predicting the Stokes flow
around a single sphere [2], our proposed GP algorithm is
outlined in Algorithm 1. Preliminary tests have shown that
a multi-phase GP advances the evolutionary process in the
best case, and does not deteriorate the results in the worst
case. Therefore, we enhance the standard GP procedure by
a two phase evolution with k generations of crossover and
mutation to generate offspring, followed by k generations
of mutation only. This helps to refine solutions that have a
suitable structure but require small changes on the terminal or
function level. We use the (µ+λ) reproduction scheme, which
allows parents and children to survive to the next generation.

Algorithm 1 Proposed Genetic Programming Algorithm
Input: Training Data X , Terminals T , Functions F , phase

generations k, crossover probability pc, mutation proba-
bility pm

Output: Set of non-dominated solutions A
1: A ← Empty Pareto-dominance based archive
2: pop← Random initial population of solutions
3: evaluate(pop)
4: A ← updateArchive(pop)
5: repeat
6: for k generations do
7: parents ← select(pop)
8: offspring ← reproduce(parents, pc, pm)
9: evaluate(offspring)

10: pop ← updatePopulation(∪(pop, offspring))
11: A ← updateArchive(offspring)
12: end for
13: for k generations do
14: parents ← select(pop)
15: offspring ← reproduce(parents, pc = 0, pm = 1)
16: evaluate(offspring)
17: pop ← updatePopulation(∪(pop, offspring))
18: A ← updateArchive(offspring)
19: end for
20: until stopping criterion is reached
21: return A

B. Terminal and Function Sets

Table I displays the Terminals and Functions provided to
the GP algorithm. As terminals, we select the features from
the training data as well as a few constants.

TABLE I
TERMINAL AND FUNCTION SETS

Terminals Training Features plus Constants: 1.0, 2.0, 0.5, 0.25

Functions +, −, ×, / (protected), u0(x, y), v0(x, y),
ud(x, y), vd(x, y)

The available functions are basic arithmetic operators, in-
cluding a protected division to avoid division by zero. In this
case, an infinity value is returned. Preliminary experiments
showed that a standard GP setting with only arithmetic op-
erators performed poorly on the given problem. The need
to incorporate domain knowledge in our approach arose. We
comprise the solutions for the flow past a single particle as GP
building block, namely the velocities in u- and v-direction: u0

and v0 for the disturbance around the left particle, and ud and
vd for the right particle, with a distance d between them.

Algorithm 2 Computation of flow disturbances ui, vi past a
single spherical particle at center position xc,i, yc,i

Input: x and y coordinates
Output: ui and vi, i ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20}

1: xrel, yrel ← compute the relative position of x, y from
particle center xc,i, yc,i

2: r, θ ← convert xrel, yrel to polar coordinates
3: Ur, Uθ ← compute Equations 7 and 8
4: u, v ← convert Ur, Uθ to global Cartesian coordinates
5: return u− u∞, v

Given a particle i, ui and vi take in the position x and
y, at which the flow is to be predicted (Algorithm 2). The
computation of the relative position to the center of the
particle i is required for the subsequent calculations in polar
coordinates. The functions return the disturbance around a
single spherical particle using the following equations:

Ur(r, θ, u∞, a) = u∞ ∗ cos(θ) ∗ (1 +
a3

2r3
− 3a

2r
) (7)

Uθ(r, θ, u∞, a) = −u∞ ∗ sin(θ) ∗ (1 +
a3

4r3
− 3a

4r
) (8)

The disturbance describes the difference in the undisturbed
flow velocity due to the addition of a particle. It is computed
in u direction by u− u∞, whereas the disturbance in v is not
modified, since v∞ = 0.

C. Objectives

We follow the example of [2] and incorporate multiple
objectives in our approach. Our first objective f1 mainly
determines the quality of a solution. We use the RMSE, which
penalizes larger errors more and is a common fitness measure
in GP:

f1 =

√
1

n

∑n
i=1 (ŷi − yi)

2 (9)

Furthermore, we employ a rank-based correlation coefficient
using the Spearman correlation as a second objective f2. The

goal is to keep individuals in the evolutionary process that are
not yet numerically accurate, but produce a high correlation
with the target data. Thus, promising individuals get the chance
to be refined towards more accurate solutions. To minimize
the objective, we use f2 = 1 − |ρ|, where ρ is the Spearman
correlation coefficient ranging from -1 to 1. The absolute value
is taken to also keep inversely proportional solutions.

To account for the compliance with physical laws, which is
an essential feature of our paper, we employ a third objective
f3 that penalizes individuals that execute non-physical oper-
ations. For each unit-violating operation, a penalty of 1.0 is
added and aggregated throughout an individual. Additionally,
to guarantee that the final unit of an individual corresponds
to our target unit meters/second = m1 · s−1, we add the
distances between the exponents of the SI-base units of which
the final unit is composed. For example, the distance of m2 ·s3

to the target unit is 5.

V. EXPERIMENTAL DESIGN

A. Proposed Benchmark
To identify the potentials and limitations of GP on the two-

particle problem, we propose a new benchmark dataset with
varying distances between the two particles (see Figure 2). The
closer the particles are, the more they influence each other
and vice versa. Following this idea, the bigger the distance
between the two particles, the better the approximation of the
flow around two particles using the analytical solution for one
particle. We expect GP to perform well on a large distance
d >= 10 and want to identify limitations of the approach
by a stepwise reduction of the distance. To this end, training
data for d = [20, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1] is generated. Since
the flow velocity is described by two components, u and v,
separate benchmarks are created. The combinations of eleven
distances and two velocity components makes a total of 22
benchmarks.

Each dataset contains the following features:
• u, v: target velocities in u or v direction
• x, y: positions for which the flow is to be predicted
• d: distance between the two spheres
• a: radius of the spheres
• u∞: undisturbed flow velocity
The datasets are generated using the regularized Stokeslet

simulation as described in Section II. We distribute N = 5000
Stokeslets over the surface of a sphere following the general-
ized spiral set approach. The parameters are set to a = 0.25
and u∞ = 1.0. The origin of the coordinate frame is located
at the center of the left sphere. The right sphere has the center
coordinates (d, 0) accordingly. Due to the symmetric nature
of the problem, the z-dimension can be omitted, and a dataset
is generated from a plane through the centers of both spheres,
where z = 0. To cover all relevant flow disturbances, the
training data comprises [xc,0 − 4a, xc,d + 4a] in x-direction
and [yc,0 − 4a, yc,0 + 4a] in y-direction. We employ a resolu-
tion of 200 data points in x- and 50 data points in y-direction,
which makes a total of 10,000 instances minus the data points
that lie inside the spheres, for which no flow can be predicted.

B. Baseline Methods

We use two baseline methods to assess the performance of
the proposed approach. First, we employ the superimposition
method (SIP), which crudely computes the flow field at any
point by summing up the individual disturbances caused by
each particle in the domain. Similar to our approach, it uses the
analytical solution of the flow around one particle to compute
the disturbances caused by M particles:

u(x, y) = u∞ +

M∑
i=1

udisturbance,i(x, y) (10)

v(x, y) =

M∑
i=1

vdisturbance,i(x, y) (11)

Since the disturbances in u and v direction are also contained
in the function set of our proposed GP, we can directly
compare the two methods. Due to the deterministic nature of
the superimposition method, we execute it only once.

Additionally, we incorporate a multi-layer perceptron
(MLP) as baseline method from the ML field. To this end,
we use the Scikit-Learn implementation of the MLP regressor.
Compared to the standard parameter setting, a larger hidden
layer size of 200 and number of iteration of 500 is proposed,
to adapt to the considerably high complexity of the problem.
We perform 31 runs to achieve stable results of the algorithm.

C. GP Parameter settings

Certain algorithmic parameters need to be defined for GP
to yield optimal results (see Table II). We employ a similar
parameter setting as in related research for the Stokes flow
around one particle [2]. To limit the individual lengths and
avoid bloating, a length limit (i.e. number of nodes in GP
tree) of 30 is applied. The dataset is split with a ratio of
70% training data and 30% test data. For each benchmark
instance, 31 repetitions of the GP algorithm are performed.
All algorithms are implemented using the deap-framework
version 1.3.1 [21] and the pint package 1 version 0.16.1.

D. Quality Criteria

During the evolutionary process, the algorithm optimizes
three objectives RMSE f1, correlation f2 and dimension
penalty f3. Additionally, we record the determination coeffi-
cient R2 as well as the Mean Absolute Error MAE during the
training process. Since the algorithm optimizes for multiple
objectives, a single optimal solution cannot be identified
anymore. Thus, we use the following procedure to determine
the final solution of a run: To guarantee the explainability
of the solutions, we only consider solutions that comply with
physical laws in our final evaluation, i.e. that have a dimension
penalty f3 = 0. From those solutions, the one with the
lowest f1 is the designated output of the run. To verify if
the proposed and the baseline methods achieve results that are
significantly different, a Friedman’s Test is performed. If the
equality hypothesis is rejected, the Holm-Bonferroni test for

1https://github.com/hgrecco/pint

TABLE II
GP ALGORITHMIC PARAMETERS

Parameters Settings
µ 2,000
λ 2,000
Number of Evaluations 600,000
Generations per Phase k 20
Selection Mechanism NSGA-II selection
Initialization Method Half Full, Half Grow
Crossover Probability pc 0.7
Mutation Probability pm 0.3
Crossover One-point, Leaf-biased (pleaf = 0.9)

(chosen at random)
Mutation Uniform, Insert, Shrink, Node Replace-

ment (chosen at random)
Mutation (pm = 1.0) Shrink (1/3), Node Replacement (2/3)
Max. Tree Length 30
Max. Init Depth 4
Min. Init Depth 1
Max. Mutation Depth 2
Min. Mutation Depth 0
Objectives f1, f2, f3
Train-Test Ratio 0.7 train, 0.3 test
Runs 31

adapted p-values is conducted for pairwise comparison of the
methods. A significance level α = 0.05 is used for both tests.

VI. RESULTS AND ANALYSIS

The results of the proposed algorithm and the baseline
methods on the test data are shown in Table III. The most
expressive quality criteria are R2 and RMSE. Because of space
reasons, we leave out MAE and only present RMSE, which is
stricter than MAE in assessing the quality of a solution. The
values of objectives f2 and f3 are omitted in the table, as they
are mainly used to improve the training and explainability of
the solutions. For each measure, the value of the best solution,
the mean over the 31 runs and the standard deviation to
determine the stability of an algorithm are shown. The baseline
methods undergo a statistical comparison (SC) to GP using
the Holm-Bonferroni test, where (=) means no significant
differences to GP, (-) indicates significantly worse and (+)
significantly better results than GP.

A. Convergence Behavior

The convergence behavior of GP for selected distances in u
direction is displayed in Figure 3. The behavior in v direction
is similar to the ones shown here. Each line represents the
mean RMSE over the best (lowest RMSE and a dimension
penalty of f3 = 0) solutions for 31 runs at different times.

The tree plots indicate, that no overfitting to the training data
occurred, as training and test error decrease simultaneously
and no increase in the test error in later stages of the training
can be identified. To the contrary, the gap between training
and test error is almost negligible. The convergence speed for
d = 10 is notably higher than for d = 1 and d = 5, which
indicates that good solutions were easily found. The curve for
d = 10 resembles almost perfect convergence behavior with a

0 600.000
Evaluation

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
M

S
E

d = 1

train

test

0 600.000
Evaluation

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
M

S
E

d = 5

0 600.000
Evaluation

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

R
M

S
E

d = 10

Fig. 3. Convergence behavior of GP on training and test data for selected
distances d in u direction

steep decline in the first quarter of the training time and a flat
curve in the remainder. To the contrary, the learning curves
for d = 1 and d = 5 do not show a perfect convergence,
and it can be expected that RMSE can be further reduced with
more evaluations. Additionally, two spikes in the error curve
for d = 5 can be identified. This indicates that the problem for
d = 5 is especially complex for the algorithm to solve given
the provided terminal and function sets.

B. Effects of Different Distances between Particles

For all runs of each benchmark instance, at least one
individual with a dimension penalty of f3 = 0 was found.
Thus, physically meaningful solutions can be identified for
the given problem. The columns Best in Table III indicate,
that GP found at least one solution for all benchmark instances
that is better than SIP and MLP. This observation is especially
interesting for the fluid dynamics experts, for whom a single
optimal solution over multiple runs is already beneficial.

Figure 4 displays the RMSE distributions over the 31 runs
for GP and MLP as well as the deterministic result of SIP. As
expected, the failure rate and error magnitude decreases with
increasing distances between the two particles. In u direction
from d = 20 to d = 6, GP is stable in producing better or
equally good solutions than SIP. For d < 6, the error spread
increases and stable results cannot be guaranteed. This is also
reflected in the statistical comparison of RMSE values in Table
III. Similarly, the mean R2 values for GP are greater than 0.9
for d >= 6, with a drop for d = [5, 4, 3]. Interestingly, GP
finds comparatively good solutions for small distances d = 1
and d = 2 compared to SIP. This can be explained by the fact
that SIP is a deterministic approach and the same equation is
used over all benchmark sets. GP, on the other hand, is trained
separately on each benchmark set and can therefore adapt to
the changing flow pattern for different distances between the
particles. MLP always performs equal or worse than GP.

In v direction, the GP algorithms outperforms SIP for all
distances in terms of RMSE. While the statistical comparison
of R2 indicates statistically better results to the favor of SIP
for some benchmark instances, the real values of R2 of 0.99 do
not reflect large differences between the two methods. Again,
the MLP is surpassed by GP in almost all benchmarks. The

TABLE III
RESULTS OF EXPERIMENTS FOR THE u AND v COMPONENTS OF THE FLOW

u v

R2 RMSE R2 RMSE
d Method Best Mean ± Std SC Best Mean ± Std SC Best Mean ± Std SC Best Mean ± Std SC

1
GP 0.98898 0.93829 ± 0.09497 0.01550 0.04124 ± 0.02642 0.99358 0.92330 ± 0.06684 0.00483 0.01703 ± 0.00921

MLP 0.97489 0.94277 ± 0.01702 = 0.03001 0.04483 ± 0.00734 = 0.95736 0.93300 ± 0.01272 = 0.01425 0.01763 ± 0.00162 =
SIP 0.64865 0.64865 ± 0.00000 - 0.18567 0.18567 ± 0.00000 - 0.92054 0.92054 ± 0.00000 = 0.02633 0.02633 ± 0.00000 -

2
GP 0.99762 0.89169 ± 0.16221 0.00483 0.03873 ± 0.03515 0.99604 0.99324 ± 0.01196 0.00201 0.00297 ± 0.00272

MLP 0.93478 0.88892 ± 0.01877 = 0.04202 0.05432 ± 0.00488 - 0.90982 0.85886 ± 0.02657 - 0.01905 0.02339 ± 0.00219 -
SIP 0.81471 0.81471 ± 0.00000 - 0.09112 0.09112 ± 0.00000 - 0.97546 0.97546 ± 0.00000 - 0.01161 0.01161 ± 0.00000 -

3
GP 0.99099 0.76842 ± 0.26984 0.00264 0.05576 ± 0.04611 0.99704 0.99370 ± 0.00451 0.00101 0.00311 ± 0.00263

MLP 0.91038 0.86254 ± 0.03580 = 0.04338 0.05464 ± 0.00705 = 0.87434 0.84426 ± 0.02626 - 0.02170 0.02399 ± 0.00194 -
SIP 0.90174 0.90174 ± 0.00000 + 0.05440 0.05440 ± 0.00000 = 0.98821 0.98821 ± 0.00000 - 0.00743 0.00743 ± 0.00000 -

4
GP 0.99343 0.64824 ± 0.35060 0.00114 0.06542 ± 0.05365 0.99735 0.99525 ± 0.00208 0.00072 0.00257 ± 0.00183

MLP 0.92419 0.85880 ± 0.04212 + 0.03995 0.05398 ± 0.00785 = 0.85032 0.79705 ± 0.03930 - 0.02241 0.02644 ± 0.00257 -
SIP 0.94880 0.94880 ± 0.00000 + 0.03637 0.03637 ± 0.00000 + 0.99317 0.99317 ± 0.00000 - 0.00531 0.00531 ± 0.00000 -

5
GP 0.99586 0.72624 ± 0.38381 0.00097 0.05048 ± 0.05600 0.99752 0.99668 ± 0.00109 0.00058 0.00160 ± 0.00132

MLP 0.90334 0.86075 ± 0.02666 = 0.04342 0.05338 ± 0.00543 = 0.80215 0.73257 ± 0.04348 - 0.02523 0.02912 ± 0.00229 -
SIP 0.97220 0.97220 ± 0.00000 + 0.02606 0.02606 ± 0.00000 + 0.99559 0.99559 ± 0.00000 - 0.00401 0.00401 ± 0.00000 -

6
GP 0.99886 0.92884 ± 0.16668 0.00072 0.01683 ± 0.03354 0.99843 0.99705 ± 0.00065 0.00049 0.00155 ± 0.00090

MLP 0.90542 0.86129 ± 0.02901 = 0.04533 0.05444 ± 0.00584 - 0.83157 0.71321 ± 0.06179 - 0.02215 0.02875 ± 0.00307 -
SIP 0.98411 0.98411 ± 0.00000 = 0.01964 0.01964 ± 0.00000 = 0.99695 0.99695 ± 0.00000 = 0.00316 0.00316 ± 0.00000 -

7
GP 0.99918 0.97034 ± 0.11585 0.00061 0.01045 ± 0.02073 0.99760 0.99711 ± 0.00033 0.00051 0.00133 ± 0.00081

MLP 0.91455 0.85857 ± 0.02956 - 0.04207 0.05575 ± 0.00631 - 0.78306 0.69738 ± 0.06003 - 0.02412 0.02829 ± 0.00269 -
SIP 0.99036 0.99036 ± 0.00000 = 0.01531 0.01531 ± 0.00000 = 0.99777 0.99777 ± 0.00000 + 0.00256 0.00256 ± 0.00000 -

8
GP 0.99938 0.94054 ± 0.19538 0.00059 0.01269 ± 0.03218 0.99777 0.99736 ± 0.00022 0.00046 0.00128 ± 0.00060

MLP 0.90303 0.85571 ± 0.03211 - 0.04576 0.05617 ± 0.00627 - 0.75335 0.65335 ± 0.06812 - 0.02485 0.02896 ± 0.00274 -
SIP 0.99381 0.99381 ± 0.00000 = 0.01225 0.01225 ± 0.00000 = 0.99831 0.99831 ± 0.00000 + 0.00212 0.00212 ± 0.00000 -

9
GP 0.99749 0.99165 ± 0.00682 0.00059 0.00371 ± 0.00441 0.99829 0.99744 ± 0.00024 0.00045 0.00113 ± 0.00056

MLP 0.91789 0.85642 ± 0.03543 - 0.04233 0.05633 ± 0.00731 - 0.75158 0.62227 ± 0.06753 - 0.02370 0.02927 ± 0.00267 -
SIP 0.99586 0.99586 ± 0.00000 + 0.00998 0.00998 ± 0.00000 - 0.99869 0.99869 ± 0.00000 + 0.00179 0.00179 ± 0.00000 -

10
GP 0.99878 0.99253 ± 0.00686 0.00061 0.00340 ± 0.00415 0.99822 0.99747 ± 0.00016 0.00036 0.00110 ± 0.00043

MLP 0.89850 0.84437 ± 0.03641 - 0.04817 0.05875 ± 0.00653 - 0.69999 0.60329 ± 0.07305 - 0.02461 0.02876 ± 0.00257 -
SIP 0.99714 0.99714 ± 0.00000 + 0.00828 0.00828 ± 0.00000 - 0.99894 0.99894 ± 0.00000 + 0.00154 0.00154 ± 0.00000 -

20
GP 0.99927 0.99865 ± 0.00026 0.00029 0.00085 ± 0.00051 0.99922 0.99921 ± 0.00001 0.00044 0.00054 ± 0.00005

MLP 0.88535 0.81167 ± 0.05013 - 0.04589 0.06034 ± 0.00840 - 0.61003 0.37455 ± 0.09140 - 0.02174 0.02743 ± 0.00209 -
SIP 0.99982 0.99982 ± 0.00000 + 0.00188 0.00188 ± 0.00000 - 0.99974 0.99974 ± 0.00000 + 0.00057 0.00057 ± 0.00000 -

1 2 3 4 5 6 7 8 9 10 20

0.00

0.05

0.10

0.15

0.20

u
R

M
S

E

GP

MLP

SIP

1 2 3 4 5 6 7 8 9 10 20
Distance d

0.00

0.01

0.02

0.03

v
R

M
S

E

Fig. 4. RMSE distribution for GP, MLP and SIP in u and v direction over
31 independent runs for GP and MLP

better performance in v direction can be explained by the fact
that the solution required fewer operations than in u direction,
i.e. u∞ is omitted.

The limitation of our algorithm is defined by the flow
component with a weaker prediction, since both components
are required to predict the flow. Thus, altogether the results
suggest that the proposed algorithm delivers stable results with
low failure rates for the datasets with d ≥ 6. For d < 6,

albeit not stable, the algorithm manages to find at least one
solution within 31 runs that outperforms the SIP method. MLP
is utterly outperformed in almost all cases by GP. Since we
used a simple MLP implementation, adaptations on model
parameters such as the number of hidden layers or layer sizes
are necessary to improve the results.

C. Explainability of Individuals

A main concern of this paper is the explainability of the
solutions produced by the proposed GP algorithm. Objective
f3 guaranteed the conformity with physical laws. Table IV
lists the best GP solutions over 31 runs for the u component
of the flow for different distances. The sympy package was
used to simplify the equations.

The equations utilize the solutions for the disturbance
around a single particle, i.e. the expert knowledge given to
the algorithm. All individuals follow a similar scheme of
adding one or multiple terms to the undisturbed flow velocity
u∞. Essentially, the disturbances around the two particles are
aggregated. This pattern is very similar to the superimposition
method, which adds the disturbances of all particles involved.
However, GP found slight modifications to the superimposition
method to generate better results, such as multiplying the
solution around a single particle ud for d = 9 with a factor
of 0.97, d = 7 (factor 0.958), d = 4 (factor 0.923) and d = 3
(factor 0.9). Interestingly, instead of using such a fixed factor,
other solutions include a term that depends on x and y, which
produces infinitesimal values, such as u0 (2.25x,2.0y) u20 (x,y)

u∞
in the solution for d = 20. Overall, the solutions follow
a pattern similar to the superimposition method with slight
modifications. The terms involved are physically meaningful
and explainable, while the solutions are concise throughout all
benchmark instances.

TABLE IV
BEST SOLUTIONS IN U DIRECTION

d Solution

1 u∞ + 2.0 u0

(
4.0au∞

u0 (x,y)+u1 (x,y)
, 0.25y

)
2 u∞ + u0 (x, y)− u0

(
y, 2.5au∞

0.5 u0 (x,y)+0.5 u2 (x,y)

)
+ u2 (x, y)

3 u∞ + 0.9 u0 (x, y) + 0.9 u3 (x, y)
4 u∞ + 0.923 u0 (x, y) + 0.923 u4 (x, y)

5 u∞ + u∞(u0 (x,y)+u5 (x,y))
u∞−u5 (−2.75a,y)

6 u∞ + (u∞+u6 (−6.0a,y))(u0 (x,y)+u6 (x,y))
u∞

7 u∞ + 0.958 u0 (x, y) + 0.958 u7 (x, y)

8 u∞ + u0 (x,y)+u8 (x,y)

1.0− 0.75 u8 (a,0.25y)
u∞

9 u∞ + 0.970 u0 (x, y) + 0.970 u9 (x, y)

10 u∞ + u10 (x, y) +
(u∞+0.75 u10 (x,y)) u0 (x,y)

u∞

20 u∞ + u0 (x, y) + u20 (x, y) +
u0 (2.25x,2.0y) u20 (x,y)

u∞

VII. CONCLUSION AND FUTURE WORK

This paper presented a first study on the prediction of the
Stokes flow around two inline spherical particles using GP
for symbolic regression. We implemented a multi-objective
approach for the flow around one particle. Preliminary trials
showed that GP has difficulties finding a regression function
with standard GP parameter settings. To enrich the algorithm
with expert knowledge, the solution for the flow around
one particle was given to the function set. To identify the
strengths and limitations of the GP algorithm, we proposed
a new benchmark for the u and v direction of the flow,
with decreasing distances between the particles. Our multi-
objective approach allowed for solutions aligned with physical
laws, which contributes positively to the explainability of the
final solution set. All solutions are concise and physically
meaningful. The algorithm successfully includes the analytical
solution for one particle in the prediction for the flow around
two particles. GP found at least one solution that outperforms
the SIP baseline method, and achieved significantly better
results for distances d >= 6. MLP was outperformed by GP
throughout all benchmark instances. Many GP solutions mul-
tiply the solution for one particle with a factor and aggregate
them. Currently, these factors are built from combinations of
constants in the terminal set.

This behavior opens space for future research. Multi-gene
GP is a reliable approach to aggregate partial GP solutions
and identify the ideal factors for multiplication with these
solutions. One could consider different linear regression tech-
niques to tackle the problem. Better solutions are expected
compared to the current approach, since it only comprises
a limited number of constants in the primitive set. This
study trained separate GP models to identify the limitations
with decreasing distances between two particles. Eventually,
a single solution applicable to all distances is desirable. To
this end, we will study GP building blocks more extensively,
i.e. provide additional functions such as spherical harmonics,
which are frequently used in numerical simulations.

REFERENCES

[1] G. G. Stokes, “On the effect of the internal friction of fluids on the
motion of pendulums,” Transactions of the Cambridge Philosophical
Society, vol. 9, p. 8, 1851.

[2] H. Zille, F. Evrard, J. Reuter, S. Mostaghim, and B. van Wachem,
“Assessment of multi-objective and coevolutionary genetic programming
for predicting the stokes flow around a sphere,” in EUROGEN ’21
Proceedings, 2021.

[3] R. Cortez, “The method of regularized stokeslets,” SIAM Journal on
Scientific Computing, vol. 23, no. 4, pp. 1204–1225, 2001.

[4] F. Evrard, F. Denner, and B. van Wachem, “Euler-lagrange modelling of
dilute particle-laden flows with arbitrary particle-size to mesh-spacing
ratio,” Journal of Computational Physics: X, vol. 8, p. 100078, 2020.

[5] E. Rakhmanov, E. Saff, and Y. Zhou, “Minimal discrete energy on the
sphere0.024614,” Mathematical Research Letters, vol. 1, no. 6, pp. 647–
662, 1994.

[6] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
USA: Wiley, 2001.

[7] R. I. Mckay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O’neill,
“Grammar-based genetic programming: a survey,” Genetic Programming
and Evolvable Machines, vol. 11, no. 3-4, pp. 365–396, 2010.

[8] S. Wappler and J. Wegener, “Evolutionary unit testing of object-oriented
software using strongly-typed genetic programming,” in Proceedings of
the 8th Annual Conference on Genetic and Evolutionary Computation,
2006, p. 1925–1932.

[9] D. Li and J. Zhong, “Dimensionally aware multi-objective genetic pro-
gramming for automatic crowd behavior modeling,” ACM Transactions
on Modeling and Computer Simulation, vol. 30, no. 3, pp. 1–24, 2020.

[10] T. McConaghy, P. Palmers, M. Steyaert, and G. G. E. Gielen, “Trustwor-
thy genetic programming-based synthesis of analog circuit topologies
using hierarchical domain-specific building blocks,” IEEE Transactions
on Evolutionary Computation, vol. 15, no. 4, pp. 557–570, 2011.

[11] K. Sastry, U.-M. O’Reilly, D. Goldberg, and D. Hill, Building-Block
Supply in Genetic Programming. Boston, MA: Springer US, 2003, pp.
137–154.

[12] H. Riahi-Madvar, M. Dehghani, A. Seifi, and V. P. Singh, “Pareto
optimal multigene genetic programming for prediction of longitudinal
dispersion coefficient,” Water Resources Management, vol. 33, no. 3, pp.
905–921, 2019.

[13] M.-Y. Liu, W.-x. Huai, Z.-H. Yang, and Y.-h. Zeng, “A genetic
programming-based model for drag coefficient of emergent vegetation in
open channel flows,” Advances in Water Resources, vol. 140, p. 103582,
2020.

[14] A. Danandeh Mehr and E. Kahya, “A pareto-optimal moving average
multigene genetic programming model for daily streamflow prediction,”
Journal of Hydrology, vol. 549, pp. 603–615, 2017.

[15] L. He and D. K. Tafti, “A supervised machine learning approach for
predicting variable drag forces on spherical particles in suspension,”
Powder Technology, vol. 345, pp. 379–389, 2019.

[16] J. Richardson and W. Zaki, “The sedimentation of a suspension of uni-
form spheres under conditions of viscous flow,” Chemical Engineering
Science, vol. 3, no. 2, pp. 65–73, 1954.

[17] S. Tenneti, R. Garg, and S. Subramaniam, “Drag law for monodisperse
gas-solid systems using particle-resolved direct numerical simulation of
flow past fixed assemblies of spheres,” Int. J. Multiphase Flow, vol. 37,
pp. 1072–1092, 2011.

[18] G. Akiki, T. L. Jackson, and S. Balachandar, “Pairwise interac-
tion extended point-particle model for a random array of monodis-
perse spheres,” Journal of Fluid Mechanics, vol. 813, p. 882–928, 2017.

[19] S. Balachandar, W. C. Moore, G. Akiki, and K. Liu, “Toward particle-
resolved accuracy in euler–lagrange simulations of multiphase flow
using machine learning and pairwise interaction extended point-particle
(piep) approximation,” Theoretical and Computational Fluid Dynamics,
vol. 34, no. 4, pp. 401–428, 2020.

[20] G. Akiki, W. Moore, and S. Balachandar, “Pairwise-interaction extended
point-particle model for particle-laden flows,” Journal of Computational
Physics, vol. 351, pp. 329–357, 2017.

[21] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” Journal of
Machine Learning Research, vol. 13, pp. 2171–2175, 2012.

