
Flight of the FINCH
through the Java Wilderness

Michael Orlov and Moshe Sipper
orlovm, sipper@cs.bgu.ac.il

Department of Computer Science
Ben-Gurion University, Israel

2010 HUMIES
July 9, GECCO, Portland

mailto:orlovm@cs.bgu.ac.il?to=sipper@cs.bgu.ac.il&Subject=FINCH

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

2 / 26

GP: Programs or Representations?

“While it is common to describe GP as evolving programs, GP
is not typically used to evolve programs in the familiar
Turing-complete languages humans normally use for software
development. It is instead more common to evolve programs
(or expressions or formulae) in a more constrained and often
domain-specific language.”

A Field Guide to Genetic Programming
[Poli, Langdon, and McPhee, 2008]

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

3 / 26

Our Goals

From programs. . .

Evolve actual programs
written in Java

. . . to software!

Improve (existing) software
written in unrestricted Java

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

4 / 26

FINCH:
Fertile Darwinian Bytecode Harvester

• A system for evolving Java (bytecode).
• Employs a sophisticated compatible crossover operator.
• Always produces correct (compilable) bytecode.
• Which we can deploy directly or decompile back to Java
for perusal.

• All you need: A seed and a wish (= fitness function).
• If the wish is good—even a bad seed will eventually
blossom!

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

5 / 26

Darwinian Software Development

“On two occasions I have been asked, ‘Pray, Mr. Babbage, if
you put into the machine wrong figures, will the right answers
come out?’ I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.”

Charles Babbage

Garbage in—Garbage out. . .

Or maybe not?

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

5 / 26

Darwinian Software Development

“On two occasions I have been asked, ‘Pray, Mr. Babbage, if
you put into the machine wrong figures, will the right answers
come out?’ I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.”

Charles Babbage

Garbage in—Garbage out. . .

Or maybe not?

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

5 / 26

Darwinian Software Development

“On two occasions I have been asked, ‘Pray, Mr. Babbage, if
you put into the machine wrong figures, will the right answers
come out?’ I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.”

Charles Babbage

Garbage in—Garbage out. . .

Or maybe not?

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

6 / 26

Garbage in. . .

Sample seed supplied to FINCH:

class SimpleSymbolicRegression {
Number simpleRegression(Number num) {

double x = num.doubleValue();
double llsq = Math.log(Math.log(x*x));
double dv = x / (x - Math.sin(x));
double worst = Math.exp(dv - llsq);
return Double.valueOf(worst + Math.cos(1));

}

/* Rest of class omitted */
}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

7 / 26

Goody out!

Evolved program computing x4 + x3 + x2 + x :

class SimpleSymbolicRegression_0_7199 {
Number simpleRegression(Number num) {

double d = num.doubleValue();
d = num.doubleValue();
double d1 = d; d = Double.valueOf(d + d * d *

num.doubleValue()).doubleValue();
return Double.valueOf(d +

(d = num.doubleValue()) * num.doubleValue());
}

/* Rest of class unchanged */
}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

8 / 26

. . . and out

Evolved program computing x9 + x8 + · · ·+ x2 + x :

Number simpleRegression(Number num) {
double d = num.doubleValue();
return Double.valueOf(d + (d * (d * (d +

((d = num.doubleValue()) +
(((num.doubleValue() * (d = d) + d) *

d + d) * d + d) * d)
* d) + d) + d) * d);

}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

9 / 26

. . . and out

Evolved program solving Artificial Ant problem:

void step() {
if (foodAhead()) {

move(); right();
}
else {

right(); right();
if (foodAhead())

left();
else {

right(); move();
left();

}
left(); left();

}
}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

10 / 26

. . . and out

Evolved program solving Intertwined Spirals problem:

uses sign of sin
(9

4π
2√x2 + y2 − tan−1 y

x
)

boolean isFirst(double x, double y) {
double a, b, c, e;
a = Math.hypot(x, y); e = y;
c = Math.atan2(y, b = x) +

-(b = Math.atan2(a, -a))
* (c = a + a) * (b + (c = b));

e = -b * Math.sin(c);
if (e < -0.0056126487018762772) {

b = Math.atan2(a, -a);
b = Math.atan2(a * c + b, x); b = x;
return false;

}
else
return true;

}

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

11 / 26

Tree GP

Compare with Koza’s best-of-run:

(sin (iflte (iflte (+ Y Y) (+ X Y) (- X Y) (+ Y Y)) (* X X)
(sin (iflte (% Y Y) (% (sin (sin (% Y 0.30400002))) X) (% Y
0.30400002) (iflte (iflte (% (sin (% (% Y (+ X Y))
0.30400002)) (+ X Y)) (% X -0.10399997) (- X Y) (* (+
-0.12499994 -0.15999997) (- X Y))) 0.30400002 (sin (sin
(iflte (% (sin (% (% Y 0.30400002) 0.30400002)) (+ X Y))
(% (sin Y) Y) (sin (sin (sin (% (sin X) (+ -0.12499994
-0.15999997))))) (% (+ (+ X Y) (+ Y Y)) 0.30400002))))
(+ (+ X Y) (+ Y Y))))) (sin (iflte (iflte Y (+ X Y) (- X Y)
(+ Y Y)) (* X X) (sin (iflte (% Y Y) (% (sin (sin (% Y
0.30400002))) X) (% Y 0.30400002) (sin (sin (iflte (iflte
(sin (% (sin X) (+ -0.12499994 -0.15999997))) (% X
-0.10399997) (- X Y) (+ X Y)) (sin (% (sin X) (+
-0.12499994 -0.15999997))) (sin (sin (% (sin X) (+
-0.12499994 -0.15999997)))) (+ (+ X Y) (+ Y Y))))))) (%
Y 0.30400002)))))

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

12 / 26

Tree GP vs. FINCH

And compare the phenotypes:

Koza’s: Ours:

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

13 / 26

. . . and out

Evolved program computing sum of values in array:
(loop solution)

int sumlist(int list[]) {
int sum = 0;
int size = list.length;
for (int tmp = 0; tmp < list.length; tmp++) {

size = tmp;
sum = sum - (0 - list[tmp]);

}
return sum;

}

Yes, FINCH can handle loops. . .

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

13 / 26

. . . and out

Evolved program computing sum of values in array:
(List solution)
int sumlist(List list) {

int sum = 0;
int size = list.size();
for (Iterator iterator = list.iterator();

iterator.hasNext();) {
int tmp = ((Integer) iterator.next())

.intValue();
tmp = tmp + sum;
if (tmp == list.size() + sum)

sum = tmp;
sum = tmp;

}
return sum;

}

Yes, FINCH can handle Java 5.0 constructs. . .

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

13 / 26

. . . and out

Evolved program computing sum of values in array:
(recursive solution)

int sumlistrec(List list) {
int sum = 0;
if (list.isEmpty())

sum = sum;
else

sum += ((Integer)list.get(0)).intValue() +
sumlistrec(list.subList(1, list.size()));

return sum;
}

Yes, FINCH can handle recursion. . .

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

14 / 26

Enough Garbage In!

• We can turn bad (seeds) into good (programs)

• Input: Good program implementing sophisticated
Minimax algorithm to play Tic-Tac-Toe.

• Problem: Programmer made a small, insidious, very
hard-to-detect error.

• Can FINCH save the day?

• We implemented four errors:
All were easily swept away by FINCH.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

14 / 26

Enough Garbage In!

• We can turn bad (seeds) into good (programs)

• Input: Good program implementing sophisticated
Minimax algorithm to play Tic-Tac-Toe.

• Problem: Programmer made a small, insidious, very
hard-to-detect error.

• Can FINCH save the day?

• We implemented four errors:
All were easily swept away by FINCH.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

14 / 26

Enough Garbage In!

• We can turn bad (seeds) into good (programs)

• Input: Good program implementing sophisticated
Minimax algorithm to play Tic-Tac-Toe.

• Problem: Programmer made a small, insidious, very
hard-to-detect error.

• Can FINCH save the day?

• We implemented four errors:
All were easily swept away by FINCH.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

15 / 26

The Insidious Errors

1 int negamaxAB(TicTacToeBoard board,
2 int alpha, int beta, boolean save) {
3 Position[] free = getFreeCells(board);
4 // utility is derived from the number of free cells left
5 if (board.getWinner() != null)
6 alpha = utility(board, free);
7 else if (free.length == 0)
8 alpha = 0 save = false ;

9 else for (Position move: free) {
10 TicTacToeBoard copy = board.clone();
11 copy.play(move.row(), move.col(),
12 copy.getTurn());

13 int utility = - (removed) negamaxAB(copy,

14 -beta, -alpha, false save);
15 if (utility > alpha) {
16 alpha = utility;
17 if (save)
18 // save the move into a class instance field
19 chosenMove = move;
20 if (alpha >= beta beta >= alpha)

21 break;
22 }
23 }
24 return alpha;
25 }

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

16 / 26

Result is Human-Competitive

(G) The result solves a problem of indisputable difficulty
in its field.

• There is a widely recognized need for automatic
improvement of existing software.

• Improving software is indisputably difficult (G)
(Did anybody say ‘difficult’? Merely ‘difficult’?)

• No technique previously existed that allowed the
automatic improvement of unrestricted software written
in a widely used, real-life programming language.

• And along came FINCH. . .

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

17 / 26

Result is Human-Competitive (cont’d)

(D) The result is publishable in its own right as a new
scientific result independent of the fact that the result
was mechanically created.

• The evolved programs are fully functional Java programs
solving hard problems.

• The FINCH system itself is of indisputable interest to the
software industry at large.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

18 / 26

Why is Result Best?

• Our work aims at one of the hardest problems known to
(and created by) man: software design.

• Given the size and importance of the software industry,
any step taken toward automating the programmer’s task
could impact society in ways far outreaching the
boundaries of evolutionary computation.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

19 / 26

Why is Result Best? (cont’d)

• Very little work within the field of search-based software
engineering tackles the issue of evolving actual software
written in mainstream languages.

• The work of Weimer and Forrest on automatically evolving
patches to fix buggy C programs is probably the most
worthy of mention.

• However, their system is currently limited to evolving
small patches in predetermined source locations.

• Works when fixing bugs with known positive and negative
test cases, which afford the ability to focus the search
using standard software engineering techniques.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

20 / 26

Why is Result Best? (cont’d)

• We have taken another major step forward.

• Ours is the first approach that allows viable evolution of
extant, real-world software in a mainstream programming
language (Java is one of the 2 most popular programming
languages).

• Moreover, FINCH is not limited to Java:
Scala, Groovy, Jython, Kawa, JavaFX Script, Clojure.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

21 / 26

Why is Result Best? (cont’d)

• “Judiciously used, digital evolution can substantially
augment the cognitive limits of human designers and can
find novel (possibly counterintuitive) solutions to complex
. . . system design problems.”

(Recent study by US DoD on futuristic systems)

• FINCH represents a significant step on the (long) path
toward full-fledged Darwinian Software Development.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

21 / 26

Why is Result Best? (cont’d)

• “Judiciously used, digital evolution can substantially
augment the cognitive limits of human designers and can
find novel (possibly counterintuitive) solutions to complex
. . . system design problems.”

(Recent study by US DoD on futuristic systems)

• FINCH represents a significant step on the (long) path
toward full-fledged Darwinian Software Development.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

22 / 26

1950

“I believe that in about fifty years’ time it will be possible, to
programme computers . . . to make them play the imitation
game so well that an average interrogator will not have more
than 70 per cent. chance of making the right identification
after five minutes of questioning.”

A. M. Turing, “Computing machinery and intelligence,”
Mind, 59(236), 433-460, Oct. 1950

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

23 / 26

2010

“. . . despite its current widespread use, there was, within living
memory, equal skepticism about whether compiled code could
be trusted. If a similar change of attitude to evolved code
occurs over time . . . ”

M. Harman, “Automated patching techniques: The fix is in,”
Communications of the ACM, 53(5), 108, May 2010

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

24 / 26

2060

We believe that in about fifty years’ time it will be possible, to
program computers. . . by means of evolution.

Not merely possible but indeed prevalent.

Turing was wrong—will we be?

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

24 / 26

2060

We believe that in about fifty years’ time it will be possible, to
program computers. . . by means of evolution.

Not merely possible but indeed prevalent.

Turing was wrong—will we be?

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

24 / 26

2060

We believe that in about fifty years’ time it will be possible, to
program computers. . . by means of evolution.

Not merely possible but indeed prevalent.

Turing was wrong—will we be?

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

25 / 26

2060 (cont’d)

To find out, please register for GECCO 2060.

Flight of the
Finch through
the Java
Wilderness

Michael Orlov
Moshe Sipper

26 / 26

References

M. Orlov and M. Sipper. Genetic programming in the wild:
Evolving unrestricted bytecode. Proceedings of GECCO
2009.
M. Orlov and M. Sipper. Flight of the FINCH through the
Java wilderness. IEEE Transactions on Evolutionary
Computation, 2010 (in press).

