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ABSTRACT

Foster the mechanical design of artificial vision requires a delicate
balance between high-level analytical methods and the discovery
through metaheuristics of near-optimal functions working towards
complex visual problems. Evolutionary computation and swarm
intelligence have developed strategies that automatically design
meaningful deep convolutional neural network architectures to
create better image classifiers. However, these architectures have
not surpassed hand-craft models working with outdated problems
with datasets of icon images. Nowadays, recent concerns about
deep convolutional neural networks to adversarial attacks in the
form of modifications to the input image can manipulate their
output to make them untrustworthy. Brain programming is a hyper-
heuristic whose aim is to work at a higher level of abstraction
to develop automatically artificial visual cortex algorithms for a
problem domain like image classification. This work’s primary goal
is to employ brain programming to design an artificial visual cortex
to produce accurate and robust image classifiers in two problems.
We analyze the final models designed by brain programming with
the assumption of fooling the system using two adversarial attacks.
In both experiments, brain programming constructed artificial brain
models capable of competing with hand-crafted deep convolutional
neural networks without any influence in the predictions when an
adversarial attack is present.
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1 INTRODUCTION

Deep Learning with Deep Convolutional Neural Networks (DCNN)
has been among the most popular and successful methods for solv-
ing image classification problems [4, 34]. Their architecture permits
finding the best model parameters that fit the data for solving im-
age classification problems. Evolutionary Computation (EC) and
Swarm Intelligence (SI) have mainly contributed in two manners: 1)
optimizing feature selection and 2) optimizing DCNN architectures.
In this manner, researchers from EC and SI have developed strate-
gies that automatically design meaningful DCNN architectures to
develop new structures that improve their performance [3]. Recent
approaches summarized in [16], have also explored hybridization
of swarm and evolutionary computation algorithms by aggregating
hyper-parameters’ optimization during training.

Automatically design image classifiers have dealt with the exten-
sive computational resources needed in the optimization process
[3]. Also, the vast search space usually is constrained based on
problem knowledge to reduce the exploration. So, it is crucial to
pursue novel ways to generate better image classifiers to a given in-
stance of the problem to produce solutions that solve more generic
problems. However, DCCN architectures discovered by EC and SI
have not exceeded hand-craft models, and they are still working
with outdated problems with classical datasets [11, 25, 26]. More-
over, recent security concerns about the vulnerability of DCNN
to Adversarial Attacks (AA) in slight modifications to the input
image almost invisible to human vision make their predictions un-
trustworthy. Nevertheless, despite significant efforts to solve this
problem, attacks have become more complex and challenging to
defend [1].

Conversely to DCNN are brain-inspired computational models
of the visual system, which pursue the imitation/understanding
of the visual information processing that occurs in the brain. In
brain-inspired computing, some authors studying the visual cortex
refers to the natural process that occurs along the visual pathway
according to the brain’s neurological ventral-dorsal model [5] and
the feature integration theory [29] to describe the process of visual
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information to classify an image. The Artificial Visual Cortex (AVC)
has a defined hierarchical structure inspired by the human visual
cortex, thus simplifying the initial search space while using a set
of atomic functions to extract the images’ discriminant character-
istics [18]. It is a flexible algorithmic framework that generates
specific classification models due to the balance between the fix
template method defining invariant parts of the program which
are not subject to variation and the parts which can be adapted.
The whole algorithm configuration provides the seeds to start the
design from components of existing algorithms rather than search
for algorithms with randomly initialized programs. This methodol-
ogy leverage the designer to create computational models of image
classification while using genetic programming as the search mech-
anism based on elementary functions and a hierarchical template
design [8].

Brain programming (BP) is a hyper-heuristic capable of automat-
ically design new algorithms by configuring functions to optimize
complex models of the AVC by adjusting the operations within
this intricate structure. Also, it uses the concept of composition of
functions to extract features from images. Thus, BP differs from
the data-driven models using a function-driven approach to ex-
tract and combine the relevant information to produce solutions
that solve more generic problems. This metaheuristic approach
proposes an evolutionary framework based on a template design
that balances analysis and synthesis for developing automated im-
age classifiers. The analytical part resides on the template where
high-level processes are defined to secure concepts like invariance
and hierarchical visual processing. The synthetic part is charged
with heuristic discoveries through the application of genetic pro-
gramming as the search method.

We employed BP to automatically improve the AVC structure
to design accurate and robust image classifiers. The main goal of
this work is to demonstrate the robustness of the AVC models’
solutions applicable in two different image classification problems
(Face Recognition and Art Media Categorization). We analyzed the
behavior of the AVCs designed by BP with the assumption of an
attempt to fool the system using AA, and we compared the perfor-
mance and the vulnerability with a hand-crafted state-of-the-art
DCNN (ResNet). The comparison is made because the automati-
cally designed DCNN architectures are still not suitable for image
classification problems such as Face Recognition and Art Media
Categorization.

This paper is organized as follows. First, we outline the related
work briefly to highlight the key ideas. Next, we present the se-
curity problem in deep learning, and then we outline the brain
programming methodology. Later, we introduce two adversarial at-
tacks and two different image classification problems. Next, we test
the accuracy and robustness of image classifiers designed with BP,
which has not been explored in the state-of-the-art evolutionary al-
gorithms (EAs). Thus, this work intends to highlight the differences
between such methods, opening the possibility to use EAs in the
image classification pipeline to secure the predictions against ad-
versarial attacks. Finally, we finish the paper with some conclusions
and some ideas for future work.
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Figure 1: Illustration of the AVC model.

2 RELATED WORK

The algorithms’ mechanical design aims to automatically develop
faster/better metaheuristics to a problem domain like image clas-
sification. The search for solutions usually starts from scratch, in-
creasing the computational cost. The idea to alleviate this issue
is to advance the design by providing existing components of al-
gorithms or a complete algorithm structure—template method-to
adapt/discover novel heuristics. EC and S have developed strategies
to automatically design DCNN architectures for image classifica-
tion [3]. In [26], the authors use genetic algorithms for evolving
DCNN architectures and connection values to address image classi-
fication problems. Authors from [11] employed a particle swarm
optimization algorithm capable of automatically designing DCNN
architectures for image classification with fast convergence. In [25],
it is proposed to automatically evolve DCNN architectures by using
a genetic algorithm based on ResNet[7] and DenseNet[9] blocks.
However, these works are still working with outdated problems
with classical datasets such as MNIST, MNIST-Fashion, CIFAR10,
and CIFAR100, among other datasets with icon images. They have
fallen short to be on par with hand-craft DCNN architectures.

The primary trend is to focus the design strategy on hand-crafted
DCNN as a template method adapting it to a classification problem
using transfer learning [28, 30]. For example, DCNN has achieved
exemplary results in popular databases for face recognition, even
some of them were pretrained for generic object recognition [7,
24, 27]. Also, pre-train DCNN models (AlexNet, VGG, GoogLeNet,
ResNet, DenseNet) have been used to recognize basic artistic media
from artworks [32]. They obtained comparable results with that of
trained humans.

However, despite the progress made on evolutionary computa-
tion to build better image classifiers, an attempt to fool the system
has not been considered in the mechanical design of image clas-
sification algorithms even though AA is a severe threat to DCNN
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[1, 14, 31]. Face recognition systems demand reliability and secu-
rity in their predictions because they are one of the most popular
biometric used for person recognition because of their contactless
and non-invasive procedure[33]. In museums and galleries, there
are critical areas such as artist identification and forgery detec-
tion, where the confidence of the prediction must not depend on a
system that an imperceptible perturbation can manipulate. This cat-
astrophic scenario could lead to forgeries circulating on the market
or be misattributed to a specific artist [20].

3 PROBLEM DESCRIPTION

Adversarial attacks usually are established as constraint optimiza-
tion problems. For example, let x be the input image which is clas-
sified as f(x), where f is the target image classifier. The objective
is to find a perturbation € such that f(x +¢€) predicts yr # Yoriginal-
The perturbation € is limited to be as imperceptible as possible with
maximum modification constraint L measured by the length of
vector €. For targeted attack, y; is an specified target class, and for
non targeted attack, y; is not specified. Therefore, targeted attacks
find an optimal solution e* for the following equation:

min  J(f(x+€), 1)

1
st. |lel| <L M

It minimizes the cost function J over the target class y;. In
a non-targeted attack, the goal is to find a perturbation e* that
maximizes the cost function’s values J over the original predicted
class Yorigingl- That means to minimize the probability of the class
Yoriginal> and the optimization is defined as follows:

max J(f(x+e), yoriginal)

st. |lell <L

@)

These attacks pose a serious threat to image classification se-
curity using deep neural networks. A simple description of this
area’s problem is that the data resolution is limited to 1/255 as most
digital images use the 8-bit per channel. Then, if every element of a
perturbation e is smaller than the data resolution, the linear model
will predict different an input x than to an adversarial example
Xe = X+E.

It is expected for the classifier to predict x and x, as the same
class meanwhile ||e|| < L, where L is too small to be discarded.
However, if we consider the dot product of the neural network
weights w € RMXN with the adversarial example wTxe = wTx +
wTe, the activation will grow by wTe. Thus, the perturbation can
be imperceptible in the input but it obtain big changes to the output
because the activation can grow linearly with n for e.

The structure of DCNN constructs a mapping that uses pixels
to analyze the image’s content and assign the class in the data
(y,x) given by the dataset, which behaves extremely linear to be
unaffected to adversarial examples. This mapping has a particular
form of nested functions to make a deep structure that does the hard
work of computing complicated math to find patterns throughout
the image pixels; each nested function is called a layer. We outline
an example of these structures on the following equation

y = foenn (%) = fi(f2(f1(%))) (3)
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Figure 2: These images illustrate adversarial examples com-
puted with the FGSM. The first column shows clean images
from each class, and the subsequent columns show illustra-
tions from adversarial examples using ResNet with a scale
factor of € = 2, 4, 8,16, 32.

where f; and f are vector functions of the following form:
fi(z) = gi(Wiz+by)

with [ denoting the index of the layer. g is the activation func-
tion, and the model parameters of W; the weights and b; the bias
vector of the [ layer. DCNN find the best model parameters for all
the layers w that fits the data x to the label y, nonetheless every
perturbation, as easy or difficult as it is to compute it affects the
network. Additionally, adversarial examples often affect several
models, whether the models have different architectures or are
training with different datasets. They only need to be set up for the
same task to be affected.

4 BRAIN PROGRAMMING

BP is a hyper-heuristic capable of automatically design new algo-
rithms using the AVC model (see Figure 1) for solving computer
vision problems [8, 18, 19]. This methodology extracts characteris-
tics from images through a hierarchical structure inspired by the
brain’s functioning. BP proposes a multi-tree representation for
individuals. The main goal is to obtain a set of evolutionary visual
operators (EVOs), also called visual operators (VOs), embedded
within the hierarchical structure of the AVC. This section briefly
described BP, but further details are explained in [8, 18, 19].

4.1 Data Modeling in Brain Programming

BP proposes to solve the image classification problem from the
standpoint of data modeling through Genetic Programming. BP fits
the data by finding elemental functions that perform a task instead
of conventional approaches to finding the best-fit parameters. In
this manner, BP defines the solution to the image classification
problem as follows:
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Table 1: Functions and terminal list for the VO.

Ibarra-Vazquez et al.

Dimension Functions Description Terminals Description
VOo A+B,A-B,AXB,A/B,k+A ,k—A, Arithmetic functions between images or I, Iy, I, Ic, Im, Iy, Elements of I o, and its
k x A, Alk, |A|, |A + B|, |A — B|, constants k, absolute values, transcenden- Iy, Ip, Is, I, Dx(Iy), derivatives
log(A), (A)?, VA, round(A), |A|, tal functions, square, square root, round- Dy (Iy), Dy(IL),
[Al,inf(A, B), sup(A, B), Gs=1(A), ing, infimum, supremum, convolution Dyy(Ix), Dxy(Lx)
Gg=2(A), Dx(A), Dy(A), thr(A) with a Gaussian filter, derivatives, and
threshold applied to images A and/or B
VOc¢ A+ B, A- B, Ax B, A/B, log(A), Arithmetic and transcendental functions, Ir, I;, Ip, I, Im, Elements of I.4,, and color
exp(A), (A)%, VA, (A)C, thr(A) square, square root, image complement, Iy, I, I, I, I, opponencies: red-green and
rounding and threshold applied to images  Opy—g(I),0pp_,(I)  blue-yellow
A and/or B
VOg A+ B, A- B, AX B, A/B, k + A, Arithmetic functions between images or Iy, Iy, I, I, Im, Iy, I, Elements of I, o,
k — A, kxA, Ak, round(A), |A], constants k, rounding, threshold, and Iy, I, I,
[A], thr(A), A®SE;, A® SEs, A® morphological operators: dilation,erosion,
SEgm, A©SE;, AS SEs, AS SEg,,, open, close with disk, square, and diamond
A®©SEs, A® SEs, Sk(A), Perim(A), structural element; skeleton, hit or miss,
A®SE;, A®SE;s, A®SE gy, That (A),  bottom-hat, top-hat
Bpar (A)
VOmm A+B,A—-B,AX B, A/B, |A+B|, Arithmetic functions between images or CMy, Dy (CMy), Conspicuity Maps and its
|A—BJ,log(A), (A)2, VA, Go=1(A), constants k, absolute values, transcenden- Dy (CMy), derivatives
Gg=2(A), Dx(A), Dy(A) tal functions, square, square root, convolu- Dy(CMd),
tion with a Gaussian filter, and derivatives  Dyy(CMg),
ny(CMd)

y = min(f(x,F,T,a)) , (4)
where (y, x) are the label and the image, respectively, given by the
dataset. F represents the set of functions. T defines the terminal
set, and a are the parameters controlling the algorithm. Thus, the
technique requires two things: (1) a method of feature extraction
and (2) a suitable criterion Q for the minimization.

BP is the algorithm for looking at an optimal feature extraction
from the images for each visual operator embedded into the AVC
by tuning (F,T,a). In order to set up BP to image classification
tasks, the criterion for the minimization Q uses a support vector
machine (SVM) to learn a mapping f(x) that associates the image
representation x; to labels y;. BP outlines the recognition problem
in terms of a binary classification to find a decision boundary that
best separates the class elements.

4.2 Evolving an Artificial Visual Cortex

BP uses an evolutionary paradigm to evolve a population of individ-
uals represented by the AVC template (see Figure 1). Each contains
a set of syntactic trees defining the VOs that constructs the AVC
structure to extract features from color images. This procedure
gets a descriptor vector that encodes salient characteristics from
the image. Then, we apply an SVM to calculate the classification
accuracy for a given training image database to obtain individual
fitness.

4.3 Structure Representation

Individuals within the population contain a variable number of
syntactic trees, ranging from 4 to 12, one for each evolutionary
visual operator (VOg, VOc, VOs, VOy) regarding orientation, color,
shape, and intensity; and at least one tree to merge the visual maps
produced and generated with the Mental Maps (MM), see Table 1.
All atomic functions within each VO are defined according to expert
knowledge to highlight characteristics related to the respective

Table 2: Parameters applied in the BP algorithm.

Parameters Description

Generations 30

Initial Population 30

Crossover at chromosome level 0.4

Crossover at gene level 0.4

Mutation at chromosome level 0.1

Mutation at gene level 0.1

Tree depth Dynamic depth selection

Dynamic max depth 7 levels

Real max depth 9 levels

Selection Tournament with lexicographic
parsimony pressure

Survival Elitism

feature dimension and updated through genetic operations. Details
about these visual operators’ usage are explained in detail in [2, 8,
18].

4.4 Visual Maps

Each input image is transformed to build the set I.o1o, = {Ir, Iy,
Iy, Ie, I, Iy, I, In, I, I}, where each element corresponds to
the color components of the RGB (red, green, blue), CMYK (Cyan,
Magenta, Yellow, and black) and HSV (Hue, Saturation, and Value)
color spaces. Elements on I, are the inputs to four VOs defined
by each individual. It is important to note that each solution in the
population should be understood as a complete system and not only
as a list of tree-based programs. Individuals represent a possible
configuration for feature extraction that describes input images
and are optimized through the evolutionary process. Each VO is a
function applied to the input image to extract specific features from
it, along with information streams of color, orientation, shape, and
intensity; each of these properties is called a dimension. The output
to VO is an image called Visual Map (VM) for each dimension.
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4.5 Conspicuity Maps

The following process is the center-surround process; it efficiently
combines the information from the VMs and helps detect scale
invariance in each of the dimensions. This process is performed
by applying a Gaussian smoothing over the VM at nine scales;
this processing reduces the visual map’s size by half on each level
forming a pyramid. Subsequently, the six levels of the pyramid
are extracted and combined. Since the levels have different sizes,
each level is normalized and scaled to the visual map’s dimension
using polynomial interpolation. This technique emulates the center-
surround process of the biological system. After extracting features,
the brain receives stimuli from the vision center and compares
it with the receptive field’s surrounding information. The goal is
to process the images so that the results are independent of scale
changes. The entire process ensures that the image regions are
responding to the indicated area. This process is carried out for
each characteristic dimension; the results are called Conspicuity
Maps (CM), focusing only on the searched object by highlighting
the most salient features.

4.6 Mental Maps

After obtaining the most saliency features, the next stage along the
AVC is to compute the Mental Maps (MMs) to define a descriptor
vector used as input to a classifier for categorization purposes. The
information from CMs is synthesized to build the set of MMs, which
discriminates unwanted information.

The AVC model uses a function set to extract the images’ dis-
criminant characteristics; it uses a functional approach. Thus, a set
of k VOs is applied to the CMs for the construction of the MMs.
These VOs correspond to the remaining part of the individual that
has not been used. Unlike the operators used for the VMs, the oper-
ators’ whole set is the same for all the dimensions. These operators
filter the visual information and extract the information that char-
acterizes the object of interest. Equation (5) computes the MMs for
each dimension, where d is the dimension, and j represents the set
VOmm; cardinality.

J
MMy = )" VO, (CMy). %)
i=1

4.7 Fitness Function

The next step in the model is constructing the image descriptor
vector (DV), where the method concatenates the four MMs and
uses a max operation to extract the n highest values. Once it is
obtained the descriptor vectors from all the images in the database,
the method trains an SVM. The classification score obtained by the
SVM indicates the fitness of the individual.

4.8 Initialization, Evolutionary Process, and
Solution Designation

Once it is defined the AVC structure from each individual, the pa-
rameters of the evolutionary process of BP are set as Table 2 and
evaluated with the image database. A random initial population is
then created using a ramped half-and-half technique, which selects
half of the individuals with the grow method and half with the
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Figure 3: These images illustrate adversarial examples com-
puted with the facial accessories perturbations. The first
column shows the clean face images, the second column
presents the precomputed ResNet glasses frame, and the
third column shows the resulting adversarial examples.

Table 3: Dataset construction from CelebA images.

Class training validation testing
Faces 1000 300 800
Background 1000 300 800

full method. After the first generation is evaluated, individuals are
selected from the population with a probability based on fitness
to participate in the genetic recombination, and the best individ-
ual is retained for further processing. The new individual of the
population is created from the selected individual by applying ge-
netic operators. Like genetic algorithms, BP executes the crossover
between two selected parents at the chromosome level using a "cut-
and-splice" crossover. Thus, all data beyond the selected crossover
point is swapped between both parents A and B. The result of
applying a crossover at the gene level is performed by randomly
selecting two subtree crossover points between both parents. The
selected genes are swapped with the corresponding subtree in the
other parent. The chromosome level mutation leads to selecting
a given parent’s random gene to replace such substructure with
a new randomly mutated gene. The mutation at the gene level is
calculated by applying a subtree mutation to a probabilistically
selected gene; the subtree after that point is removed and replaced
with a new subtree.

Finally, the evolutionary process is terminated until one of these
two conditions is reached: (1) an acceptable classification rate, or
(2) the total number of generations. Thus, the evolutionary process
reaches an optimum population that contains the best solution to
the problem.

4.9 Hands-on Artificial Evolution

The use of random principles is overused in evolutionary com-
putation. Thus, Olague and Chan-Ley adapted a methodology to
avoid the unnecessary application of arbitrary or unplanned solu-
tions within an algorithm to advance towards a more goal-oriented
methodology [17]. It is not feasible to leave a methodology to dis-
cover the best solution when they have complex structures, but
helping it with previous discoveries will guide the search in a better
direction. Hence, the idea was to use the best solutions discovered
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Table 4: Total number of images per class obtained from Kag-
gle and Wikiart Databases

Drawings Engraving Engraving Painting IconographySculpture Caltech

gray color Back-

scale ground
Train 553 426 30 1021 1038 868 233
Validation 553 284 19 1021 1038 868 233
Wikiart 204 695 1167 2089 251 116 233
Wikiart 136

Land-
scapes

during previous searches as the initial population to set a new
experiment to find a better solution.

Brain programming is a highly demanding computational para-
digm. A balance should be found to create programs that can solve
non-trivial problems within the state-of-the-art in a reasonable
amount of time. The idea is to continue the evolution from the best
local minimum discovered so far. The proposed technique signifi-
cantly improves the performance of previous results. The idea of
hands-on evolution works for computationally demanding prob-
lems. It is a simple strategy that saves computational time because
this kind of results cannot be obtained by simply continuing the
random initial population’s approach.

5 EXPERIMENTS

Reliable predictions are a highly valuable characteristic regard-
ing face recognition system development following security and
confidence of the recognition. We propose the assumption of an at-
tempt to fool the system and highlight the differences between the
renowned DCNN who has performed well in object and face recog-
nition (ResNet [7]) due to automatically designed DCNN architec-
tures are still not suitable for image classification problems beyond
icon images, and an Evolutionary Paradigm (BP) who has obtained
comparable results with AlexNet[12]. We considering performance
and security against adversarial attacks in the most straightforward
face recognition and artwork classification experiments. We em-
ployed classification accuracy as a measure of performance for the
classifiers, which is simply the rate of correct classifications given
by the following formula:

N
1
Accuracy = N Z d(yn, yn)s (6)
n=1

where N is the total of test images, yj, is the predicted label for the
image n, yy is the original label for the image n, and d(x,y) = 1 if
x = y and 0 otherwise. We consider the training, validation, and
testing stages. The aim is to emulate a real-world scenario where the
proposed models consider the standard benchmark procedures. Ad-
ditionally, we analyze two AA threats to evade recognition. Further
experimentation about this study can be found in [10].

5.1 Adversarial Attacks

Adversarial attacks are classified depending on the model’s available
information and the desired attack to predict a specific class. Hence,
we choose two untargeted attacks: the Fast Gradient Sign Method,
which is the most widely used method for computing adversarial
examples given an input image due to its easy implementation, and
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Figure 4: Fitness evolution progress for the best solution dur-
ing the validation stage of BP. Each plot represents one of
the 15 runs.

the facial accessories perturbations, which are physically realizable
and inconspicuous pair of eyeglass frames to evade recognition. We
briefly introduce them in the following paragraphs.

5.1.1 Fast Gradient Sign Method. The FGSM introduced in [6],
proposes to increase the loss of the classifier by solving the follow-
ing equation: p = € sign(VJ(6,x,y;)), where VJ() computes the
gradient of the cost function around the current value of the model
parameters 6 with the respect to the image x and the target label y;.
sign() denotes the sign function, which ensures that the magnitude
of the loss is maximized and € is a small scalar value that restricts
the norm Ly, of the perturbation.

The perturbations generated by FGSM take advantage of the
linearity of DCNN in the higher dimensional space to make the
model misclassify the image. The implication of the DCNN’ linearity
discovered by FSGM is that exists transferability between models.
Authors in [13] reported that with the ImageNet dataset, the top-1
error rate using the perturbations generated by FGSM is around
63-69% for € € [2,32]. Figure 2 shows example images from the
FGSM.

5.1.2  Facial Accessories Perturbations. The Facial Accessories
Perturbations infer that the attack is made with the targeted model’s
knowledge to evade the recognition [23]. In this manner, facial
accessories are used to perform the attacks, which in this case
are eyeglasses frames. The advantage of facial accessories is that
they can be easily realizable in real-world conditions. Furthermore,
eyeglasses are an everyday facial accessory that is natural for people
to wear, helping the attacks be feasible.

Hence, a set of eyeglasses frames is employed to physically real-
ize the attack, ensuring that the perturbation effectively misclas-
sifies more than one image. In order to find a perturbation that
performs the attack, the following optimization problem needs a
solution:

mrin Z —softmaxloss(f(x +r),cx), (7)

xeX
where the perturbation r would maximize the softmaxloss(f(x +
r), ¢x) value to minimize the probability of the class cx. To guarantee
the generality of perturbations, we need to look for complex models
that can cause any image in a set of inputs to be misclassified. Hence,
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Table 5: Performance of the best individuals of BP in each run.

Run 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Training  0.7175 0.7705 0.7810 0.7620 0.8925 0.7700 0.7165 0.7605 0.8420 0.7800 0.8065 0.7840 0.7195 0.7180 0.7500
Validation 0.7617 0.7833 0.8183 0.7850 0.9033 0.7833 0.7733 0.7700 0.8133 0.7867 0.7867 0.7833 0.7617 0.7583 0.7667

Table 6: Results obtained using the ResNet eyeglass attack.
Each method presents its classification accuracy for train-
ing, validation, and testing, and the adversarial examples
using the pre-computed glasses from ResNet. The third row
present results of a two-sample Kolmogorov-Smirnov test
between both methods.

Clean Images ResNet Eyeglasses

train  val test train  val test

BP 94.1 95.67 93.19 943 9433 95.75

ResNet 99.75 99.67 99.94 470 5.67 1.38
h 1 1 1 1 1 1

0.95
0.94

0.93 4
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0.91 /
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Generation
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Figure 5: Fitness evolution progress for the best solution dur-
ing the five runs of the hands-on artificial evolution.

the attack requires a set of images, X, and finds a single perturbation
that optimizes her objective for every image x € X. Figure 3 shows
example images from the eyeglasses frame perturbation.

5.2 Dataset

We use a widely used face recognition dataset named CelebFaces
Attributes (CelebA)[15]. It consists of a large-scale face attributes
dataset with more than 200K celebrity images, each with 40 at-
tribute annotations. The images in this dataset cover significant
pose variations and background clutter. Additionally, it has enor-
mous diversities, large quantities, and rich annotations, including
10,177 identities, 202,599 face images, five landmark locations, 40
binary attributes annotations per image.

As the experiment required a significant number of images, in
Table 3, we provide the number of images for each set of images
for training, validation, and testing stages. Hence, we randomly
construct three sets of images from the CelebA dataset and manu-
ally fine-tune changing images to preserve the face diversity and
front-facing images. Additionally, we use a Multi-task Cascaded
Convolutional Networks (MTCNN) to perform face detection and
alignment using the DeepFace library from [22]. We constructed

the background class from landscape images from the ml5 project
datasets [21].

Regarding the second problem, the training and validation set
of images is obtained from the Kaggle website’s digitized artwork
dataset. This dataset is composed of five categories of art media:
drawing, painting, iconography, engraving, and sculpture. For the
class engraving, there were two different kinds of engravings. Most
of them were engravings with only one color defining the art piece.
The other style was Japanese engravings, which introduce color
to the images. So, the engraving class was split into engraving
grayscale and engraving color. For testing, it is used a standard
database WikiArt, where it was selected the images from the same
categories. Since the Wikiart engraving class is grayscale, the ukiyo-
e class (Japanese engravings) from Wikiart was used as the engrav-
ing color class. The set of images of the category landscapes painted
by renowned artists is added to test the painting class. In Table 4 is
referenced the number of images from each of the datasets.

5.3 Results

In this section, we present and discuss the experimental results
of this work. Firstly, regarding the face recognition problem, we
show in Figure 4 the fitness evolution progress of BP in the training
phase. It is seen that most of the runs converged to approximately
75% of the validation accuracy, two runs achieved around 80%,
and one run obtained approximately 90% (see Table 5). Hence, we
can see that it is not easy to reach satisfactory solutions in the
search space due to the complex structure of the AVC departing
from random individuals, but it was possible to obtain an excellent
individual. Nevertheless, due to the BP’s high computational cost,
it was possible only to execute 15 runs with a mean execution time
of 40.18 hours and a standard deviation of 1.04 hours in a server
with an Intel Xeon Silver 4114 CPU and 32 Gb of RAM.

Therefore, we follow the hands-on artificial evolution strategy
from [17] in which we selected the best two individuals from each
run to construct an initial population to search for new individuals.
Figure 5 shows the fitness evolution progress of five runs from this
strategy. It can be seen the guide from the previous experiments
delivered an increase of up to 5% in the performance. Hence, we
validate the advantage of the hands-on evolution strategy to get out
of local minima, thus helping the methodology to discover better
solutions.

Next, we present in Table 6 the outcome of each model for the
clean images, and when it is applied, the eyeglasses frame perturba-
tion to the training, validation, and testing datasets. Each method
presents its accuracy to each dataset. We observed that ResNet
surpassed BP in all sets of clean images (training, validation, and
testing). However, as we add the eyeglasses frame perturbation
to all sets of face images, the AA’s effect becomes enormous. It is
shown that ResNet completely drops its outstanding performance
as the eyeglasses frame is present in the face images, making almost
every face image in the three datasets evade the recognition.
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Table 7: Results obtained after applying BP and ResNet on the Kaggle Dataset. Each method presents its classification accuracy
for training, validation, and the adversarial examples using the FGSM computed from the validation dataset at € = 2, 4, 8, 16, 32.

Brain Programming ResNet

train | val €=2 |e=4 | e=8 | e=16| €=32 | train | val €=2 |e€=4 |e=8|€e=16 | e=32
Sculpture 93.19 | 93.26 | 92.88 | 92.88 | 92.79 | 92.79 | 92.70 | 100 96.88 | 84.88 | 84.88 | 45.92 | 25.30 19.07
Painting 99.68 | 99.04 | 98.8 98.8 98.56 | 98.64 | 98.56 | 100 97.85 | 86.92 | 86.92 | 43.94 | 31.82 40.75
Engraving gray scale | 89.76 | 92.05 | 91.70 | 91.70 | 92.23 | 92.05 | 91.53 | 100 100 95.58 | 95.58 | 78.98 | 64.49 63.07
Engraving color 98.33 | 97.37 | 97.37 | 97.37 | 97.37 | 97.37 | 97.37 | 95.00 | 100 52.63 | 52.63 | 13.16 | 2.63 21.05
Iconography 92.84 | 91.42 | 91.42 | 91.42 | 9142 | 9142 | 91.42 | 100 98.9 90.24 | 90.24 | 52.01 | 29.03 32.10
Drawings 96.56 | 90.59 | 90.59 | 90.59 | 90.59 | 90.59 | 90.59 | 99.87 | 94.44 | 72.9 72.9 31.04 | 23.41 22.77

Table 8: Results obtained after applying BP and ResNet on the Wikiart Dataset. Each method presents its classification accuracy
for testing and the adversarial examples from the FGSM computed from the test dataset at € = 2,4, 8, 16, 32.

Brain Programming ResNet

test €=2 |e=4 | e=8 | e=16 | € =32 | test €=2 |e=4 |e=8|€e=16|€=32
Sculpture 90.54 | 90.83 | 90.83 | 90.83 | 90.83 | 90.83 | 92.63 | 75.81 | 75.81 | 46.61 | 34.81 | 33.92
Painting 100 95.65 | 95.65 | 95.65 | 95.65 | 95.65 | 94.23 | 64.86 | 64.86 | 15.25 | 13.01 | 15.07
Painting Landscapes | 100 100 100 100 100 100 95.12 | 72.36 | 72.36 | 42.82 | 33.60 | 38.48
Engraving gray scale | 91.55 | 91.97 | 91.97 | 91.80 | 91.97 | 91.80 | 99.83 | 93.22 | 93.22 | 71.55 | 59.41 | 61.09
Engraving color 89.92 | 89.68 | 89.68 | 89.74 | 89.98 | 89.80 | 96.40 | 49.13 | 49.13 | 6.84 | 05.58 | 10.74
Iconography 91.74 | 91.66 | 91.66 | 91.66 | 91.58 | 91.50 | 96.49 | 76.86 | 76.86 | 38.64 | 25.21 | 21.49
Drawings 94.05 | 93.81 | 93.81 | 93.59 | 93.59 | 94.05 | 90.85 | 71.85 | 71.85 | 36.16 | 24.49 | 24.49

The powerful effect of the eyeglasses frame perturbation is seen
on the training dataset, where even though ResNet has identified
the faces images from the training stage, the perturbation makes
them evade the recognition. Meanwhile, BP demonstrated to remain
with a maximum variation of 2.56% of its original score, proving its
security to recognize faces even the images are perturbed with an
eyeglasses frame.

Additionally, Table 6 shows a two-sample Kolmogorov-Smirnov
test between each pair of prediction confidences at each stage be-
tween DCNN and BP. & is one if the test rejects the null hypothesis
at the 5% significance level and 0 otherwise. Hence, all the pre-
diction confidences at each stage between both methods denoted
significant differences by rejecting the null hypothesis.

Tables 7-8 present the results obtained for the artwork catego-
rization problem using the FGSM. Table 7 shows that ResNet has
surpassed BP in almost every class when it is testing using the
validation dataset except for the painting. However, as we add the
perturbations to the validation images, the effect of the adversarial
attacks becomes more notable. It is shown how the performance of
ResNet could deteriorate. In the worst case of the Engraving color
images, there is a drop in performance from 97.37% to 2.63% of clas-
sification accuracy. On the other hand, BP preserves its performance
on all experiments even when we added the strongest perturbation
of € = 32. Hence, if we take a look at the best performances of each
one of the comparisons (bold numbers), BP outperforms ResNet.

In the testing phase (see Table 8), we have that BP obtained no-
table better results for painting, painting landscapes and drawings.
In contrast, ResNet obtained superior performance on engraving
grayscale, engraving color, and iconography. Regarding the sculp-
ture class, BP matches the performance of ResNet with a difference
around 2.09%. Then again, the susceptibility from ResNet to adver-
sarial examples is a big disadvantage. Its performances fall abruptly
in all classes; meanwhile, the BP output remains steady.

6 CONCLUSIONS AND FUTURE WORK

Adversarial attacks are a severe threat to the security of deep convo-
lutional neural networks in image classification. Their performance
can be extremely manipulated with subtle perturbations generated
by FGSM and a physically realizable and inconspicuous eyeglasses
frame to evade recognition. However, the BP which is inspired
by the brain’s behavior demonstated to automatically design AVC
models capable of competing with DCNN and safeguarded the
predictions’ integrity by remaining steady in its performance.

This work innovates by introducing the assumption of an at-
tempt to fool the system and highlighting the differences between a
renowned DCNN (ResNet) and the AVCs generated by BP. We also
considered contrast performance and security against adversarial
attacks in the most explicit face recognition and artwork classifica-
tion problems. ResNet’s performance was extremely weakened in
both experiments, either with such small perturbations from FGSM
and the facial accessories perturbation. In contrast, the AVC models
from BP resist the attempt to mislead the system. Additionally, a
two-sample Kolmogorov-Smirnov test confirmed that DCNN and
the AVC models designed with BP are statistically different. These
results open the possibility of using evolutionary computation in
the face recognition and artwork classification pipeline to protect
the predictions. Furthermore, we validate the hands-on strategy
beyond a pure random initialization that helped get out from the
local minima to discover better solutions.

Finally, future work from these results is considered by increas-
ing the number of DCNN to verify such perturbations’ transfer-
ability effect. Additionally, we want to study the behavior of main-
stream computer vision approaches based on handcrafted features
for face recognition and artwork classification problems.
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