
JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

A Multiobjective Genetic Programming based
Ensemble for Simultaneous Feature Selection and

Classification
Kaustuv Nag and Nikhil R. Pal, Fellow, IEEE

Abstract—We present an integrated algorithm for simultaneous
feature selection and designing of diverse classifiers using a steady
state multiobjective genetic programming, which minimizes three
objectives: false positives, false negatives, and the number of
leaf nodes in the tree. Our method divides a c-class problem
into c binary classification problems. It evolves c sets of genetic
programs to create c ensembles. During mutation operation, our
method exploits the fitness as well as unfitness of features, which
dynamically change with generations with a view to using a set
of highly relevant features with low redundancy. The classifiers
of ith class determine the net belongingness of an unknown data
point to the ith class using a weighted voting scheme, which
makes use of the false positive and false negative mistakes made
on the training data. We test our method on eight microarray and
eleven text data sets with diverse number of classes (from 2 to 44),
large number of features (from 2000 to 49151), and high feature-
to-sample ratio (from 1.03 to 273.1). We compare our method
with a bi-objective genetic programming scheme that does not
use any feature selection and rule size reduction strategy. It
depicts the effectiveness of the proposed feature selection and rule
size reduction schemes. Furthermore, we compare our method
with four classification methods in conjunction with six features
selection algorithms and full feature set. Our scheme performs
the best for 380 out of 474 combinations of data sets, algorithm
and feature selection method.

Index Terms—Classification, ensemble, feature selection, ge-
netic programming.

I. INTRODUCTION

CLASSIFICATION is one of the most important and
frequently encountered problems in data mining and

machine learning. A wide range of real world problems of
different domains can be restated as classification problems.
This includes diagnosis from microarray data, text categoriza-
tion, medical diagnosis, software quality assurance, and many
more. The objective of classification is to take an input vector
x = (x1, ..., xd)

T and to assign it to one of the K classes
Ck, where k = 1, ...,K. A model, called classifier, is used
to solve this problem. The classifier encodes a set of criteria.
Depending upon some features of the data point, these criteria

Manuscript received August 7, 2014; revised November 25, 2014 and
January XX, 2015; accepted January XX, 2015. This paper was recommended
by Associate Editor X. XXXXXXXX.

K. Nag is with the Department of Instrumentation and Electronics
Engineering, Jadavpur University, Kolkata-700098, India, e-mail: kaus-
tuv.nag@gmail.com.

N. R. Pal is with the Electronics and Communication Sciences Unit (ECSU),
Indian Statistical Institute, Calcutta, 700108, India.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier

assign the data point to a particular class [1]. Sometimes,
ensembles of weak classifiers are used to obtain better classi-
fication accuracy. High dimensionality, high feature-to-sample
ratio, and redundant and/or noisy features are some common
sources of difficulties associated with classification.

Feature selection (FS) is a process to select a small but use-
ful subset of features from the set of available features which
is adequate for solving the problem in an efficient manner.
Some available features may be redundant, not useful, and may
cause confusion during the learning phase. These unwanted
features needlessly increase the size and complexity of the
feature space. It increases the computation cost for learning,
and may sometimes be responsible for finding suboptimal
solutions of the problem. This makes FS techniques important
for the analysis of high dimensional data sets, especially when
feature-to-sample ratio is extremely high.

The microarray technology has made it possible to diagnose
different types of cancers directly using the microarray data
sets. One of the main difficulties we face to do this is the high
feature-to-sample ratio of microarray data sets, which makes
FS an important step. Finding keywords as well as contexts
from text data is essential to detect (without human interven-
tion) the context of web pages, emails, or questions/answers
etc. A large set of distinct words in large texts (high number of
features) and many categories of texts (high number of classes)
are the two complicated challenges that we face in this task.

Genetic Programming (GP) [2]–[5] is a biological-evolution
inspired methodology where each solution is a program or
an equation that evolves with one or more objective func-
tions to perform specific tasks. Many authors [6]–[12] have
used GP to design classifiers or to generate rules for binary
classification problems. Some researchers have also attempted
to solve multi-class problems [13]–[17]. GP has also been
used for simultaneous feature selection and classification [18].
In [19], the authors have used GP to create ensembles of
classifiers (genetic programs). They have used these ensembles
to classify microarray data sets. Though GP is a powerful
tool, it has a drawback: without special care each genetic
program (equation) becomes huge. As an effect, they don’t
learn the patterns in the training data. Rather, memorises them.
It also makes genetic programs to be difficult to comprehend.
Besides, though ensembles can perform better than individual
classifiers [20], to obtain better performance, each ensemble
should be diverse and each member of the ensemble should
be accurate [20]–[22]. Without special care, due to lack of
explicit diversity preservation mechanism, the solutions of

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 2

single objective GP may loose diversity.
The objective of this work is to find an embedded method-

ology of simultaneous feature selection and classification
employing GP as a tool. Some of the novel contributions of
our schemes are as follows. We have introduced a new multi-
objective genetic programming (MOGP), called ASMiGP. It
is enriched by several new operators. The mating selection
judicially uses Roulette wheel selection, instead of two tire
multiobjective selection scheme (where domination is pre-
ferred over diversity). The crossover is new and uses male-
female differentiation so that the off-spring is more likely to be
close to the female parent in the genotypic space. The mutation
is restrictive and performs less exploration in the hypothesis
space. Thus, it reduces disruption. For feature nodes, instead
of fitness, mutation uses unfitness to select the mutation point.
Altering the fitness and unfitness of the features in different
stages of learning, we change the objective of searching in
the corresponding stages. We use ASMiGP to learn c diverse
sets of classifiers (equations) minimizing three objectives: false
positive, false negative, and number of leaf nodes of a tree to
restrict the rule size. Throughout the learning process, implicit
FS is performed using MOGP, whereas several filter based
approaches are used in different stages of the procedure. In
this way, we obtain concise rules that involve only simple
arithmetic operations. A weighted negative voting is then
used among the rules of each ensemble. These weights are
determined on the basis of the performance of the binary
classifiers on the training data set. A new measure of weighted
negative voting, called net belongingness, is also introduced.

The proposed method has been tested on eight multi-class
microarray data sets having large number of features, varying
from 2000 to 49151, and high feature-to-sample ratio, varying
from 32.26 to 273.06. It has also been tested on eleven high
dimensional (varying from 3182 to 26832) text data sets,
where the number of classes (categories) vary from 6 to
44. Experimental results reveal that our method can generate
ensembles of classifiers with concise rules that can do a good
job of classification with a small subset of features.

II. BACKGROUND AND RELATED WORKS

This section provides a background to GP, GP-based on-
line feature selection and classification, ensembles, voting
schemes, and concise rule finding. This section also includes
some related works on these topics.

A. A Concise Introduction to GP

GP [2]–[5] is an approach to find programs that can solve
a given problem. GP uses Darwinian principle of “survival of
the fittest”. It evolves the programs using biologically inspired
genetic operations like reproduction, crossover, and mutation
in the search space to find such programs which would be able
to solve the given problem [15], [23], [24]. The overall search
process of traditional single objective GP is quite similar
to traditional population based genetic algorithm. The main
difference among them is in the representation of solutions.
The usual steps of traditional single objective GP can be found
in [2], [15], [24].

There exist several ways to encode a program. Probably, the
most popular one is to use a tree structure [25]–[27] which we
use. In tree-based GP, a program is represented by a tree where
the internal nodes are from a set of functions F , and the leaf
nodes are from a set of terminals T . The subtrees of a function
node are the arguments of that function. The sets F and T
must satisfy the closure and sufficiency properties [2], [15].
To satisfy the closure property, F must be well defined and
closed for any combination of probable arguments that it may
encounter [15]. Again, to satisfy the sufficiency property, F
and T must be able to represent any possible valid solution
of the problem.

B. Feature Selection (FS): Why Embedded?

FS methods are generally divided into two main groups:
filter method and wrapper method [28]. A filter method
does not use any feedback from the classifier or any mining
algorithm. It relies on the general characteristics of data. On
the contrary, to measure the goodness of features, a wrapper
method uses a predetermined classifier or mining algorithm,
which will finally use the selected features. Consequently,
a wrapper method exploits interactions among the subset of
features on which it is tested. But, to find an optimal set of
features, a wrapper method needs to measure performances
on all possible subsets of features. This becomes infeasible
for high dimensional data sets. To overcome this problem,
wrapper methods typically use a heuristic-based forward or
backward selection mechanism [28], which does not evaluate
all possible subsets. So, in this work, we consider embedded
methods, where FS and designing of the classification system
are done together. Embedded methods do not need to evaluate
all possible subsets. Moreover, they can account for interaction
between features and the classifier that is used to solve the
problem [29]. Usually, embedded methods attain comparable
accuracy to wrapper methods as well as comparable efficiency
to filter methods. Though for every classification tool it may
not be easy to define such an integrated mechanism, several
attempts of FS using embedded methods have already been
made. These attempts include using single objective GP [18],
neural networks [30], [31], and support vector machines [32].

C. GP in Classification and Feature Selection (FS)

Many researchers have used GP as a tool for classification
and FS. Some literature on this topic can be found in [1],
[33]. It has been used in both filter [34]–[37] and wrapper
[38]–[41] approaches. GP has also been used for extracting
decision trees [42]–[47]. Among these in [45], [46] MOGP has
been used. GP has also been adopted for learning rule based
systems [7]–[9], [48]–[51]. Both binary classification [6], [7],
[10]–[12], [48] and multi-class [8], [9], [13]–[17], [49]–[51]
classification problems have been addressed by GP based (rule
based) systems. Even, researchers have applied GP based (rule
based) system for binary classification of imbalanced data [52],
[53]. Discriminant functions (DFs) based GP for online FS
and classification has been adopted in [18] to solve multi-
class problems. It is noteworthy that GP has also been used
in feature extraction for edge detection [54].

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 3

Since, in this work, we have used MOGP for learning DFs,
we discuss some relevant GP based systems. In DFs based GP,
each program is a mathematical equation, where the variables
are features of the data. Usually every program is associated
with a class. For every input data point, the program converts
it to a single output value. If this output value is more than
a predefined threshold (usually zero), the point belongs to the
class to which the program is associated with. Thus, a single
equation is enough for binary classification problems. For c-
class problems, there are two common ways. The first and
more frequently used approach is to consider a c-class problem
as c binary classification problems [1]. Thus, c number of DFs
are used to discriminate c classes. The second and less popular
approach is to use a single DF with (c − 1) threshold values
to create c intervals. Each of these intervals is then assigned
to a particular class. For both categories, a common practice
is to evolve a population where each individual encodes either
one (for binary classification problems having single threshold,
or for multi-class problems having multiple thresholds) or
multiple DFs each of which uses a single threshold. Such
encoding schemes have been used in [15], [18]. In another
practice, each solution encodes multiple DFs having a single
threshold. The final output value in this case may be obtained
using a (weighted) voting scheme among the output values
of each function of the same individual. An example of this
scheme can be found in [19].

In the recent years, researchers have made some notable
attempts to solve classification problems using MOGP. In
[55], the authors have proposed a MOGP to obtain a group
of nondominated classifiers, with which the maximum re-
ceiver operating characteristic convex hull (ROCCH) can be
obtained. To achieve this, they have adopted four different
multiobjective frameworks into GP. For further improvement
of each individual GP’s performance, they have defined two
local search strategies that have been especially designed for
classification problems. The experimental results in [55] have
demonstrated the efficacy of the proposed memetic scheme in
their MOGP framework. Another convex hull-based MOGP,
called CH-MOGP, can be found in [56]. In [56], the authors
have shown the differences between the conventional multi-
objective optimization problem and ROCCH maximization
problem. They [56] have introduced a convex hull based
sorting without redundancy and a new selection procedure
which are suitable for ROCCH maximization problem. Again,
in [22], the authors have proposed a MOGP based approach
that is especially designed for unbalanced data sets. This
approach [22] evolves diverse and accurate ensembles of GP
classifiers with good performance on both the majority and
the minority classes. The individual members of the evolved
ensembles, that are composed of nondominated solutions, vote
on class membership.

D. GP, Bloating, and Concise Rules

During evolution of GP, variable length genomes gradually
start to increase its length without significant improvement in
fitness. This incident, called bloating [57], is a well known
phenomenon in GP. Bloating causes genetic programs (i)

to keep reducible genome structures, and (ii) to memorize
training data points, rather than recognizing patterns hidden
in them. To find rules which are to some extent human inter-
pretable and can be analyzed, each of the genetic programs
must be concise. A plausible way to achieve this target is
to control bloating. A popular way to handle bloating is
to take into account the program size [2], [58]–[61]. Some
other methods include spatially-structured populations [62],
[63], island based models to introduce spatial structure to
the population [62], [63], intron deletion [64], and dynamic
population sizing [65], [66]. The work in [67] attempts to
understand the GP evolved solutions; while authors in [68]
attempt to find comprehensible rules in subgroup discovery.

E. Ensemble Classifier

In classification, the basic task is to search through a
hypothesis space to find a suitable hypothesis that will be
able to classify the data points in a better way. An ensemble
combines multiple hypotheses to form a better one [19], [21],
[22], [53], [69], [70]. Empirically, an ensemble performs better
when each of the classifiers is highly accurate (strong learner)
and the members of the ensemble are significantly diverse.
The explanation behind the better performance of ensemble
classifiers than a single classifier has been described in [20].
Normally, to decide the class label of a data point, the member
classifiers of an ensemble use (weighted) voting. Ensembles
are often used in bio-informatics [71].

III. PROPOSED WORK

A. Representation of Classifiers or Solutions

In this work, we evolve c-populations of genetic programs.
Each individual of these populations is a binary classifier. Each
binary classifier is represented by a single tree. When a data
point is passed through an individual of the ith population, if
the output value is positive, the individual says that the passed
data point belongs to the ith class; otherwise it says that the
point does not belong to that class. The internal (non-leaf)
nodes of these trees are functions F . The terminal nodes must
be either a feature or a constant from the set C. We have
imposed some constraint on the minimum size (architecture)
of the trees. In each tree there must be at least one function
node and two terminal nodes (with at least one feature node).
Though, a single feature (terminal) node might be enough to
determine the class label, this would rarely happen in practice.
The above restrictions make the trees more useful without any
loss of generalization capability. Again, after generation of any
tree throughout the learning phase (using mutation, crossover,
or random initialization), the largest subtree consisting of only
constants as its leaf nodes is replaced by a constant leaf node
having the equivalent constant value.

B. MOGP for Learning

Larger genetic programs may memorize the training patterns
which, in turn, may increase the training accuracy and reduce
the understandability of the rules. Therefore, we aim to find
smaller but accurate classifiers. Again, when c is high enough,

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 4

even a balanced c-class data set may get converted to c number
of highly imbalanced bi-classification data sets. Instead of min-
imization of classification error, simultaneous minimization of
false positive (FP) and false negative (FN) would be more
appropriate in this regard. Suppose a classifier makes some
mistakes m = mp+mn on a given training data set, where mp

and mn are respectively the number of FPs and FNs. Consider
two classifiers, each making the same number of mistakes m
on a given data set. Let for the first classifier mp = mn and
for the second classifier mp >> mn or mp << mn. If the
cost of a FP is the same as that of a FN, we would prefer
the first classifier. Consequently, minimization of both FP and
FN would be a better strategy than minimization of the total
number of misclassification, particularly for imbalanced data
sets. Thus, we have three objectives, i.e., minimizations of (a)
FP, (b) FN, and (c) rule size. Moreover, when different classes
are overlapped, minimization of FP is usually in conflict
with the minimization of FN and vice versa. Multiobjective
optimization is more suitable when we need to optimize more
than one conflicting objective. Therefore, during the learning
of each binary classifier, we minimize three objectives using
an MOGP: (a) FP, (b) FN, and (c) number of leaf nodes in the
tree. The third objective is used to reduce the size of the tree
which enhances the understandability and reduces the pattern
memorization capability. The algorithm, proposed in this work,
is called ASMiGP: Archive based Steady State Micro Genetic
Programming, which is presented in Algorithm 1.

In an evolutionary search, it is desired to have as many
generations as possible and steady state nature of an algorithm
maximizes the number of generations when the number of
function evaluations is fixed [72]. Due to maximization of gen-
erations, a steady state evolutionary search is more exploitative
to enhance the searching in a region which is more likely to
have or closer to the Pareto front and avoiding exploration in
regions that are less likely to improve the solutions. It causes
faster convergence. In other words, independent of the fitness
evaluation process, steady state selection is more performant
than discrete generational selection [73]. Therefore, we have
used a steady state algorithm instead of a generational one.

C. Feature Selection (FS)

In this work, we have used the embedded model of FS.
Explicit FS is performed during population initialization and
mutation. Implicit FS is performed during crossover. Filtering
is also performed at three different stages of the learning
process; in particular, at the beginning and after 50% and after
75% of evaluations as described next in this subsection.

To facilitate the FS, following [74], we define an index
that assesses the discriminating ability of a feature. Consider
a two-class problem. Note that for a multi-class problem, the
one-versus-all case can also be viewed as a two-class problem.
Let there be np number of training points and the class label
for the jth data point be +1 if it belongs to class 1 and −1
if it belongs to class 2. Let the value of the f th feature for
the ith data point be fi; i = 1, · · · , np. If the f th feature is
a good discriminatory feature then for all data points from
class 1, it should have high values and for all points from

Algorithm 1: ASMiGP

1 Initialize population using ramped-half-and-half method.
2 Initialize the archive solutions using initial solutions.
3 while EvaluationsCurrent ≤ EvaluationsMaximum do
4 repeat
5 operator = Select crossover or mutation.
6 if operator == crossover then
7 Select male and female parents (mating

selection).
8 Perform crossover.
9 end

10 else
11 Select an individual (mating selection).
12 Mutate the individual.
13 end
14 until the infix equation of off-spring is distinct from

infix equation of any individual of the archive
15 Evaluate the new off-spring.
16 EvaluationsCurrent = EvaluationsCurrent + 1
17 Update the archive using new offspring

(multi-objective environmental selection).
18 end
19 Fronts = Perform fast-non-dominated-sort.
20 return first front of Fronts.

class 2, it should have low values or vice-versa. Hence for
a good discriminatory feature, we can define an ideal feature
vector with values 1, if the data point is from class 1 and
0 otherwise; or the feature value is 0, if it is from class 1,
otherwise it is 0. Let Sf be the vector containing the ideal
feature values for feature f and sfi be the ideal feature value
of the f th feature for the ith sample. Note that, there could
other important features that are not linearly related to the
class structure. We are not considering them in this preliminary
filtering step. As in [74] we compute the Pearson’s correlation
(or any other measure of similarity) between f and s as a
measure of feature relevance:

Cf =

np∑
j=1

(sji − s)(fj − f)/

√√√√ np∑
j=1

(sji − s)2
np∑
j=1

(fj − f)2.

(1)
A higher value of |Cf | indicates a stronger discriminative
power of feature f . For a multi-class problem, using the one-
versus-all strategy, for the ith binary classification problem
(class i versus the rest), the correlation for the f th feature is
denoted by Ci

f .
Now, we describe the feature selection procedure. Let the

set of all features be Fall. We intend to incorporate only those
features from Fall which are more likely to help the classifiers
to decide the class label. We assign different fitness and
unfitness measures to the features during the learning phase.
To remove a feature node from any tree (during mutation),
we select it using Roulette wheel selection on the unfitness
values of the features which are present in that tree. Similarly,
when a new feature is inserted in the tree, it is selected using
Roulette wheel selection on the fitness values. During the first

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 5

50% evaluations, the fitness of the features is defined as in
equation (2), and the unfitness is defined as in equation (3).

F 0%,i
fitness(f, i) =


(

Ci
f

Ci
max

)2

, if

∣∣∣Ci
f

∣∣∣
Ci

max

> 0.3

0, otherwise

(2)

F 0%,i
unfitness(f, i) = 1.0− F 0%,i

fitness, (3)

where Ci
max = max

f∈Fall

∣∣∣Ci
f

∣∣∣. The equation (2) sets the fitness

of very poor (poor with respect to its discriminating power) to
zero to eliminate their impact during the initial evolution. Let,
Feval=0%,i ⊆ Fall be the features with nonzero fitness values.
Basically, at this stage we are using a filter on the feature set
Fall to obtain a smaller feature set.

After completion of 50% evaluations for each population,
we find the features used in that population. Let the feature
set be Feval=50%,i. Then we make the fitness of all features in
Fall − Feval=50%,i to zero. This is done with the assumption
that after 50% evaluations useful features have been used by
the collection of decision trees. Now the fitness and unfitness
values of all features in Feval=50%,i are modified according to
equation (4) and equation (5) respectively.

F 50%,i
fitness(f, i) =


|Ci

f |∑
f 6=g

g∈F50%,i

|ρfg|
, if f ∈ Feval=50%,i

0, otherwise

(4)

F 50%,i
unfitness(f, i) = e

−
F

50%,i
fitness

(f,i)−minf{F
50%,i
fitness

}

maxf{F
50%,i
fitness

}−minf{F
50%,i
fitness

} , (5)

where ρfg is the Pearson’s correlation between f th and gth

features. Here we try to select features with higher relevance
but reducing the redundancy in the set of selected features. The
fitness, defined in equation (4), increases when the feature is
highly correlated with class label. Similarly, it reduces when it
is more correlated with other existent features. This is done to
achieve maximum relevance minimum redundancy (MRMR).

After 75% function evaluations, again we take another
snapshot of the population. Let the existent features for the
population be Feval=75%,i ⊆ Feval=50%,i. Then, the fitness and
unfitness values of the features in Feval=75%,i are defined in
equation (6) and in equation (7) respectively.

F 75%,i
fitness(f, i) =

{
F 0%
fitness(f, i), if f ∈ Feval=75%,i

0, otherwise
(6)

F 75%,i
unfitness(f, i) = 1.0− F 75%,i

fitness(f, i) (7)

D. Population and Archive Initialization

We initialize each population using ramped-half-and-half
method. While constructing the random trees, selection of
terminal nodes has been made with a probability pvar. To
insert a terminal node in a tree, a random number rn is drawn
in [0, 1]. If rn < pvar then a feature node is added, otherwise
a constant node is added. The function nodes are chosen from
the set F , with equal probability of inclusion for all functions.

The feature nodes are selected using Roulette wheel selection
on fitness F 0%

fitness, defined in equation (2).
To initialize the archive from the initial population, we have

used the multi-objective archive initialization scheme present
in [72], [75]. It requires two parameters: maximum archive
size (Nmax) and minimum archive size (Nmin).

E. Selection of Crossover or Mutation

Since ASMiGP is a steady state MOGP, in each generation
we generate only one offspring. We use either crossover or
mutation to do that. A random number rc is drawn in [0, 1].
if rc < pc then crossover operator is selected otherwise the
mutation operator is selected for that generation.

F. Mating Selection

ASMiGP uses crossover with male and female differen-
tiation which needs one male and one female parent. We
perform Roulette wheel selection using classification accuracy
of the binary classifiers as fitness to select the female parent.
Then the male parent is selected randomly from the remaining
archive. The only condition to be satisfied is that the male and
female parents must be distinct. For mutation, we need only
one individual and it is selected in the same way as done for
the female parent in case of crossover operator.

A choice of mating selection could have been the use
of some bi-level selection operator, where Pareto dominance
is preferred over diversity. In that case, solutions along the
whole Pareto optimal solution set with good diversity would
have been selected as the primary (female) parents. Note that,
we have used crossover with male-female differentiation that
tries to generate an off-spring near the primary parent in the
hypothesis space. Consequently, this might cause generation
of Pareto optimal binary classifiers along the whole Pareto
optimal solution set. Though they are Pareto optimal, these
binary classifiers may have poor accuracies. This is because
of the implicit imbalance nature of the binary classification
problems (due to conversion from multi-class classification
problems) and different classifier sizes. An ensemble classifier,
however, performs better when individual members of the
ensemble are more accurate. Therefore, we use classification
accuracy based mating selection. It guides the search to
generate more accurate binary classifiers.

G. Crossover

In this study, we have used crossover operation with male
and female differentiation. We want the off-spring to be near
the female (acceptor) parent in the hypothesis space. The male
(donor) parent is used to make the off-spring diverse from its
mother. To do this, two random points (nodes) are selected
from each of the parents. The probabilities of selection of
terminal nodes and function nodes as a crossover point (node)
are respectively pct and (1 − pct). Then, the subtree rooted
at the selected node of the mother tree is replaced with a
similarly selected subtree from the father tree. If the off-
spring is identical to any of its parents, the whole procedure
is repeated (before evaluation/learning of the off-spring).

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 6

H. Mutation

In most of the GP based systems, for mutation a subtree
rooted at a randomly selected node is replaced by a new
randomly generated subtree. Though this kind of mutation ex-
plores more in the hypothesis space, it may be too disruptive in
nature. Therefore, we intend to use less exploration by keeping
the tree structure unaltered. During mutation we perform the
following operations on a tree: (1) Each constant of the tree is
replaced by another random constant with probability pmc . (2)
Each function node of the tree is replaced by anther random
function node with probability pmf . (3) Only one feature node
of the tree is replaced by another feature node.

For feature nodes, to select the mutation point Roulette
wheel selection is performed on the unfitness of the features
which are present in the tree. Similarly, to insert a new feature
at the mutation point, we select a feature using Roulette wheel
selection based on the fitness values (probability proportional
to fitness) of the features.

This restricted mutation scheme ensures that the tree struc-
ture of an equation remains the same. It also ensures that the
variables in an equation do not change drastically - changing
more than one variable would shift the solution (equation) in
the hypothesis space by a larger amount.

I. Environmental Selection

ASMiGP uses the archive truncation strategy used in [72],
[75]. This multiobjective archive truncation strategy uses
Pareto based fitness function, i.e., fitness is Pareto dominance
rank. This scheme maintains an archive (ensemble) which has
an adaptive and dynamic size. It does not allow the archive to
fall below a minimum size ensuring diversity in the genotypic
space. Moreover, the environmental selection diminishes the
exploration in areas of objective space that are less likely to
yield improved solutions [72], ensuring diversity in phenotypic
space. Furthermore, we have made the following difference in
the environmental selection. ASMiGP ensures that the infix
expression of every off-spring (after mutation or crossover)
is distinct from every member of the archive. To achieve this,
before evaluating the offspring, ASMiGP converts it to its infix
expression and then compares the expression with that of each
individual of the archive. Only if the expression is unique, the
off-spring is evaluated and added to the archive. Otherwise
it is discarded and a new off-spring is generated. Another
noticeable difference is that here the number of objectives is
three. Note that the diversity maintenance in each ensemble
both in phenotypic space and in genotypic space finds a diverse
set of trees (bi-classifiers). Trees, being diverse, enhance the
performance of the corresponding ensemble. In this context,
it is worth mentioning that the archive, along with the archive
truncation strategy, helps to realize a good Pareto front by
explicitly maintaining diversity among the fit (according to
rank) solutions. However, the archive alone is not sufficient to
evolve a good Pareto front along all the objectives.

J. Decision Making

To determine the class label, we find the net belongingness
of a point to each class. The net belongingness lies in [0, 1]. A

higher value indicates more net belongingness to that class. A
data point is assigned to that class for which it has the highest
net belongingness.

After the learning, we obtain a set of c archives, A =
{A1,A2, · · · ,Ac}; ∀i, 1 ≤ |Ai| ≤ Nmax, where c is the
number of classes, and Ai is the set of all binary classifiers
for the ith class. To determine the net belongingness of a data
point p to class m, Bnet

m (p), it is passed through all genetic
programs of set Am. The net belongingness, Bnet

m (p), of the
point p for class m is computed using equation (8).

Bnet
m (p) =

1

2

 1

|Am|

|Am|∑
i=1

Bim(p) + 1.0

 , (8)

where Bim is defined as

Bim(p) =


+

(
1.0− FP i

m

FPmax
m

)
, if Ai

m(p) > 0

−
(
1.0− FN i

m

FNmax
m

)
, otherwise.

(9)

In equation (9), FP i
m and FN i

m respectively represent the
number of FPs and FNs made by the ith individual in set Am

on the training data. FPmax
m and FNmax

m are respectively the
maximum possible FP and the maximum possible FN for the
mth class; and Ai

m(p) is the output from ith individual of
Am for input data point p. Finally, p is assigned the class k,
when Bnet

k =
c

max
m=1
{Bnet

m }. Note that FPmax
m and FPmin

m are
determined by the training data.

The concept of net belongingness is inspired by the concept
of negative voting. Negative voting has been widely used
in diverse applications [76]–[78]. It is more effective when
circumstances unfavourable to the preferences invoke stronger
electoral responses than the similar favourable responses, as
well as the behaviours of the voters are well defined [79]. In
our scheme, the learners for the ith class learn to vote yes
for the points of the ith class and no for the points which
do not belong to the ith class. For multi-class problems, it
is more likely that a binary classifier learns to say no than
to say yes for a much higher number of points. Therefore,
we found negative voting to be more suitable in this context.
However, we have used a weighted negative voting scheme.
The accuracies for the responses yes and no of the ith binary

classifier of mth class are respectively
(
1.0− FP i

m

FPmax
m

)
and(

1.0− FN i
m

FNmax
m

)
. These values have been used as corre-

sponding weights for the responses yes and no of the ith binary
classifier of the mth class. We have used the positive and the
negative signs to indicate acceptance and rejection of the data
point for the mth class respectively.

IV. EXPERIMENTATION

A. Experimental Settings

We have repeated 10-fold cross validation of the proposed
method for 10 times. Table I shows the parameter settings
that we have used for this purpose. The training data is Z-
score normalized. Furthermore, based on the means and the

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 7

TABLE I
PARAMETER SETTINGS FOR THE PROPOSED METHOD

Parameter Value
Set of functions (F) {+,−,×,÷}
Range of initial values of constants (C) [0, 2]
Maximum depth of tree during initialization 6
Maximum allowable depth of tree 10
Maximum archive size (Nmax) 50
Minimum archive size (Nmin) 30
Initial Probability of feature nodes (pvar) 0.8
Probability of crossover (pc) 0.8
Probability of crossover for terminal nodes (pct) 0.2
Probability of mutation for constants (pmc) 0.3
Probability of mutation for function nodes (pmf) 0.1
Function evaluations for each binary classifier 400000

TABLE II
SUMMARY OF MICROARRAY DATA SETS

Data Set Features Samples Classes
(
F

S

)
(F) (S) (C)

1 Colon 2000 62 2 32.26
2 TOX-171 5748 171 4 33.61
3 Leukemia 1 7129 34 2 209.68
4 Leukemia 2 7129 38 2 187.61
5 CLL-SUB-111 11340 111 3 102.16
6 GCM 16063 144 14 111.55
7 SMK-CAN-187 19993 187 2 106.91
8 GLA-BRA-180 49151 180 4 273.06

standard deviations of the features of the training data, the
test data was Z-score normalized. Note that except Nmax and
Nmin, all parameters are standard parameters used in any GP
simulations, while Nmax and Nmin are needed for archive
maintenance. Although all the parameters can be chosen using
a cross validation mechanism, because of huge computational
overhead, we could not do that. Based on a few experiments
we selected these parameters. These choices are not optimal.
However, since the same set of values are used for widely
different types of data sets, it demonstrates the effectiveness
of the proposed scheme. The proposed method has been
implemented in Java with the help of jMetal [80], [81].

We have used eight microarray and eleven text data sets
which are summarized in Table II and in Table III, respectively.

TABLE III
SUMMARY OF TEXT DATA SETS

Data Set Features Samples Classes
(
F

S

)
(F) (S) (C)

1 oh0.wc 3182 1003 10 3.17
2 oh10.wc 3238 1050 10 3.08
3 tr12.wc 5804 313 8 18.54
4 tr23.wc 5832 204 6 28.59
5 tr11.wc 6429 414 9 15.53
6 tr21.wc 7902 336 6 23.52
7 wap.wc 8460 1560 20 5.42
8 ohscal.wc 11465 11162 10 1.03
9 la2s.wc 12432 3075 6 4.04

10 la1s.wc 13195 3204 6 4.12
11 new3s.wc 26832 9558 44 2.81

B. Importance of FS and Rule Size Reduction

To demonstrate the importance of the proposed FS and rule
size reduction scheme, we have compared our method with
GP without FS and no restriction to equation size. To do that,
we have made the following changes in the proposed method:
(1) No explicit feature selection as described in Section III-C
is done. (2) There are only two objectives, FP and FN. All
other parts of the algorithm and the parameter values remain
unchanged. Similar to the proposed scheme, we have also
executed 10-fold cross validation for 10 times for all the data
sets. Along with results (mean values of the corresponding 10
runs) obtained using the proposed method, the results obtained
using this scheme for microarray and for text data sets are
respectively summarized in Table IV and in Table V. From
these two tables, we observe the following.

1) In all cases, the test accuracy is much higher for the pro-
posed method. Especially, for GCM having 14 classes,
the difference between the test accuracies are remarkably
high.

2) The tree size increases significantly when the third
objective, i.e., the restriction on rule size, is not used.

3) For most of the data sets the proposed method selects
smaller number of distinct features per tree as well as
for per classifier.

These observations clearly demonstrate the importance of the
FS as well as constraining the rule size. Since our FS scheme
discards features with poor relevance and uses features with
good discriminating power yet avoiding use of redundant
features, it not only makes the discovery of useful rules
easier but also implicitly constrains the rule length. Thus, FS
plays a very important role having two positive impacts: it
makes identification of useful rules easier and it promotes the
minimization of the third objective.

C. Comparing with Other Methods

To compare the performance of the proposed method we
have used the experimental results reported in [82] (see Table
4, Table 5, Table 6, and Table 7 of [82]). In [82] the authors
have used four different types of classification algorithms: (1)
probability based Naive Bayes (NB), (2) tree based C4.5, (3)
instance based lazy learning algorithm IB1, and (4) rule based
RIPPER both before and after feature selection. Along with the
full feature set, they have used six feature selection algorithms
in their experiment: (1) FAST [82], (2) FCBF [83], [84], (3)
CFS [85], (4) ReliefF [86], (5) Consist [87], and (6) FOCUS-
SF [88]. Use of all features can be viewed as the seventh
feature selection algorithm. To make this paper comprehensive
we are not discussing the experimental settings used in [82].
Note that accuracies for few data sets for few pairs of feature
selection schemes are not available in [82].

1) Results with Microarray Data Sets: Table IV presents
the results of the proposed method on microarray data sets.
We have already stated that for each classifier in [82] the
authors have used seven FS schemes (six feature selection
method as well as the set of all features). For each feature
selection method five repetitions of the 10-fold cross validation
experiment were done in [82]. And then, for each feature

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 8

TABLE IV
EXPERIMENTAL RESULTS ON MICROARRAY DATA SETS (MEAN VALUES OF 10 RUNS OF 10-FOLD CROSS VALIDATION)

Data Set %TAa FSb TSc (F/T)d %Fe (%F/T)f

PMg Wh
F&R PM WF&R PM WF&R PM WF&R PM WF&R PM WF&R

Colon 85.12 (2.07) 71.93 (4.12) 195.0 182.5 6.76 123.60 3.11 8.56 9.75 9.13 0.16 0.43
TOX-171 81.07 (3.42) 58.52 (4.57) 407.6 540.9 8.83 148.44 3.53 11.97 7.09 9.41 0.06 0.21
Leukemia1 93.50 (2.85) 74.08 (6.42) 188.6 276.6 3.01 76.09 2.00 6.52 2.65 3.88 0.03 0.09
Leukemia2 91.58 (3.67) 77.33 (6.84) 147.8 229.0 3.50 74.16 2.02 5.72 2.07 3.21 0.03 0.08
CLL-SUB-111 80.52 (2.60) 54.51 (3.51) 335.3 465.3 7.29 134.28 3.20 10.75 2.96 4.10 0.03 0.09
GCM 69.35 (1.96) 33.97 (2.60) 854.3 1086.0 4.70 105.42 1.91 6.22 5.32 6.76 0.01 0.04
SMK-CAN-187 68.68 (1.18) 62.12 (2.30) 319.9 435.8 22.23 135.88 6.41 15.33 1.60 2.18 0.03 0.08
GLA-BRA-180 68.22 (2.25) 58.89 (2.75) 784.4 569.9 11.30 150.81 4.33 11.40 1.60 1.16 0.01 0.02
aTest Accuracy (standard deviation is provided within parenthesis), bNumber of Features Selected per Classifier, cTree Size, dNumber of Features
per Tree, ePercentage of Features Selected, fPercentage of Features Selected per Tree, gProposed Method, hGP without FS and Rule Size Reduction

TABLE V
EXPERIMENTAL RESULTS ON TEXT DATA SETS (MEAN VALUES OF 10 RUNS OF 10-FOLD CROSS VALIDATION)

Data Set %TAa FSb TSc (F/T)d %Fe (%F/T)f

PMg Wh
F&R PM WF&R PM WF&R PM WF&R PM WF&R PM WF&R

oh0.wc 87.75 (0.51) 70.53 (1.17) 484.1 2080.7 17.06 145.38 6.46 25.90 15.21 65.39 0.20 0.81
oh10.wc 81.06 (0.61) 66.11 (1.52) 439.6 2166.8 24.11 140.67 7.12 26.03 13.58 66.92 0.22 0.80
tr12.wc 87.86 (1.50) 60.55 (2.36) 603.7 1697.3 8.67 123.91 4.17 17.22 10.40 29.24 0.07 0.30
tr23.wc 93.95 (1.19) 64.90 (2.14) 396.5 1154.2 6.10 117.15 3.09 14.81 6.80 19.79 0.05 0.25
tr11.wc 86.08 (0.72) 64.63 (2.56) 631.6 1785.8 8.82 128.57 4.03 17.03 9.82 27.78 0.06 0.26
tr21.wc 89.64 (1.14) 71.46 (2.62) 362.0 1219.2 9.51 114.51 4.17 15.00 4.58 15.43 0.05 0.19
wap.wc 79.60 (0.60) 58.96 (1.64) 1199.8 4377.5 17.38 125.53 6.07 21.02 14.18 51.74 0.07 0.25
ohscal.wc 73.45 (0.23) 62.59 (1.21) 232.9 3853.8 63.48 111.52 7.78 24.87 2.03 33.61 0.07 0.22
la2s.wc 83.95 (0.62) 67.32 (0.99) 354.6 2369.1 53.17 133.76 11.41 28.65 2.85 19.06 0.09 0.23
la1s.wc 83.06 (0.36) 65.62 (1.05) 380.6 2372.0 56.40 133.21 12.30 28.35 2.88 17.98 0.09 0.21
new3s.wc 81.32 (0.27) 58.96 (1.64) 1674.2 4377.5 33.93 125.53 7.10 21.02 6.24 16.31 0.03 0.08

aTest Accuracy (standard deviation is provided within parenthesis), bNumber of Features Selected per Classifier, cTree Size, dNumber of Features
per Tree, ePercentage of Features Selected, fPercentage of Features Selected per Tree, gProposed Method, hGP without FS and Rule Size Reduction

selection method, the average accuracy over the five repeti-
tions is reported. We compare this average accuracy with the
average accuracy that we have obtained by our method over
the 10 repetitions of the 10-fold cross validation experiments.
In particular, we count the number of cases (each case refers
to one feature selection scheme) in which our algorithm
outperforms. Note that, for some combination of data set and
classifier, the total number of cases is less than seven as for
those combinations some results are not available. Table VI
reports these counts. To elaborate Table VI, consider the entry
corresponding to column IB1 and row CLL-SUB-111. For
the data set CLL-SUB-111, in Table 6 of [82] authors report
the performance of the algorithm IB1 for six different feature
selection algorithms. Our algorithm is found to perform better
than five of the six feature selection algorithms and hence the
entry for row CLL-SUB-111 and column IB1 is 5/6. Note that,
for this data set, authors of [82] did not report performance of
IB1 using all features. All but the entries in the last column of
Table VI are generated in the same manner. The last column of
Table VI, which reports the row total, reveals that our method
performs the best for 61.40% (132 out of 215) test cases.

If we compute the percentage of features selected by the
ensembles, it may not be very small for some data sets, like
Colon. But, if we consider the number of features selected per
binary classifier (tree), we find that this number is quite small,
e.g., the maximum value is 0.16% for Colon. We assume that
binary classifiers (binary trees) having less than twenty nodes
are concise enough. We need to remember that we are talking

TABLE VI
COMPARISON WITH NB, C4.5, IB1, AND RIPPER ON MICROARRAY

DATA SETS

Data Set NB C4.5 IB1 RIPPER Total
Colon 4/7 2/7 4/7 6/7 16/28
TOX-171 4/7 7/7 3/7 7/7 21/28
Leukemia1 2/7 2/7 2/7 2/7 8/28
Leukemia2 5/7 6/7 6/7 5/7 22/28
CLL-SUB-111 4/7 6/7 5/6 4/7 19/27
GCM 4/7 7/7 6/7 7/7 24/28
SMK-CAN-187 2/6 2/6 2/6 2/6 8/24
GLA-BRA-180 3/6 5/6 1/6 5/6 14/24
Total 28/54 37/54 29/53 38/54 132/215

about raw rules (equations) directly obtained from GP which
are most likely affected by bloating. Simplification of these
rules may lead to reduction in their sizes. Based on this, in
all but one data set we could find easy to analyze rules. For
SMK-CAN-187 the extracted rules are more complex possibly
because of complex structure of the data.

In Table S-I (see supplementary materials), we present the
best rules (or binary classifiers or GPs) we found for each
class of each microarray data set. These GPs have the highest
training accuracy among the GPs obtained from the first fold
of the first 10-fold cross validation. If there are more than one
rule having the same maximum training accuracy, the rule
with the smallest length has been reported. The features in the
equations are indexed starting from ‘0’. From Table S-I we
can observe that for several classes the proposed method could
find substantially small rules. Noticeably, for four, six, eight,

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 9

Fig. 1. Showing the number of distinct features present in the archive with
respect to function evaluations for GLA-BRA-180 data set.

and three classes, the proposed method could find the best
binary classifier having only one, two, three, and four distinct
variables, respectively. So, 21 out of 33 (i.e., 63.64%) cases,
we could find considerably small (and hence easy to interpret)
rules. For some classes, the rules having the highest training
accuracy were not very comprehensible because the length of
the rule was not very small. If we think that (2.0×xi) is more
easy to understand than (xi+xi), though both equations have
the same size, we observe that for 21 out of 33 (i.e., 63.64%)
cases the proposed method could find rules having highest
accuracy, which are not at all affected by bloating and are
comprehensible without simplification.

To investigate how the number of distinct features changes
in the archive, we have executed our algorithm with 400000
function evaluations using the entire GLA-BRA-180 data set.
In Fig. 1 we have plotted the number of distinct features after
initial and after each 12.5% of maximum function evaluations.
For all four classes of GLA-BRA-180 data set, the number of
distinct features in the archive initially falls drastically depict-
ing the impact of feature selection. After some generations,
it becomes almost constant. Moreover, the number of final
distinct features for each class is quite small. This indeed
reveals a desirable behavior of the our scheme.

To show how the individual binary classifiers’ accuracies
change with function evolutions, we have plotted each in-
dividuals’ FPs and FNs for all four classes of GLA-BRA-
180 data set in Fig. S-1 and in Fig. S-2 (see supplementary
materials). For this part of the experiment also, we have used
the entire data set for training. From the figures it is observed
that with the increase in number of evolutions, the average
accuracy of the solutions tends to increase. However, for class
four, some solutions having lower level of accuracies (having
higher FPs and FNs) are there even after 400000 function
evaluations. This is because, even after such high number of
function evaluations, the algorithm was still searching for more
concise solutions, and could find some trees of comparatively
smaller size.

TABLE VII
COMPARISON WITH NB, C4.5, IB1, AND RIPPER ON TEXT DATA SETS

Data Set NB C4.5 IB1 RIPPER Total
oh0.wc 7/7 7/7 7/7 6/6 27/27
oh10.wc 7/7 7/7 7/7 6/6 27/27
tr12.wc 7/7 7/7 7/7 7/7 28/28
tr23.wc 7/7 5/7 7/7 4/7 23/28
tr11.wc 7/7 7/7 7/7 6/6 27/27
tr21.wc 6/7 6/7 6/7 3/6 21/27
wap.wc 7/7 6/6 6/6 6/6 25/25
ohscal.wc 4/4 4/4 4/4 4/4 16/16
la2s.wc 6/6 5/5 5/5 5/5 21/21
la1s.wc 6/6 5/5 5/5 5/5 21/21
new3s.wc 3/3 3/3 3/3 3/3 12/12
Total 67/68 62/65 64/65 55/61 248/259

2) Results with Text Data Sets: Similar to Table VI with
microarray data sets, we present the same result (number of
test cases for which our algorithm provides the best results for
each classifier and data set pair) with text data sets in Table
VII. Table VII reveals that for text data sets the proposed
scheme performs the best for 95.75% (248 out of 259) cases.

If we consider the same criteria that binary classifiers (trees)
having less than twenty nodes are concise enough, then our
method could not find interpretable rules for five (oh10.wc,
ohoscal.wc, la2s.wc, la1s.wc, and new3s.wc) out of the eleven
text data sets. The number of selected features is not at all
small for most of the text data sets. Some reasons behind
this may be that the number of classes is high for the text
data sets and the existence of more complex class structure,
which is defined by the keywords and relation of keywords to
the imposed classes is usually not as straightforward as genes
have to cancers. However, the percentage of features selected
per binary classifiers (trees) is quite small. Noticeably, the
accuracy obtained for new3s.wc (having 44 classes), is much
higher than that of the other methods (for accuracies of other
methods, see [82]). We can also observe that for data sets
having more than or equal to ten classes, our methods performs
comparatively better than other methods.

D. Statistical Significance Testing

To compare the proposed method with existing feature
selection and classification methods, we consider four classifi-
cation and six feature selection methods as well as with the full
feature set. Thus we compare our algorithm with 28 feature se-
lection and classification algorithm pairs. We have performed
Wilcoxon signed ranks test to show that the performance of
the proposed algorithm is significantly different over 28 pairs
of feature selection and classification algorithm. For this, we
have considered both the microarray and the text data sets
together and have used the average test accuracies achieved
with different algorithms on these data sets. Moreover, we
have removed the cases for which accuracies are not known
(see Table 4, Table 5, Table 6, and Table 7 of [82]). Table
VIII shows that out of the 28 cases, only in one case the
null hypothesis H0 was accepted. Here the null hypothesis is
that there is no significant difference in performance between
our algorithm and a comparing algorithm. We have also used
Friedman test [89], [90] to check if all the 29 (28 existing

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 10

TABLE VIII
WILCOXON SIGNED RANKS TEST (1-TAILED) FOR PAIRWISE
COMPARISONS WITH THE PROPOSED METHOD AT α = 0.05

NB C4.5 IB1 RIPPER
FAST A R R R
FCBF R R R R
CFS R R R R
ReliefF R R R R
Consist R R R R
FOCUS-SF R R R R
Full Set R R R R
A: H0 Accepted, R: H0 Rejected.

and our proposed) algorithms perform similarly over seven
data sets: Colon, TOX-171, Leukemia1, Leukemia2, GCM,
tr12.wc, and tr23.wc (see Table 4, Table 5, Table 6, and Table 7
of [82], some accuracies for other data sets are not available).
The obtained Friedman statistics is 60.13, which is significant
at α = 0.001, as the corresponding statistic χ2 with 28 degrees
of freedom is 56.90. Thus Friedman test suggests existence of
significant difference among the algorithms.

V. CONCLUSIONS AND DISCUSSIONS

In this work we have used a multiobjective genetic pro-
gramming, called ASMiGP, to evolve diverse sets of binary
classifiers to solve multi-class classification problems. Simul-
taneous feature selection and rule extraction are performed
during the genetic evolution. An important objective of this
work is to find simple classification rules that may be human
understandable, which in the given context translates to rules
with simple operations and short length. The proposed method
is found to achieve its goal.

Ensembles perform better when weighted voting is used,
the members of the ensembles are diverse enough, and the
classifiers are accurate [21]. Here we have created c sets
of diverse ensembles. Unlike other ensemble based method,
here each ensemble represents diverse classifiers for just one
class. The number of features used by the ensembles is high
with respect to the number of features selected per (binary
classifier) tree. This suggests that the binary classifiers are
diverse enough. In our algorithm, we evolve c distinct species
in parallel, which try to learn distinct patterns and no inter-
species gene exchange is ever allowed. This property makes
each species different from the other species and the system
becomes less vulnerable, especially when each species has
successfully learnt its designated patterns.

Our method has been tested on nineteen (eight microarray
and eleven text) data sets. The experimental results show
that we could find easy-to-understand rules for overall 63.2%
(87.5% for microarray and 54.5% for text) data sets. We
compared our method with four classification methods in
conjunction with seven feature selection methods including
use of the all-feature set. For 80.17% (61.40% for microarray
and 95.75% for text) cases our method outperforms others. The
improvement in performance is shown statistically significant
compared to the others.

The overall performance of the proposed method is better
on text data sets compared to that of microarray data sets. Two

important differences between these two groups of data sets are
that (i) microarray data sets have comparatively large feature-
to-sample ratios and may not have enough number of points
in each class for MOGP to learn the structure of the data sets,
and (ii) the text data sets have comparatively large number of
classes as well as instances. Our limited experiments suggest
that when there are enough points in each class so that each
species can successfully learn its target pattern, the proposed
method works better. We found that for text data our method
performs noticeably better than the other methods particularly
when number of classes is high (ten or more than that).

We have shown that our method is very effective when
the dimension of the data sets are as high as 49151. But in
all our data sets, number of samples were not very big. If
we apply the proposed method on a data set with a really
large number samples, it may require a significant amount
of time. The method may also take a substantial amount
of time when the number of classes is high and we have
limited parallel processing capability. With the today’s high
performance computing technologies, however, these are not
really crucial shortcomings. Yet, we have not applied it to
truly big data. This work can be adapted to deal with big
data, especially using Hadoop.

Our future research interest is to use MOGP to classify
multi-class text data, where each text may belong to more than
one category (class) and to use net belongingness as a fuzzy
membership of the documents to the corresponding category.
We also intend to modify the proposed learning method to
stepwise learning, so that we can use it for big text data.

ACKNOWLEDGMENT

Authors gratefully acknowledge the computing support
obtained from the Networked Communications Program of
Chunghwa Telecom Co, Taiwan. Kaustuv Nag is thankful
to the Department of Science and Technology, India for
providing support in the form of INSPIRE Fellowship (code
no. IF120686).

REFERENCES

[1] P. G. Espejo, S. Ventura, and F. Herrera, “A survey on the application of
genetic programming to classification,” Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, vol. 40, no. 2,
pp. 121–144, 2010.

[2] J. R. Koza, Genetic programming: on the programming of computers by
means of natural selection. Cambridge, MA, USA: MIT Press, 1992.

[3] ——, Genetic programming II: automatic discovery of reusable pro-
grams. MIT press, 1994.

[4] ——, “Genetic programming as a means for programming computers by
natural selection,” Statistics and Computing, vol. 4, no. 2, pp. 87–112,
1994.

[5] J. R. Koza, F. H. Bennett III, and O. Stiffelman, Genetic programming
as a Darwinian invention machine. Springer, 1999.

[6] P. J. Rauss, J. M. Daida, and S. Chaudhary, “Classification of spectral
imagery using genetic programming,” Ann Arbor, vol. 1001, p. 48109,
2000.

[7] S. A. Stanhope and J. M. Daida, “Genetic programming for automatic
target classification and recognition in synthetic aperture radar imagery,”
in Evolutionary Programming VII. Springer, 1998, pp. 735–744.

[8] I. De Falco, A. Della Cioppa, and E. Tarantino, “Discovering interesting
classification rules with genetic programming,” Applied Soft Computing,
vol. 1, no. 4, pp. 257–269, 2002.

[9] C. C. Bojarczuk, H. S. Lopes, and A. A. Freitas, “Genetic program-
ming for knowledge discovery in chest-pain diagnosis,” Engineering in
Medicine and Biology Magazine, IEEE, vol. 19, no. 4, pp. 38–44, 2000.

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 11

[10] H. Gray, R. Maxwell, I. Martinez-Perez, C. Arus, and S. Cerdan,
“Genetic programming for classification of brain tumours from nuclear
magnetic resonance biopsy spectra,” Genetic Programming, p. 424,
1996.

[11] D. Hope, E. Munday, and S. Smith, “Evolutionary algorithms in the
classification of mammograms,” in Computational Intelligence in Image
and Signal Processing, 2007. CIISP 2007. IEEE Symposium on. IEEE,
2007, pp. 258–265.

[12] G. Wilson and M. Heywood, “Introducing probabilistic adaptive map-
ping developmental genetic programming with redundant mappings,”
Genetic Programming and Evolvable Machines, vol. 8, no. 2, pp. 187–
220, 2007.

[13] J. Kishore, L. M. Patnaik, V. Mani, and V. Agrawal, “Application of
genetic programming for multicategory pattern classification,” Evolu-
tionary Computation, IEEE Transactions on, vol. 4, no. 3, pp. 242–258,
2000.

[14] J.-Y. Lin, H.-R. Ke, B.-C. Chien, and W.-P. Yang, “Designing a classifier
by a layered multi-population genetic programming approach,” Pattern
recognition, vol. 40, no. 8, pp. 2211–2225, 2007.

[15] D. P. Muni, N. R. Pal, and J. Das, “A novel approach to design clas-
sifiers using genetic programming,” Evolutionary Computation, IEEE
Transactions on, vol. 8, no. 2, pp. 183–196, 2004.

[16] M. Zhang and P. Wong, “Genetic programming for medical classifi-
cation: a program simplification approach,” Genetic Programming and
Evolvable Machines, vol. 9, no. 3, pp. 229–255, 2008.

[17] M. Zhang and W. Smart, “Using gaussian distribution to construct fitness
functions in genetic programming for multiclass object classification,”
Pattern Recognition Letters, vol. 27, no. 11, pp. 1266–1274, 2006.

[18] D. P. Muni, N. R. Pal, and J. Das, “Genetic programming for si-
multaneous feature selection and classifier design,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 36, no. 1,
pp. 106–117, 2006.

[19] K.-H. Liu and C.-G. Xu, “A genetic programming-based approach to the
classification of multiclass microarray datasets,” Bioinformatics, vol. 25,
no. 3, pp. 331–337, 2009.

[20] T. G. Dietterich, “Ensemble methods in machine learning,” in Multiple
classifier systems. Springer, 2000, pp. 1–15.

[21] L. K. Hansen and P. Salamon, “Neural network ensembles,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 12,
no. 10, pp. 993–1001, 1990.

[22] U. Bhowan, M. Johnston, M. Zhang, and X. Yao, “Evolving diverse
ensembles using genetic programming for classification with unbalanced
data,” Evolutionary Computation, IEEE Transactions on, vol. 17, no. 3,
pp. 368–386, 2013.

[23] W. B. Langdon and R. Poli, Foundations of genetic programming.
Springer, 2002.

[24] K. Neshatian, M. Zhang, and P. Andreae, “A filter approach to multiple
feature construction for symbolic learning classifiers using genetic
programming,” IEEE transactions on evolutionary computation, vol. 16,
no. 5, pp. 645–661, 2012.

[25] P. Nordin, “A compiling genetic programming system that directly
manipulates the machine code,” Advances in genetic programming,
vol. 1, pp. 311–331, 1994.

[26] M. O’Neill and C. Ryan, “Grammatical evolution,” Evolutionary Com-
putation, IEEE Transactions on, vol. 5, no. 4, pp. 349–358, 2001.

[27] J. F. Miller and P. Thomson, “Cartesian genetic programming,” in
Genetic Programming. Springer, 2000, pp. 121–132.

[28] R. Kohavi and G. H. John, “Wrappers for feature subset selection,”
Artificial intelligence, vol. 97, no. 1, pp. 273–324, 1997.

[29] Y.-C. Chen, N. R. Pal, and I.-F. Chung, “An integrated mechanism
for feature selection and fuzzy rule extraction for classification,” Fuzzy
Systems, IEEE Transactions on, vol. 20, no. 4, pp. 683–698, 2012.

[30] N. Pal and K. Chintalapudi, “A connectionist system for feature selec-
tion,” Neural Parallel and Scientific Computations, vol. 5, pp. 359–382,
1997.

[31] D. Chakraborty and N. R. Pal, “Selecting useful groups of features in
a connectionist framework,” Neural Networks, IEEE Transactions on,
vol. 19, no. 3, pp. 381–396, 2008.

[32] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for
cancer classification using support vector machines,” Machine learning,
vol. 46, no. 1-3, pp. 389–422, 2002.

[33] H. Jabeen and A. R. Baig, “Review of classification using genetic pro-
gramming,” International journal of engineering science and technology,
vol. 2, no. 2, pp. 94–103, 2010.

[34] M. Muharram and G. D. Smith, “Evolutionary constructive induction,”
Knowledge and Data Engineering, IEEE Transactions on, vol. 17,
no. 11, pp. 1518–1528, 2005.

[35] K. Neshatian and M. Zhang, “Genetic programming and class-wise
orthogonal transformation for dimension reduction in classification prob-
lems,” in Genetic Programming. Springer, 2008, pp. 242–253.

[36] H. Guo and A. K. Nandi, “Breast cancer diagnosis using genetic
programming generated feature,” Pattern Recognition, vol. 39, no. 5,
pp. 980–987, 2006.

[37] H. Guo, L. B. Jack, and A. K. Nandi, “Feature generation using genetic
programming with application to fault classification,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 35, no. 1,
pp. 89–99, 2005.

[38] K. Krawiec, “Genetic programming-based construction of features for
machine learning and knowledge discovery tasks,” Genetic Program-
ming and Evolvable Machines, vol. 3, no. 4, pp. 329–343, 2002.

[39] X. Tan, B. Bhanu, and Y. Lin, “Fingerprint classification based on
learned features,” Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, vol. 35, no. 3, pp. 287–300, 2005.

[40] M. G. Smith and L. Bull, “Genetic programming with a genetic
algorithm for feature construction and selection,” Genetic Programming
and Evolvable Machines, vol. 6, no. 3, pp. 265–281, 2005.

[41] Y. Lin and B. Bhanu, “Evolutionary feature synthesis for object recogni-
tion,” Systems, Man, and Cybernetics, Part C: Applications and Reviews,
IEEE Transactions on, vol. 35, no. 2, pp. 156–171, 2005.

[42] J. R. Koza, “Concept formation and decision tree induction using
the genetic programming paradigm,” in Parallel Problem Solving from
Nature. Springer, 1991, pp. 124–128.

[43] G. Folino, C. Pizzuti, and G. Spezzano, “Genetic programming and
simulated annealing: A hybrid method to evolve decision trees,” in
Genetic Programming. Springer, 2000, pp. 294–303.

[44] J. Eggermont, “Evolving fuzzy decision trees with genetic programming
and clustering,” in Genetic Programming. Springer, 2002, pp. 71–82.

[45] H. Zhao, “A multi-objective genetic programming approach to develop-
ing pareto optimal decision trees,” Decision Support Systems, vol. 43,
no. 3, pp. 809–826, 2007.

[46] T. M. Khoshgoftaar and Y. Liu, “A multi-objective software quality
classification model using genetic programming,” Reliability, IEEE
Transactions on, vol. 56, no. 2, pp. 237–245, 2007.

[47] A. Tsakonas, “A comparison of classification accuracy of four genetic
programming-evolved intelligent structures,” Information Sciences, vol.
176, no. 6, pp. 691–724, 2006.

[48] S. Sakprasat and M. C. Sinclair, “Classification rule mining for au-
tomatic credit approval using genetic programming,” in Evolutionary
Computation, 2007. CEC 2007. IEEE Congress on. IEEE, 2007, pp.
548–555.

[49] C. Qing-Shan, Z. De-Fu, W. Li-Jun, and C. Huo-Wang, “A modified
genetic programming for behavior scoring problem,” in Computational
Intelligence and Data Mining, 2007. CIDM 2007. IEEE Symposium on.
IEEE, 2007, pp. 535–539.

[50] E. Carreno, G. Leguizamón, and N. Wagner, “Evolution of classifica-
tion rules for comprehensible knowledge discovery,” in Evolutionary
Computation, 2007. CEC 2007. IEEE Congress on. IEEE, 2007, pp.
1261–1268.

[51] R. R. Mendes, F. B. de Voznika, A. A. Freitas, and J. C. Nievola,
“Discovering fuzzy classification rules with genetic programming and
co-evolution,” in Principles of Data Mining and Knowledge Discovery.
Springer, 2001, pp. 314–325.

[52] A. L. Garcia-Almanza and E. P. Tsang, “Evolving decision rules to
predict investment opportunities,” International Journal of Automation
and Computing, vol. 5, no. 1, pp. 22–31, 2008.

[53] U. Bhowan, M. Johnston, and M. Zhang, “Developing new fitness func-
tions in genetic programming for classification with unbalanced data,”
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on, vol. 42, no. 2, pp. 406–421, 2012.

[54] W. Fu, M. Johnston, and M. Zhang, “Low-level feature extraction
for edge detection using genetic programming,” Cybernetics, IEEE
Transactions on, vol. 44, no. 8, pp. 1459–1472, Aug 2014.

[55] P. Wang, K. Tang, T. Weise, E. Tsang, and X. Yao, “Multiobjective ge-
netic programming for maximizing roc performance,” Neurocomputing,
vol. 125, pp. 102–118, 2014.

[56] P. Wang, M. Emmerich, R. Li, K. Tang, T. Baeck, and X. Yao, “Convex
hull-based multi-objective genetic programming for maximizing receiver
operating characteristic performance,” Evolutionary Computation, IEEE
Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[57] P. A. Whigham and G. Dick, “Implicitly controlling bloat in genetic pro-
gramming,” Evolutionary Computation, IEEE Transactions on, vol. 14,
no. 2, pp. 173–190, 2010.

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 12

[58] S. Luke and L. Panait, “A comparison of bloat control methods for
genetic programming,” Evolutionary Computation, vol. 14, no. 3, pp.
309–344, 2006.

[59] R. Poli, “A simple but theoretically-motivated method to control bloat
in genetic programming,” in Genetic Programming. Springer, 2003,
pp. 204–217.

[60] M. J. Streeter, “The root causes of code growth in genetic programming,”
in Genetic programming. Springer, 2003, pp. 443–454.

[61] S. Luke and L. Panait, “Fighting bloat with nonparametric parsimony
pressure,” in Parallel Problem Solving from NaturePPSN VII. Springer,
2002, pp. 411–421.

[62] F. Fernández-de Vega, G. G. Gil, J. A. G. Pulido, and J. L. Guisado,
“Control of bloat in genetic programming by means of the island model,”
in Parallel Problem Solving from Nature-PPSN VIII. Springer, 2004,
pp. 263–271.

[63] F. Fernandez, G. Galeano, and J. Gomez, “Comparing synchronous and
asynchronous parallel and distributed genetic programming models,” in
Genetic Programming. Springer, 2002, pp. 326–335.

[64] M. Castelli, L. Vanneschi, and S. Silva, “Semantic search-based genetic
programming and the effect of intron deletion,” Cybernetics, IEEE
Transactions on, vol. 44, no. 1, pp. 103–113, Jan 2014.

[65] D. Rochat, M. Tomassini, and L. Vanneschi, “Dynamic size popula-
tions in distributed genetic programming,” in Genetic Programming.
Springer, 2005, pp. 50–61.

[66] F. Fernandez, L. Vanneschi, and M. Tomassini, “The effect of plagues in
genetic programming: A study of variable-size populations,” in Genetic
Programming. Springer, 2003, pp. 317–326.

[67] A. Song, Q. Shi, and W. Yin, “Understanding of gp-evolved motion
detectors,” Computational Intelligence Magazine, IEEE, vol. 8, no. 1,
pp. 46–55, 2013.

[68] J. Luna, J. Romero, C. Romero, and S. Ventura, “On the use of genetic
programming for mining comprehensible rules in subgroup discovery,”
Cybernetics, IEEE Transactions on, vol. 44, no. 12, pp. 2329–2341, Dec
2014.

[69] S. Pang, D. Kim, and S. Y. Bang, “Membership authentication in the
dynamic group by face classification using svm ensemble,” Pattern
Recognition Letters, vol. 24, no. 1, pp. 215–225, 2003.

[70] H. Ishibuchi and T. Yamamoto, “Evolutionary multiobjective optimiza-
tion for generating an ensemble of fuzzy rule-based classifiers,” in
Genetic and Evolutionary ComputationGECCO 2003. Springer, 2003,
pp. 1077–1088.

[71] P. Yang, Y. Hwa Yang, B. B Zhou, and A. Y Zomaya, “A review of
ensemble methods in bioinformatics,” Current Bioinformatics, vol. 5,
no. 4, pp. 296–308, 2010.

[72] K. Nag, T. Pal, and N. Pal, “ASMiGA: An archive-based steady-state
micro genetic algorithm,” Cybernetics, IEEE Transactions on, vol. 45,
no. 1, pp. 40–52, Jan 2015.

[73] R. ENACHE, “Steady state evolutionary algorithms,” Honda Research
Institute Europe GmbH, Tech. Rep. HRI-EU Report 04-02, January
2004.

[74] J.-H. Hong and S.-B. Cho, “Gene boosting for cancer classification based
on gene expression profiles,” Pattern Recognition, vol. 42, no. 9, pp.
1761–1767, 2009.

[75] K. Nag and T. Pal, “A new archive based steady state genetic algorithm,”
in Evolutionary Computation (CEC), 2012 IEEE Congress on. IEEE,
2012, pp. 1–7.

[76] S. Kernell, “Presidential popularity and negative voting: An alternative
explanation of the midterm congressional decline of the president’s
party,” The American Political Science Review, vol. 71, no. 1, pp. 44–66,
1977.

[77] M. Fang, H. Takauj, S. Kaneko, and H. Watanabe, “Robust optical flow
estimation for underwater image,” in Optomechatronic Technologies,
2009. ISOT 2009. International Symposium on. IEEE, 2009, pp. 185–
190.

[78] M. Fang, H. Takauji, and S. Kaneko, “Rapid computation of robust
optical flow by efficient complementary voting,” in World Automation
Congress (WAC), 2010. IEEE, 2010, pp. 1–6.

[79] M. P. Fiorina and K. A. Shepsle, “Is negative voting an artifact?”
American Journal of Political Science, pp. 423–439, 1989.

[80] J. Durillo, A. Nebro, and E. Alba, “The jmetal framework for
multi-objective optimization: Design and architecture,” in CEC 2010,
Barcelona, Spain, July 2010, pp. 4138–4325.

[81] J. J. Durillo and A. J. Nebro, “jmetal: A java framework for multi-
objective optimization,” Advances in Engineering Software, vol. 42,
pp. 760–771, 2011. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0965997811001219

[82] Q. Song, J. Ni, and G. Wang, “A fast clustering-based feature subset
selection algorithm for high-dimensional data,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 25, no. 1, pp. 1–14, 2013.

[83] L. Yu and H. Liu, “Feature selection for high-dimensional data: A
fast correlation-based filter solution,” in Proc. 20th Intl Conf. Machine
Leaning, vol. 20, no. 2, 2003, pp. 856–863.

[84] ——, “Efficient feature selection via analysis of relevance and redun-
dancy,” The Journal of Machine Learning Research, vol. 5, pp. 1205–
1224, 2004.

[85] M. A. Hall, “Correlation-based feature selection for machine learning,”
Ph.D. dissertation, The University of Waikato, 1999.

[86] M. Robnik-Šikonja and I. Kononenko, “Theoretical and empirical analy-
sis of relieff and rrelieff,” Machine learning, vol. 53, no. 1-2, pp. 23–69,
2003.

[87] M. Dash, H. Liu, and H. Motoda, “Consistency based feature selection,”
in Knowledge Discovery and Data Mining. Current Issues and New
Applications. Springer, 2000, pp. 98–109.

[88] H. Almuallim and T. G. Dietterich, “Learning boolean concepts in the
presence of many irrelevant features,” Artificial Intelligence, vol. 69,
no. 1, pp. 279–305, 1994.

[89] M. Friedman, “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance,” Journal of the American Statistical
Association, vol. 32, no. 200, pp. 675–701, 1937.

[90] ——, “A comparison of alternative tests of significance for the problem
of m rankings,” The Annals of Mathematical Statistics, vol. 11, no. 1,
pp. 86–92, 1940.

Kaustuv Nag received the B.Tech. degree in com-
puter science and engineering from the West Bengal
University of Technology, Kolkata, India, and the
M.Tech. degree in computer science and engineering
from the National Institute of Technology, Durga-
pur, India, in 2010 and 2012, respectively, and is
currently pursuing the Ph.D. degree from Jadavpur
University, Kolkata.

He was a Visiting Researcher at Indian Statistical
Institute, Kolkata. His current research interests in-
clude genetic algorithm, genetic programming, and

artificial neural networks. Mr. Nag is a recipient of INSPIRE Fellowship.

Nikhil R. Pal (M’91-SM’00-F’05) is a Professor
with the Electronics and Communication Sciences
Unit of the Indian Statistical Institute. His current
research interest includes bioinformatics, brain sci-
ence, fuzzy logic, pattern analysis, neural networks,
and evolutionary computation.

Dr. Pal was the Editor-in-Chief of the IEEE
TRANSACTIONS ON FUZZY SYSTEMS from
January 2005 to December 2010. He has served/been
serving on the editorial/advisory board/steering com-
mittee of several journals, including the International

Journal of Approximate Reasoning, Applied Soft Computing, International
Journal of Knowledge-Based Intelligent Engineering Systems, International
Journal of Neural Systems, Fuzzy Sets and Systems, International Journal of
Intelligent Computing in Medical Sciences and Image Processing, Fuzzy In-
formation and Engineering: An International Journal, IEEE TRANSACTIONS
ON FUZZY SYSTEMS, and the IEEE TRANSACTIONS ON CYBERNET-
ICS. He has given several plenary/keynote speeches in different premier
international conferences in the area of computational intelligence. He has
served as the General Chair, Program Chair, and Co-Program Chair of several
conferences. He was a Distinguished Lecturer of the IEEE Computational
Intelligence Society (CIS) and was a member of the Administrative Committee
of the IEEE CIS. He is currently the Vice President for Publications of the
IEEE CIS. He is a fellow of the National Academy of Sciences, India, a
fellow of the Indian National Academy of Engineering, a fellow of the Indian
National Science Academy, and a fellow of the International Fuzzy Systems
Association.

