Searching for Activation Functions Using a Self-Adaptive
Evolutionary Algorithm

Andrew Nader
Department of Computer Science and Mathematics,
Lebanese American University
Byblos, Lebanon
andrew.nader@lau.edu

ABSTRACT

The introduction of the ReLU function in neural network architec-
tures yielded substantial improvements over sigmoidal activation
functions and allowed for the training of deep networks. Ever since,
the search for new activation functions in neural networks has been
an active research topic. However, to the best of our knowledge, the
design of new activation functions has mostly been done by hand.
In this work, we propose the use of a self-adaptive evolutionary
algorithm that searches for new activation functions using a genetic
programming approach, and we compare the performance of the
obtained activation functions to ReLU. We also analyze the shape of
the obtained activations to see if they have any common traits such
as monotonicity or piece-wise linearity, and we study the effects
of the self-adaptation to see which operators perform well in the
context of a search for new activation functions. We perform a thor-
ough experimental study on datasets of different sizes and types,
using different types of neural network architectures. We report
favorable results obtained from the mean and standard deviation
of the performance metrics over multiple runs.

CCS CONCEPTS

« Computing methodologies — Genetic programming; Ge-
netic algorithms; Neural networks;

KEYWORDS

Activation functions, Neural Architecture Search, Neural Networks,
Deep Learning, Evolutionary Computation, Self-Adaptive Genetic
Algorithms, Genetic Programming

ACM Reference Format:

Andrew Nader and Danielle Azar. 2020. Searching for Activation Functions
Using a Self-Adaptive Evolutionary Algorithm. In Genetic and Evolutionary
Computation Conference Companion (GECCO °20 Companion), July 8-12,
2020, Canciin, Mexico. ACM, New York, NY, USA, 2 pages. https://doi.org/10.
1145/3377929.3389942

1 INTRODUCTION

The ReLU activation function defined by f(x) = max(0, x) is the
most commonly used activation function nowadays, since it is fast

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’20 Companion, July 8-12, 2020, Canciin, Mexico

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7127-8/20/07...$15.00
https://doi.org/10.1145/3377929.3389942

145

Danielle Azar
Department of Computer Science and Mathematics,
Lebanese American University
Byblos, Lebanon
danielle.azar@lau.edu.lb

to compute and allows for the training of deep networks. However,
ReLU is not optimal and it does have some problems, such as the
dying neurons problem [2]. Other modern activation functions
include Leaky ReLU, ELU, PReLU, SELU, GELU, and Swish [3]. All
of these activation functions, except for Swish, were designed by
hand. Inspired by the recent success of Neural Architecture Search
methods, we propose a self-adaptive evolutionary algorithm to
automatically search for new activation functions that work well.
We also look into the activation functions found to see if they have
any common properties such as monotonicity.

2 ALGORITHM DESCRIPTION

We use a self-adaptive evolutionary algorithm which relies on ge-
netic programming to search for new activation functions. In our
approach, we encode our chromosome as a sequence of five genes
of the form <activation function, activation function crossover oper-
ator, activation function mutation operator, chromosome crossover
operator, weight initialization scheme>. The first gene consists of the
activation function which is encoded as a standard genetic program-
ming tree, with the leaf nodes being the input to the activation. The
unary operations available are the predefined tensorflow functions
relu, elu, sigmoid, tanh, swish, sin, cosin, atan ,sinh, cosh, leaky relu,
softplus, erf, and absolute value. The binary operations we use are
add, subtract, multiply, maximum, and minimum. Instead of fixing
the choice of mutation and crossover operator for the activation
function trees, we encode them in a self-adaptive way as part of our
chromosome. The way two chromosomes can be crossed over is also
subject to self-adaptation. Given two parent chromosomes, we first
randomly choose a chromosome crossover operator from one of
the parents, and we apply it to produce two children chromosomes.
We then randomly choose one of the activation function crossover
operators present in the two parent chromosomes, and we use it to
crossover the activation functions present in the children. Finally,
the mutation operator of each child chromosome is used to mutate
the activation function with a certain probability. We chose a self-
adaptive scheme since we have no prior knowledge as to which
variation operators are best when dealing with activation functions,
and because there is evidence that the best choice of operator is
not fixed, but that it varies depending on which generation the
algorithm is on. We chose to use the DEAP python library for the
implementation of the variation operators [1]. The tree crossover
operators available to our algorithm are the built in DEAP cxOne-
Point and cxOnePointLeafBiased (with termpb set to 0.9) The tree
mutation operators available are also available in DEAP, and they
are the mutShrink, mutlnsert, and mutNodeReplacement operators.
We constrain the tree size to be between 4 and 10 using a static

https://doi.org/10.1145/3377929.3389942
https://doi.org/10.1145/3377929.3389942
https://doi.org/10.1145/3377929.3389942

GECCO ’20 Companion, July 8-12, 2020, Canctin, Mexico

bloat limit. The chromosome crossover methods are the standard
one-point-crossover with random index, two-point-crossover with
random index, and uniform crossover. Instead of also self-adapting
the mutation and crossover rates, we chose to keep them constant
at 5% and 80% respectively, since we hypothesize that the choice
of operators will play a more important role here. We also add a
weight initialization gene: the possible weight initialization meth-
ods for our algorithm are random normal, random uniform, truncated
normal, variance scaling, orthogonal lecun uniform, lecun normal,
glorot uniform, glorot normal, he normal, and he uniform. We use the
ADAM optimizer with a batch size of 32 for all of our experiments.

We test our algorithm on three datasets: the German Credit
dataset, the NSL-KDD dataset, and the CIFAR-10 dataset. For the
German Credit dataset, we keep a constant population size of 500
for 200 generations, with each individual trained for 50 epochs. The
NSL-KDD and CIFAR-10 datasets are very large, and due to a lack
of access to computational power, we choose to take advantage of
our observations that the relative ranking of individuals stays the
same, and we gradually decrease the size of the population while
increasing the number of epochs. We start with 500 individuals
trained for 10 epochs, decrease to 250 individuals trained for 20
epochs at the second iteration, 125 individuals trained for 30 epochs
at the third iteration, and then 100 individuals trained for 50 epochs
at the fourth iteration. This is kept up to the 20th iteration, where
we start to decrease the population size by 10 at each iteration while
keeping the number of epochs constant, until we reach a population
size of 30 at iteration 29. We then run one more iteration with a
population size of 30 and an epoch number of 50, and we stop
the evolutionary algorithm. Finally, we get the mean and standard
deviation of the performance metrics of the final individuals over
50 runs. The fitness of an individual in the genetic algorithm is
evaluated on a randomly generated development set (10% for the
NSL-KDD and CIFAR-10, 30% for the German Credit) to prevent
finding activations that over-fit easily. We use the f1-measure for
the German Credit dataset, accuracy+f1 measure for the NSL-KDD
dataset, and accuracy for the CIFAR-10 dataset. When evaluating
on the test set, we use model-checkpointing for 100 epochs on a
development set for the NSL-KDD and CIFAR-10 datasets: we do
not do this for the German Credit dataset since it is small and thus
the development set results in a high variance metric. The test sets
for the NSL-KDD and CIFAR-10 are predefined, and we chose to use
a 2/3-1/3 split for the German Credit dataset. We use an architecture
of 2 hidden layers and 30 neurons each for the German Credit, and
4 hidden layers of 100 neurons for the NSL-KDD. Both architectures
use Ly regularization and a dropout rate of 50%, and we use MinMax
scaling for both. We use the LeNet-5 architecture for the CIFAR-10,
and we scale by dividing the pixels by 255.

3 EXPERIMENT RESULTS

All three functions in Table 1 were associated with a Random Uni-
form weight initialization scheme. The activation functions do not
appear to share similar traits other than the fact that they are mono-
tonic.

The evolutionary algorithm associated atan(x+|x|+|[x|+x]|) in Ta-
ble 2 with a truncated normal weight initialization scheme, and

146

Andrew Nader and Danielle Azar

Table 1: Results on German Credit Dataset

Accuracy Recall Precision F1 Measure

0.72982(0.01035) 0.7994(0.02984) 0.81762(0.00956)
0.81515(0.01074)
0.80559(0.00978)

0.82896(0.00757)

0.80797(0.01098)
0.81768(0.01408)
0.81807(0.00712)
0.79735(0.00754)

2x+cos(x)

6x+2c05(x)+max(2x,x)+max(x,sin(cos(x)) 0.73976(0.01413)
0.73679(0.00927)
0.722(0.00863)

0.82145(0.03619)
0.83123(0.01587)
0.76826(0.01422)

6x+sinh(2x)+sinh(x)
ReLU

Table 2: Results on NSL-KDD Dataset

Accuracy Recall Precision F1 Measure

atan(x-+[x]+[|x|+x]) 0.77854(0.01847)
0.77287(0.01122)
0.77974(0.01836)

)

0.74662(0.00616,

0.9241(0.00283)
0.92428(0.00203)
0.9242(0.00255)
0.92786(0.00173)

0.67906(0.02144)
0.67206(0.01293)
0.68041(0.02124)
0.64267(0.00657)

0.78263(0.01375)
0.77816(0.00832)
0.78357(0.01369)
0.75935(0.00414)

swish(max(sin(erf(x)).x) +|elu(x)|)+[x+min(x.erf(x))|

ef(relu(x)+ x|+ min(x,erf(min(2|x|,[x|+swish(x)))|

ReLU

the other 2 individuals with a glorot normal weight initialization
scheme. One of the activation functions is not monotonic, which
suggests that this is not a necessary property, and two functions
have hard zeroes like ReLU.

Table 3: Results on CIFAR-10 Dataset

Accuracy

0.65736(0.0066)
max(|x,x*) 0.65009(0.00567)
x| 0.64233(0.0055)
ReLU 0.63184(0.01136)

max(x|x?)

The algorithm chose the Orthogonal weight initialization method
for all three activations in Table 3. The activations are non mono-
tonic, they are strictly positive, and they do not have a hard zero.
We have succeeded in finding activations that outperform ReLU by
a meaningful margin in all of our experiments: this suggests that it
is worth evolving new activation functions when performing Neu-
ral Architecture Search. However, the variation operators that were
most prominent in the individuals were different for each dataset:
for example, cxOnePointLeafBiased completely disappeared from
the population in the experiment on the NSL-KDD run, while it
remained in a good percentage of the individuals on the German
Credit dataset (around 40%). There are three possible explanations
for this phenomenon: First, the variation operators do not play as
big a role as assumed. Second, it could be that the self-adaptiveness
did not have the time to take hold on two of the experiments as they
were run for 30 epochs only. Third, the best variation operators are
problem dependent. For future work, we will try out our algorithm
on bigger architectures and study the effect of variation operators
on activation functions in more depth.

REFERENCES

[1] Félix-Antoine Fortin, Francois-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy.
Journal of Machine Learning Research 13 (jul 2012), 2171-2175.

[2] LuLu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. 2019. Dying ReLU
and Initialization: Theory and Numerical Examples. arXiv preprint arXiv:1903.06733
(2019).

[3] Prajit Ramachandran, Barret Zoph, and Quoc V Le. 2017. Searching for activation
functions. arXiv preprint arXiv:1710.05941 (2017).

	Abstract
	1 Introduction
	2 Algorithm Description
	3 Experiment Results
	References

