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Abstract—Usually, the data-driven methods of the systems of
partial differential equations (PDEs) discovery are limited to the
scenarios, when the result can be manifested as the single vector
equation form. However, this approach restricts the application
to the real cases, where, for example, the form of the external
forcing is of interest for the researcher and can not be described
by the component of the vector equation. In the paper, a multi-
objective co-evolution algorithm is proposed. The single equations
within the system and the system itself are evolved simultaneously
to obtain the system. This approach allows discovering the
systems with the form-independent equations. In contrast to
the single vector equation, a component-wise system is more
suitable for expert interpretation and, therefore, for applications.
The example of the two-dimensional Navier-Stokes equation is
considered.

Index Terms—equation discovery, system discovery, partial
differential equation, PDE, data-driven methods, multi-objective
optimization, MOEA/DD

I. INTRODUCTION

Systems of differential equations are a powerful tool, com-

monly used to represent various dynamical processes of differ-

ent nature. For example, the flow of viscous liquid is described

with the Navier-Stokes system of partial differential equations,

while a simplified hunter-prey ecosystem may be described

with Lotka-Volterra equations. However, the derivation of

systems of differential equations is a complex task, requir-

ing analysis of the process and knowing its properties. The

expert time spent on the system derivation can be reduced by

application of data-driven techniques of differential equation

discovery.

A number of works are devoted to the modelling of similar

systems with the common machine learning methods, for

example [1], where the LSTM-based approach is utilized to

obtain and ”solve” the equation. Their results, despite having

decent quality, have low interpretability and, therefore, do not

contain any information about the system structure. Thus, the

use of these models can be limited to the prediction of future

state of the process. While this approach can be sufficient in

many practical cases, the ability to interpret the result may be

beneficial both for research purposes and the confidence in the

forecast of the model. The desired property can be achieved

by a model of a system in a form of a system of differential

equations.

The data-driven partial differential equation (PDE) discov-

ery may link classical methods and modern machine learning

methods (see Sec. II). If the data-driven model is expressed in

the form of differential equations, on the one hand, the classi-

cal analysis methods can be applied. On the other hand, such

a form is understandable by scientists in various application

fields.

Single PDE discovery algorithms are usually implemented

in a following manner: the sparse regression is applied to the

pre-defined library of terms. We proposed the evolutionary-

based algorithm that allows combining evolutionary optimiza-

tion and sparse regression to solve symbolic regression - like

problems effectively.

Transfer to the multi-objective optimization makes the anal-

ysis of the resulting model forms more flexible. For example,

the model’s complexity may be controlled, and the Pareto

frontier of the model with different complexity and data

reproduction levels may be obtained. In a more general multi-

objective discovery algorithm case, the partial differential

equations systems with different properties may be obtained.

Modern equation discovery methods usually treat systems as

a single equation in a vector form [7]. However, this restricts

the application of the system discovery. Systems overall are

not interesting since their amount used in modern physics is

established and restricted. It is often of interest to obtain the

forcing function or additional parametrizing equation, which

is impossible in the vector form case. Regression methods are

hardly applicable in non-vectorizable system discovery. Evo-

lutionary multi-objective system discovery may give space for

various applications since the system equations are discovered

separately.

The paper describes the combined method that uses multi-

objective co-evolutionary optimization (simultaneous equa-

tions and the system evolution) and the sparse regression to

obtain the partial differential equations system.

The paper is structured as follows: Sec. II contains a brief

review of the equation and their systems discovery algorithms;

Sec. III is dedicated to the mathematical description of the

multi-objective system discovery; Sec. IV describes the partic-

ular realization of the algorithm; Sec. V briefly highlights the978-1-7281-8393-0/21/$31.00 ©2021 IEEE
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results obtained on a synthetic data - two-dimensional Navier-

Stokes equation solution; Sec. VI outlines the paper and also

sketches the future work directions. All required data and code

that are required to reproduce the results are available from

the URL placed in Sec. VII

II. RELATED WORK

In the recent years, the problem of data-driven discovery

of differential equations has seen surging interest: single

differential equation discovery is the object of study in the

works [2]–[5]. There are two main tools, used in the process

of differential equation discovery: sparse regression [2], [3]

and neural networks [4], [5].

Sparse regression consists of differential terms library defi-

nition and following sparse regression on the defined set. This

approach has a speed drawback since the terms library should

be as extensive as possible to cover all the possible differential

equation types. The larger the set is, the slower is optimization

process in sparse regression. However, this approach is well-

developed and has different application areas.

One of the main advantages of the sparse regression meth-

ods is the straightforward mechanism of the equation discov-

ery. In particular, by changing the sparsity hyperparameter,

one may obtain the trade-off between complexity vs. quality

equation.

Neural networks are fast and popular since there are a lot of

established frameworks for neural network learning that allows

the scientist to build the neural network without in-depth

knowledge in the field [11]. However, they are susceptible to

the training data. Thus, an additional filter network is required

for the PDE discovery algorithm to be functional [4]. As a

drawback, the results cannot be tuned to obtain the model

with desired parameters. Also, the way to obtain the result is

hardly interpretable, and the obtained equation is formed using

“blackbox” in the form of the neural network.

Previously, we proposed the algorithm for the single equa-

tion discovery [6]. Its operation is based on the combination

of evolutionary optimization and sparse regression. The evo-

lutionary optimization is aimed on selecting the best possible

terms of the equation in forms of sub-libraries, where each

entry represents a term, evaluated in the studied domain. The

sparse regression is applied to filter out the insignificant terms

from the set of terms to keep it as small as possible. Such

approach may be considered a symbolic regression version

with additional evolutionary operators to obtain new terms

and method of keeping the discovered structure as simple as

possible, while preserving decent predictive quality.

The PDE systems are usually discovered as the equations

in the vector form [7] meaning the methods for the single

equation are applied to the vector values. The vector form

restricts the type and the form of the obtained equation.

Nevertheless, the ODE field situation is more straightforward,

and we know the solution to obtain “pure” systems of the dif-

ferential equations. The evolutionary approach to the discovery

of systems of partial differential equations is a novel concept:

previously, this technique was applied only to the discovery

of a single differential equation.

It should be emphasized that the problem of ordinary

differential equation (ODE) systems in “pure” form solution

is partially shown in [8]. However, due to the non-Markovian

models’ specificity, this approach cannot be applied to the

general ODE and PDE systems discovery.

III. PROBLEM STATEMENT

The standard problem formulation of the data-driven equa-

tion discovery assumes that equation is restored from the

discrete datafield D = {(u1(~xi), ..., un(~xi)), i = 1, 2, ...,M},

where M is the number of the observation datapoints ~xi ∈
Ω ⊂ Rm available. It is assumed that D is the discrete ana-

logue of the continuous field ~u(~x) = (u1(~x), ..., un(~x)) , ~u :
Rm → Rn that represent the observation recordings of a

physical process. Resulting discovered equation’s system of

k equations has the form:

S(~u) =







L1(~u) = 0
...

Lk(~u) = 0
(1)

In Eq. 1 single differential operator Li ∈ Eq represents the

single differential equation, Eq is the set of all possible equa-

tions that could be obtained with the given algorithm. Since

Eq. 1 is assumed to be the system, all equation are assumed

to be fullfiled simultaneously. In general, equation system S̄

discovery task in an optimization problem formulated as:

S̄ = arg min
S∈Eqk

S(~u) (2)

In Eq. 2 Eqk = Eq × ... × Eq is the Cartesian product of

the sets of the possible equations. We emphasize that since

only the discrete number of the points given, the operators are

replaced with the discrete analogs such as finite differences.

And the minimization task is reformulated as

∀i S̄ = arg min
S∈Eqk

S(~ui) , ~ui ∈ D (3)

In practice, such formulation (Eq. 3) is hard to apply to the

given method. Therefore, it is often rewritten as

S̄ = arg min
S∈Eqk

i=M
∑

i=1

||S(~ui)|| (4)

In Eq. 4 norm || · || is chosen concerning problem specifics.

Introducing the multi-objective formulation allows tuning

the discovered system in various ways. For example, for some

problems, the data reproduction precision is less critical than

the equation complexity.

The first group of the objectives we refer to as “quality”. For

a given equation L, the quality metric is the data reproduction

norm that is represented as

Q(Lj) =

i=M
∑

i=1

||Lj(~ui)|| (5)
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The second group of objectives we refer to as “complexity”.

For a given equation L, the complexity metric is bound to the

number of the differential terms in the equation that is denoted

as #(L)

C(Lj) = #(Lj) (6)

Two functions for every of the k equations in the system

form the space of the multi-objective optimization objectives.

The next step is to define multi-objective optimization operator

Eq. 7 and solve multi-objective optimization problem.

F (L1, ..., Lk) = G(Q(L1), C(L1), ..., Q(Lk), C(Lk)),

F : R2k− > Rl (7)

Usually, case l = 2k is considered. It means that the

objectives remain without changes and form the space for

multi-objective optimization. In this case G = E, where E is

the equality operator. The section below contains the particular

realization used to obtain the PDE system using a combined

evolutionary algorithm and sparse regression.

IV. ALGORITHM DESCRIPTION

The developed algorithm of differential equation/system of

differential equation discovery is composed of two elements:

the tool for constructing a single equation (system of equa-

tions) according to the specific parameters and data, and

the multi-objective optimization procedure, that detects the

Pareto frontier of trade-offs between the previously introduced

”quality” of the process representation and the ”complexity”

metrics of individual equations. The resulting algorithm is co-

evolutionary and consists of two parts shown in the general

scheme Fig. 1.

The single equation discovery part is a single-objective

evolutionary algorithm that is described in detail in Sec. IV-A,

and the system discovery part is multi-objective and described

in Sec. IV-B. Both parts are used simultaneously and form

co-evolution.

A. Evolutionary algorithm of equation discovery

The construction of every equation begins with the defini-

tion of a set of function, i.e. tokens T = {T1, T2, ... , Tn},

where each subset Tj represents a separate class of function

with specific properties, for example, derivatives of a spe-

cific components of velocity vector across all axes: Tk =
{u, ∂u

∂x
, ∂u
∂y

, ∂u
∂z

, ∂u
∂t
, ∂2u
∂x2 , ...}. The tokens will be used as the

differential operator elements (most commonly - factors in the

term) as in Eq. 8. The evolutionary algorithm of a single

equation discovery, performs the construction of the data-

driven equation in regards to minimization of discrepancy:

Lk −→ 0. The pseudo-code for the procedure of system of

equations discovery is presented on the Algorithm 1.

Lk =
n terms
∑

i=1

αi

n factors
∏

j=1

tij , tij ∈ T (8)

The encoding of the evolutionary algorithm individual is

done in the following manner: a chromosome represents a

candidate equation, where its elements, genes, representing

factors of the equation, are divided into groups of random

size (up to a specific limit) to represent the terms. Each factor

can have alterable parameters that are also optimized during

the equation construction (for example, a sine function can

be used as a token, and it contains parameters: frequency,

axis, along with that the sine is taken, and power). During

the initialization of the algorithm, a set of candidate equations

is randomly created. The example of the single equation is

shown in Fig. 2.

The weights αi represent the candidate equation’s coeffi-

cients and shall be optimized by additional technique. The

weight vector’s desired property is its sparsity, and it can

be achieved with the sparse regression operator. When the

equation structure is obtained from the evolutionary operator’s

step, each of the terms is approximated with the other terms

taken as features by the LASSO regression, and the term with

the best approximation is selected as the final ”right side” of

the equation. The non-zero coefficients with the correspond-

ing terms compose the desired equation. This approach is

introduced to exclude the unavoidable trivial structures with

zero weights vectors, appearing with zero-valued right part

approximation. Also, it is used to view all possible equations

containing the same structure. However, LASSO regression

can only obtain intermediate values of the equation coefficients

β due to the necessity to have data-centered and normalized.

So, we have to solve the problems of minimizing the function

Eq. 9 in respect to the coefficients β for each equation term,

selected as “target”. Here, in the problem of approximation of

k-th term, we have to evaluate the terms of the equation in

points with known values to form the matrix Fk and vector

of target term values Ftarget,k.

‖Fkβ − Ftarget,k‖
2
2 + λ‖β‖1 −→ min

β
(9)

After calculating coefficients β, we need to initiate the linear

regression on original data to discover the correct values of the

coefficients α.

The fitness function is the inverse value of a norm of

the best equation term approximation error as in Eq. 10. By

maximizing that error, we perform the differential operator’s

search, which is close to zero.

ffitness = (||Lk||2)
−1

= (||
n terms
∑

i=1,i 6=t idx

αi

n factors
∏

j=1

tij−

−

n factors
∏

j=1

tt idx j ||2)
−1

(10)

Both recombination and mutation are used as variation

operators to improve the quality of the population. The re-

combination operator (Fig. 2) operated differently on genes
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Fig. 1. Principal scheme of the algorithm. Colors are representing the two different parts of the co-evolutionary algorithm.

of two offspring, depending on the similarities of the parents’

ones.

Fig. 2. Individual form and recombination scheme of the single equation
part of the algorithm. Grey and red colors are representing two different
individuals.

All terms are separated into three groups: the terms with

the same tokens with the same parameters, the terms with

the same tokens, the different parameters, and terms with

unique tokens. The first group is not affected by crossover,

the offspring duplicates of the terms from the second group

have values of parameters as a proportion between their parent

ones, and the terms of the third group can be swapped with

defined probability.

The mutation operator is implemented in two types. First,

the gene can be changed to a new one, resulting in the change

of an equation term or a factor inside a term as shown in

Fig. 3.

Fig. 3. Mutation operator of the first kind. In this case whole term in the
equation is replaced with another.

Next, the mutation is used for the optimization of token

parameters: if a token has alterable parameters (i.e., frequency

of a sine function), a random increment from the normal

distribution N (0, σ), with σ as a fraction of allowed range

for parameter, can be added as shown in Fig. 4.

Several challenges appear with the shift from discovering

a single equation to the derivation of differential equations

systems. The construction of the system of equations is done

in sequential order by equations. To avoid isolated equations,

Fig. 4. Mutation operator of the second kind. In this case term remains the
same, however, either the parameters or differential order and variable may
be altered or additional differential term may be inserted in the product.

where each of the equations describes a separate variable

with a probably overtrained structure, we try to connect the

system’s equations by introducing the variable change held by

the resulting equation. After obtaining the value of ”equation

error” Li, it is subtracted from the values of the new tokens

as in Eq. 11.

tij |k+1 = tij |k − Lk = tij −
k

∑

n=1

Ln (11)

Also, we have introduced restrictions on the duplicated

appearance of equations, describing the same variable, and

only it (for example, a pair of equations ∂f
∂x

+ ∂f
∂y

= 0, and
∂f
∂t

= 0), to force the equations to connect the variables. By

penalizing the fitness value (ffitness = 0, if it repeatedly

only describes the same variable, as any of the previous

equations) of such equations, we force the evolutionary to

promote equations that describe all variables of a dynamic

system.

B. Obtaining the Pareto frontier of the equation systems

In the previous developments, we have examined that by al-

tering the algorithms’ hyperparameters, mainly the LASSO re-

gression’s sparsity constant, utilized in the discovery of terms,

we can shift the trade-off between quality and complexity. The

problem of multi-objective optimization in space, created by

the equations’ quality and complexity metric, is solved by the

Many-Objective Optimization Evolutionary Algorithm Based

on Dominance and Decomposition (MOEA/DD), proposed in

[9].
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Data: set of tokens T = {T1, T2, ... Tn}, where

subsets are divided into dependent and

independent variables, sparsity constant for each

equation (λ1, ... , λn eq)
Result: system of differential equations

for equation idx = 1 to n vardependent do
Randomly generate initial population of candidate

equations from tokens from set T ;

for individual in population do

right part idx = 0;

max fitness val = −inf ;

for target idx = 0 to terms number do
Apply sparse (LASSO) regression to find

intermediate coefficients β;

Apply linear regression to find correct

coefficients of the equations & get fitness

value fitval;

if fit val > max fitness val then

max fitness val = fit val;

right part idx = target idx;

else
pass

for epoch = 1 to epoch number do

population.sort();

Remove worst solutions to maintain population

size;

Tournament selection of parents for

recombination;

Apply recombination and mutation operators;

for new individual in offsprings do
Use LASSO operator and linear regression

to find best partition into left & right parts

and calculate fitness (as above);

Add new solutions into population;
Replace variables: t′ = t− Lu, t ∈ T

Algorithm 1: The pseudo-code of system of equations

discovery

In other words, the multi-objective optimization algorithm

operates as the meta-optimization for the main algorithm of

system discovery. In this evolutionary process, the individuals

represent systems of differential equations. The encoding

operates as follows: the sparsity constants for each equation

are combined into a vector (λ1, λ2, ..., λn eq, λi ∈ R+)
(due to the properties of LASSO operator, sparsity constants

are positive real values), which is considered an evolution-

ary algorithm chromosome and is affected by evolutionary

operators during the search process. This representation’s

motivation is based on the notion that the equation discovery

algorithm converges to the single solution with the specified

hyperparameters. Therefore, with enough epochs for equation

discovery, a vector of sparsity constants unequivocally defines

a system of differential equations.

In the initial stage of the evolution, according to the standard

workflow of the MOEA/DD algorithm, we have to evaluate

the best possible value for each of the objective functions: for

complexity metric, it is reasonable to set the value to 0, while

for the process representation quality (L2 norm of the vector of

error in the grid points) the same assumption can be made only

to a certain degree: the possible stochastic nature of processes

or noise, present in measurements, limit the resulting quality.

Therefore, a testing run of an equation discovery algorithm

can be held to approximate the best possible quality of a

solution. Next, to start the evolutionary search, we generate the

population of solutions by finding systems with randomized

sparsity constants and divide the search space into sections

by weights vectors in the manner proposed in [10]. With the

weights mechanism, the algorithm can preserve diversity in

the population and cover the Pareto frontier with candidate

points.

We use the conventional variation techniques with the

introduced representation of individuals: mutation and recom-

bination (crossover) operators. The mutation operator involves

changing a candidate from the population with the addition of

an increment from a normal distribution N (0, σ) to the specific

sparsity constant in its gene with a pre-defined probability

pmut ∈ (0, 1), as in the Eq. 12.

(λ1, λ2, ... , λn eq) −→ (λ′
1, λ

′
2, ... , λ

′
n eq)

pi ∼ U(0, 1)
if pi < pmut then λ′

i = λi + δ, δ ∼ N (0, σ)
else λ′

i = λi

(12)

The recombination operator involves the creation of new

individuals using the selected parents. The offsprings should

have characteristics resembling both their parents, which is

implemented by the selection of offsprings genes’ values in

the diapason between their parents: the new values for each

of the gene in the offsprings’ chromosomes are selected as

a weighted sum of their parents’ ones, having coefficient

α ∈ U(0, 1). The systems’ recombination scheme is shown

in Eq. 13.

(λ1
1, λ

1
2, ... , λ

1
n eq) −→ (λ′1

1 , λ
′1
2 , ... , λ

′1
n eq)

(λ2
1, λ

2
2, ... , λ

2
n eq) −→ (λ′2

1 , λ
′2
2 , ... , λ

′2
n eq)

pi ∼ U(0, 1)
if pi < pxover thenλ′1

i = α ∗ λ1
i + (1− α) ∗ λ2

i

elseλ′1
i = λ1

i , λ
′2
i = λ2

i

(13)

The selection of parents for the crossover is held for each

objective function space region, defined by weights vectors.

With a specified probability of maintaining the parents’ se-

lection, we can select an individual outside the processed

subregion to partake in the recombination. In other cases, if

there are candidate solutions in the region associated with the

weights vector, we make a selection among them. The final

element of MOEA/DD is population update after creating new

solutions, which is held without significant modifications.

Both algorithms Alg. 1 and Alg. 2 are used simultaneously

in a co-evolution manner to obtain the Pareto frontier of the

systems based on observational input data.
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Data: set of tokens T = {T1, T2, ... Tn}; subsets are

divided into dependent and independent

variables; objective functions: quality and

complexity of systems

Result: Pareto frontier, composed of systems of

differential equations

Create a set of weight vectors

w = (w1, ..., wn weights), wi = (wi
1, ..., w

i
n eq+1);

for weight vector in weights do
Select K nearest weight vectors to the

weight vector;
Randomly generate a set of candidate systems of

equations (using Alg. 1) & divide them into

non-dominated levels;

Divide the initial population into groups by subregion,

to which they belong;

for epoch = 1 to epoch number do

for weight vector in weights do

Parent selection;

Apply recombination to parents pool and

mutation to individuals inside the region of

weights;

for offspring in new solutions do
Optimize the structure of systems of

equations for offspring;

Get values of objective functions for

offspring;

Update population;
Algorithm 2: The pseudo-code of Pareto frontier construc-

tion, using adapted MOEA/DD algorithm

V. EXPERIMENTAL STUDIES

To analyze the algorithm’s performance, we have applied it

to the synthetic data set, representing a solution to the known

system of partial differential equations. For that task, we have

selected a Navier-Stokes system of equations with assumptions

of an incompressible fluid, displayed on Eq. 14, that describes

relations between velocity (with velocity components u, v),

and pressure p, and describes a flow of liquid in a pipe. Here,

∆ = ∂2

∂x2 + ∂2

∂y2 is the del operator, and ∇ = ∂
∂x

+ ∂
∂y

is the

Laplace operator, ρ is density, that is assumed to be constant

in the domain, and F = (~Fx, ~Fy) is the mass force.











∂u
∂t

= 1
ρ
ν∇2u+ ~Fx − 1

ρ
∂p
∂x

∂v
∂t

= 1
ρ
ν∇2v + ~Fy −

1
ρ
∂p
∂y

∆p = g

(14)

The system of equations was solved on the domain of 0 to

100 with 100 grid nodes at each spatial domain, and from 0 to

10 with 400 grid points in time. The initial conditions for the

velocity are set in Eq. 15 & Eq. 16, while boundary conditions

on area limits Γ were set as u|Γ = 0; v|Γ = 0. Other param-

eters have the following values: Fx = Fy = 0.01; density

ρ = 1
10

; viscosity ν = 1.0. Boundary condition for pressure

was set as p|y=0; y=100 = 4.9x2 − 490x; p|x=0; x=100 = 0.

u|t=0 = 103 sin (
1

104
x(100− x))

sin (
1

104
y(100− y)) sin (

pi

25
x) (15)

v|t=0 = 103 sin (
1

104
x(100− x))

sin (
1

104
y(100− y)) sin (

π

25
y) (16)

From the numerical solution to the system (matrices of

velocity components and pressure values, calculated for a grid

in the studied domain), the algorithm’s input data, represented

by values of derivatives, evaluated on the grid’s points obtained

by numerical differentiation. Earlier works have shown that

the least errors in the derivatives’ values are achieved in the

experiments, where the differentiation is done with the ana-

lytical differentiation of polynomials, fit to the data. Thus, the

building blocks of the equations are represented by functions

u, v, p, and their derivatives across two spatial axes and time

up to 3-rd order ∂u
∂x

, ∂u
∂y

, ∂u
∂t
, ∂v
∂x

, ... , ∂3p
∂t3

.

However, with the blind inclusion of all derivatives, we can

face issues with the discovery of simplified equations in the

forms of ∂f
∂xi

= 0, when the function f does not depend on

the variable xi. For example, in our case, the pressure field is

static. Thus some equations like Eq. 17 with arbitrary order of

derivative n can be discovered with very high fitness values.

∂np

∂tn
= 0 (17)

The analysis of the obtained Pareto frontier and the compar-

ison between discovered equations indicate that the experiment

data can be described with multiple equations with different

quality degrees. In Fig. 5, the complexity metric shows a

number of terms except for constant across all equations of

the discovered system, while the error indicates the sum of

L2-norms of a discrepancy of the corresponding equation of

the systems.

Fig. 5. The Pareto frontier of quality (total L2-norm of the equations)-
complexity (total number of terms in the equations) trade-offs for systems
of equations
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Before analyzing the Pareto frontier, we note that when

the equations contain only one term except constant, the

most straightforward case provides the system description’s

highest error. More complex systems describe the dynamics

with higher quality, while after the construction of momentum

conservation law from the Navier-Stokes system of equation,

coupled with an equation for pressure, the addition of new

terms does not reduce the model’s error. However, the correct

equation for pressure was not constructed due to the equation’s

good quality containing the time derivative of pressure.

The three cases in Fig. 5 show the possibility of tuning

the resulting system. With the modern regression methods,

we may obtain the Navier-Stokes vector equation in the form

Eq. 18.

∂~u

∂t
−

1

ρ
ν ~∇2~u = const (18)

We can obtain the additional pressure equation. However,

the expert is required to show that the third pressure equation

exists.

We note that the proposed algorithm works autonomously.

First system highlighted in Pareto frontier has the form Eq. 19.











∂p
∂t

= 0;
∂3v
∂x3 = 0;
∂3u
∂x3 = const;

(19)

System Eq. 19 shows the case described above. Simple

trivial equations have the lowest possible complexity and good

quality since the analytical differentiation methods result in

zero fields. However, since the numerical differentiation is

used, non-zero fields are obtained, and overall non-zero quality

results from the differentiation error. It cannot be filtered out

automatically since it is unknown whether the system is simple

or the numerical differentiation scheme introduces the error.

Second highlighted system has the form Eq. 20.











∂p
∂t

= 0;
∂2v
∂x2 + α1 1u+ α1 2

∂3v
∂t3

+ α1 3
∂p
∂x

= const;
∂2u
∂y2 + α2 1

∂u
∂y

= const;

(20)

At the point on the Pareto frontier that gives the system

Eq. 20, the separate pressure equation is discovered. The two

other equations represent the data-specific equations, which

give higher quality than the Navier-Stokes system. However,

their form is very sensitive to the changes in data such as

noise, and this system may not be considered as the stable

one.

The third highlighted system has the form Eq. 21 which is

similar to the Navier-Stokes system Eq. 14.











∂p
∂t

= 0;
∂u
∂t

+ α1 1∇p+ α1 2∇
2u = const;

∂v
∂t

+ α2 1∇p+ α2 2∇
2u = const;

(21)

We achieve the automatic pressure equation separation

together with the complete set of component-wise equations.

As seen, the analysis of the Pareto frontier makes the in-

terpretation of the system discovery process clear. We may

change the optimization in a more precise manner to obtain

the system, representing the general data-driving laws such as

the Navier-Stokes equations.

VI. CONCLUSION

In this paper, we have proposed an algorithm of differential

equations systems discovery. We combine the evolutionary

algorithm of obtaining a system with the multi-objective

optimization problem to provide better insight into a discov-

ered equation’s ability to model the studied process. While

the introduced algorithm of equation or system of equations

derivation can get the best structure possible with the defined

input tokens. In ideal conditions, we will determine which

resulting equation we would like to use for further simulation

during the physical process modeling.

The algorithm has the following properties:

• The equations are obtained in a non-vector form that

allows tuning the models more subtly. Moreover, it allows

to control the process of the equation discovery;

• Introduced evolutionary operators allow to avoid the pre-

defined library of differential terms that increases the

variety of resulting equations;

• Multi-objective optimization allows to tune every equa-

tion in the system and obtain Pareto frontier of the models

that increase the expert interpretation possibilities.

The further work on the related topic will be based mainly

on the area of algorithm convergence to the complete struc-

tures that describe a process, avoiding overtraining as well as

simplified solutions, such as the ones faced in the experiments,

and the area of improving links between the equations of the

system. Also, algorithm performance shall be addressed to

make its application easier for the researcher with ordinary

computational powers.

VII. CODE AND DATA AVAILABILITY

The numerical solution data and the Python code that

partially reproduce the experiments are available at the GitHub

repository 1.
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