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Abstract: Modern electrocardiography (ECG) uses a constructed reference potential for the majority
of leads. This reference potential, named after its inventor as the Wilson central terminal, is assumed
to have negligible value and to be stationary during the cardiac cycle. However, the problem
of its variability during the cardiac cycle has been known almost since the inception of 12-lead
electrocardiography. Due to the cumbersomeness of the measurement system required to fully
appreciate these variations, this topic has received scant research attention during the last 60 years.
Taking advantage of modern electronic amplifiers’ capability to detect small voltages, drawing only
femtoamperes from physiological equivalent signal sources and of the right-leg connection availability,
we developed a complete electrocardiography device that, aside from the eight independent signals
of the standard 12-lead ECG, allows direct recording of the Wilson central terminal components.
In this paper, we present details of the circuit together with its initial clinical evaluation. For this trial,
we recorded data from 44 volunteer patients at Campbelltown Hospital (Campbelltown, Australia)
and we found that the Wilson central terminal amplitude, as foreseen by Frank and others in the
1950s, is not negligible, its amplitude in relation to the lead II is, on average, 51.2%, and thus it may
be clinically relevant.

Keywords: electrocardiography; Wilson Central Terminal; potential reference

1. Introduction

The majority of modern-day clinicians and researchers appear to have forgotten that at the base
of modern electrocardiography (ECG) is a largely simplifying assumption, that reduces the extremely
complex electrical activity of the heart to a single equivalent electrical dipole rotating in the chest
around a fixed point. This simplifying assumption, formulated in the 1930s by Wilson [1], allowed
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assessment of cardiac electrical activity in the whole body space rather than in its two-dimensional
(2-D) projection over the limbs, as originally outlined by W. Einthoven in 1906 [1]. In other words,
Wilson devised a virtual stationary fixed point (which was named after him: Wilson central terminal
or simply WCT) as a current average of Einthoven’s limb electrodes [1].

The assumption of a single dipole rotating around Wilson’s virtual fixed point was soon
recognized to be the source of potential errors for ECG. In 1954, Frank, in his famous dissertation
“General Theory of Heart-Vector Projection” [2] warned clinicians about the use of this oversimplifying
assumption. Empirical confirmation of Frank’s hypotheses about the amplitude and variability of
the WCT came almost simultaneously when measurements of WCT (requiring the human body to be
encased in a metal structure totally submerged in water for the duration of the recording), showed
that Wilson’s central point is non-stationary during the cardiac cycle and has a large amplitude (up
to 40% of Einthoven’s ECG signal amplitudes). Details of these results were published by both H.C.
Burger and R. Bayley et al. [3,4]. However, until now, without a valid alternative, this largely simplified
hypothesis still lies at the base of modern clinical practice.

In the late 1950s, the electronic amplifier substituted the original string galvanometer, leading to
the ECG gaining in popularity, reducing its cumbersomeness, and allowing simultaneous observation
of more than one lead. However, electronic amplifiers required the addition of a further limb to the
ECG measurement that original inventors of the system had not taken into account: the “right leg.”
Remembering that electronic amplifiers, by construction and design, are better equipped to measure
voltages rather than currents [5–7], and also bearing in mind that an additional reference terminal may
be required for common mode signal rejection reasons, particularly at power-line frequencies [7–10],
it was a natural choice for engineers to connect this additional terminal to the right leg [8,9]. The right
leg was traditionally excluded from the original Einthoven/Wilson ECG model because the string
galvanometer measures directly the current circulating into the surrounding tissues as a consequence
of the shift in the electromagnetic field impressed by the heart’s activation. Therefore, the original
ECG electrical model is arranged as a closed circuit (Einthoven’s triangle) and each of its branches
includes the heart in the current pathway. As can be inferred from the original model, there is no
evident current pathway between the heart and the legs (see Figure 1) [1,11–15].

Taking advantage of the right-leg connection and of the negligible load upon equivalent
physiological signal sources offered by modern voltage amplifiers (in the order of femtoamperes [10–15]),
we developed a full 15-lead ECG device that, aside from the standard 12-lead signals, can record the
independent voltages of the right arm, left arm and left leg. These additional independent voltages
(directly referred to the right leg) can be used to:

1) Measure the WCT amplitude without the need to encase the patient into a metal structure
submerged in water.

2) Correlate the amplitude of the WCT to the cardinal limb leads.

In this paper, we detail the hardware used together with the results of our clinical evaluation.
For this clinical evaluation, we recorded data from 44 patients at Campbelltown Hospital (NSW) and
we measured the amplitude of the WCT and correlated it with the amplitude of lead II. We found
that the amplitude of the WCT could exceed the amplitude of lead II and on average across our
entire population, WCT amplitude is 51.2% of lead II. All the patients volunteered for this study
and gave written consent (this study was approved on 23 September 2015 with the protocol number
HREC/15/LPOOL/302).
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Figure 1. ECG conduction model evolution: Original Einthoven model (top), which included only the
three limbs that form a triangular circuit around the heart, whereas the heart is included in each branch
current pathway; Wilson’s precordial leads (bottom) with WCT definition as current return formed as
the center of Einthoven’s triangle (bottom right). Modified from [1].

2. Methods

We designed our hardware around the instrumentation amplifier INA116 [16], manufactured by
Texas Instruments, Dallas, TX, USA (Burr-Brown series). According to the chip specifications, its bias
current (i.e., the load to the physiological signal source) is typically only 5 fA. This extraordinarily small
value is achieved by the combination of an extremely high input impedance with a relatively small
parasitic capacitance and embedded active guard ring buffer (see technical documentation [16] for
precise details). In order to preserve the mentioned characteristics, the printed circuit board is designed
to take advantage of the embedded active guard ring amplifier on a Teflon substrate. Although the
guard ring amplifier’s primary job is to reduce the noise pick-up at cable and board connections,
because this offers a replica of the input signal, we also use it to measure the raw voltage of the WCT
components [17–20].

To ensure high conductivity of connections between pins and exposed pads on the board, the
latter are silver-plated by immersion during manufacturing. To avoid smearing of solder under the
chip body and between pins during soldering, the chip body is sealed in position prior to soldering,
using a suitable printed circuit board non-conductive epoxy resin. As an additional precaution,
the conductivity between electrode connections and chip pins is verified prior to soldering, using
a multimeter. Each pin of the INA116 is then manually soldered to the pad using lead-free silver-based
paste with a 0.2 mm diameter hot iron tip. To further minimize parasitic capacitance at board level,
the guard ring pattern is repeated on each layer of the board and aside from the chips’ necessary
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connections, no other traces are routed in the area under each INA116. As a last precaution, as
recommended in the existing literature, wire connections to the chip are directly soldered to the board
on the top layer (no thru-hole connections) [10,21–23]. Finally, the assembled board is coated with
conformal coating to protect it from moisture that could contaminate the board due to its use in the
hospital environment (frequent cleaning and wiping of the enclosure/cables with disinfectant).

The simplified schematic of the hardware, limited to the four limbs and one of the precordials,
is depicted in Figure 2. Protection from electrostatic discharges is achieved by interconnection
of a single high-precision low-noise Panasonic surface mount ECG series 100 kΩ resistor.
Protection against defibrillation discharges and simultaneous high-impedance biasing of the INA116
electrodes’ connections is achieved by parallel connection of low-voltage activation gas discharge tubes;
with an arc voltage as low as 15 V [24] they protect the sensitive chip inputs even for voltages that are
lower than the embedded overvoltage protection [24]. Discharge tubes also offer the perfect biasing
pathway for INA116 due to their nominal resistance >10 GΩ and a negligible parasitic capacitance.
To avoid cluttering Figure 2, the gas discharge tubes are not represented.Machines 2016, 4, 18 5 of 13 
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Figure 2. Simplified schematic limited to limbs’ connections and one of the precordials.

As mentioned, and as it is possible to infer from the schematic, the guard buffer of the left-leg,
left-arm and right-arm electrodes are also used to directly measure the WCT components’ voltages.
The gain set for the INA116 chips is 1 V/V, achieved by leaving pins 1 and 8 floating (not noted in
Figure 2). Necessary gain and band bass filtering is achieved by two AC coupled active non-inverting
low-pass filters gaining 10 V/V and 100 V/V, respectively. Each gain cell is designed around the
amplifier chip OPA140 [25]. Aside from its very low-noise figure, the OPA140 has been selected
because of its high slew rate, immunity from phase inversion and very low current-bias. Owing to
these characteristics, we have designed a high-gain non-inverting band-pass filtering gain cell that
does not require additional biasing and copes well with the frequent swings between saturation
voltages due to ECG artefacts. Aside from the value of some passive components to achieve different
gains, the gain cells are identical. The simplified schematic of the gain cell is depicted in Figure 3.
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In order to achieve a diagnostic quality ECG, both the high-pass and low-pass corner frequencies of
the gain cell are set with capacitors whose value has been selected to be larger than the theoretical
values. In this way, even in the worst case scenario of a −10% value due to the capacitor tolerances,
the required bandwidth is assured. Frequency content normalization to the diagnostic bandwidth is
operated via software after signal acquisition. Components’ values are reported in Table 1 for both gain
cells. Differences between values of components are highlighted in bold. As an additional precaution,
high-precision Murata ceramic capacitors have been used.
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Figure 3. Active band-pass filter gain cell, see Table 1 for components’ values.

Table 1. Summary of components’ values for the gain cells.

Component 10 V/V Gain Version 100 V/V Gain Version

C-HiP 47 µ 47 µ

R-HiP 100 kΩ 100 kΩ
C-LowP 15 nF 1.5 nF

R-F 100 kΩ 1 MΩ
R-gain 10 kΩ 10 kΩ

As noted in Figure 2, the circuit includes a modified voltage bootstrap circuitry [18,20,26–28]
that directly drives the reference voltage of the circuit with a damped version of the average of all
the electrodes. This solution proved successful in all of our past circuit implementations [18,20,29],
particularly when the right-leg connection is included in the average. However, for this implementation
we introduced a driven-right-leg circuitry designed and dimensioned to contain current drive to
20 µA [8,30,31]. The input signal for the driven-right-leg circuitry is the non-amplified average of the
measurement electrodes (see Figure 2).

The entire circuit is powered by a dual 9 V power supply formed by two 9 V batteries in series
that proved sufficient for a day of recordings in the hospital. Digital conversion and data logging is
operated at a 16-bit depth over the range of ±5 V at the sample rate of 800 Hz by the BIOADC [32],
powered directly by the USB connection to a host laptop computer (battery-powered). Necessary
anti-aliasing low-pass filtering at the Nyquist frequency is embedded in the BIOADC. The entire
system is hosted on a standard hospital instrumentation trolley that allows easy transportation of the
device around rooms and ambulatories for the recording. More details pertaining to the hardware
tests are reported in Appendix A.
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Recorded data have been firstly assessed for quality, comparing visually the shapes and amplitude
of 12-lead ECG traces recorded by our machine with the one obtained from the resident device used
for routine investigation. Data sets, whose amplitude and shapes passed the visual test, have been
included in this database (100% inclusion). For this study, we measured the WCT amplitude and
reported it as a percentage of lead II in 44 patients who had volunteered for the study. We also report
the polarity of the WCT based upon the orientation of the QRS feature present in the signal. Similarly to
previous studies [3,4], we noted that with “N” signals, polarity is not clearly positive or negative
i.e., the positive deflection amplitude almost matches the negative deflection at the QRS feature.
Reported amplitude measurements are averaged across at least five consecutive beats. To compare
the WCT’s amplitude we selected lead II because, according to the circuit principles applied to the
electrocardiography (see Figure 1), lead II is the result of the sum of lead I and lead II. Therefore, lead
II should be the largest of the limb leads [1]. Furthermore, lead II is used as a calibration signal from
many patient simulators used in standard engineering practice and often represented, at the bottom of
the standard clinical ECG diagnostic sheets, longer traces for cardiac rhythm assessment.

3. Results

Bench tests of the assembled prototype show that the gain of each channel is 1023 ± 5% V/V
and the bandwidth contains the diagnostic ECG frequency [1,8]. A custom-made import script takes
into account precise measured gains, normalizes the frequency content to 0.05–150 Hz via a 50th
order Infinite Impulsive Response (IIR) band-pass filter; and removes power-line noise at 50 Hz and
harmonics up to the Nyquist frequency, via a batch of 50th order IIR notch filters each with a quality
factor of 35. All filters have been implemented as “non-causal” to avoid introducing phase delays.

As mentioned, only data sets that passed the visual inspection test (see Methods section) have
been included in this data set. A total of twelve recordings have been discarded due to the necessity
to abort the recording (i.e., patient required transportation to other wards for procedures) or due to
the presence of large artifacts or the persistent presence of pacemaker activations on the recorded
traces. Of the 44 recordings, 17 patients were female. The average age of the study’s patient population
is 66.8 years (with a standard deviation of 13.4 years); the majority of the patients have a history of
cardiac disease and have been admitted to the hospital from the emergency department because of
difficulties in breathing and/or chest pain.

The summary of our measurement results is reported in Table 2 for each patient. Amplitude of
the WCT is measured as a relative percentage of lead II. The average WCT amplitude for our data
set is 51.2% of lead II with a standard deviation of 27.4%, which is slightly larger than that described
in the existing literature [1,8], where relative amplitudes of up to the 40% are reported. However,
those studies used a different and cumbersome setup and date back to the 1950s. Nevertheless, to our
surprise, for several patients, the amplitude of the WCT is as large as lead II, with several beats in which
WCT’s amplitude exceeds lead II by up to 20%; in Table 2, all of the cases where the WCT’s average
amplitude was larger than 99% of lead II, were approximated with 100%. Although positive deflection
of WCT seems to be the majority (see Table 2), with only a handful of neutral (noted with N) polarities,
it is not possible to find characteristic or uniform shapes of WCT. Based upon our measurements, WCT
is highly individual, can have standard ECG characteristics, such as a p-wave and a t-wave, and thus
should be included in the ECG signal space used for diagnosing diseases.

An example of the WCT signal with a marked t-wave is visible in Figure 4. As can be seen,
a marked t-wave deflection on the WCT trace (bottom panel) is synchronized with the t-wave on lead
II (top panel). The WCT trace in Figure 4 is also a good example of a highly variable WCT, which in
one single cardiac cycle changes the deflection’s polarity at least three times, with an amplitude that
reaches 65% of lead II (average).

An example of high-amplitude WCT is depicted in Figure 5. As can be seen, the amplitude
of the WCT (positive deflection) has a similar amplitude to the lead II with a broader QRS feature.
In Figure 6 we present an example of multimodal WCT: for this patient, on average the WCT has
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a positive deflection, and shape alteration is observable during ectopic beats, where the WCT exhibits
a broader QRS. Other examples of WCT which mutate from positive deflection to almost neutral and
fully negative during ectopic beats are depicted in Figures 7 and 8.
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admitted from the emergency department with severe chest pain.
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Figure 7. Example of positive WCT that mutates into almost neutral (almost identical value for positive
and negative peak) during an ectopic beat (noted by the arrow). WCT amplitude also varies from
>100% of lead II amplitude (average) to approximately 50% of lead II during the ectopic beat; recording
is from an 85-year-old male patient admitted from the emergency department with severe chest pain
and unconfirmed myocardial infarction.
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waves. WCT is 23% of lead II amplitude (average); recording is from a 63-year-old female patient 
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In Figure 9, we show an example of WCT that exhibits all of the characteristics of an ECG trace. 

For this patient, the WCT has a marked p-wave and t-wave that, for some beats, have a larger 

amplitude than the multimodal QRS complex. This is another example of highly variable WCT, 

which in this case changes deflection polarity at least five times into a single cardiac cycle. Of note, 

Figure 8. Example of positive WCT that mutates into negative during an ectopic beat (noted by the
arrow). WCT amplitude also varies from 65% of lead II amplitude (average) to 33% of lead II during
the ectopic beat; recording is from a 79-year-old male patient admitted due to arrhythmia.

In Figure 9, we show an example of WCT that exhibits all of the characteristics of an ECG trace.
For this patient, the WCT has a marked p-wave and t-wave that, for some beats, have a larger amplitude
than the multimodal QRS complex. This is another example of highly variable WCT, which in this
case changes deflection polarity at least five times into a single cardiac cycle. Of note, from Table 2 it is
possible to observe that the relative amplitude of the WCT, with respect to lead II, is below 15% for
only one patient.
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Figure 9. Example of multimodal WCT with evident features in correspondence with “p” and “t”
waves. WCT is 23% of lead II amplitude (average); recording is from a 63-year-old female patient
admitted from the emergency department with severe chest pain.
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Table 2. Summary of measurement results. WCT relative amplitudes are approximated to the nearest
integer and capped to 100% for the measurements larger than 99% (see text).

Patient ID Age (y.o.) Gender WCT Amplitude As %
of Lead II WCT Polarity Figure

P001 63 F 27 +
P002 51 F 40 +
P003 65 F 35 −
P004 63 F 30 +
P005 88 F 90 +
P006 52 F 90 +
P007 70 F 59 +
P008 55 F 44 +
P009 82 F 12 −
P010 71 F 23 +
P011 69 F 19 +
P012 89 F 25 −
P013 63 F 23 + Figure 9
P014 70 F 41 N
P015 72 F 45 + Figure 6
P016 70 F 65 − Figure 4
P017 82 F 100 + Figure 5
P018 59 M 100 −
P019 68 M 33 −
P020 79 M 65 + Figure 8
P021 55 M 50 +
P022 71 M 40 N
P023 52 M 60 +
P024 45 M 20 −
P025 79 M 50 +
P026 85 M 22 +
P027 52 M 30 +
P028 62 M 41 −
P029 64 M 31 −
P030 25 M 50 −
P031 76 M 46 −
P032 56 M 51 −
P033 78 M 57 +
P034 73 M 100 +
P035 85 M 100 + Figure 7
P036 89 M 75 +
P037 72 M 25 +
P038 56 M 48 +
P039 60 M 20 +
P040 65 M 27 +
P041 80 M 48 −
P042 53 M 95 +
P043 53 M 100 +
P044 75 M 100 +

Average 66.8 51.2

Polarity distribution N: 4.5%;
Negative: 29.5%

Total: 44 38% Females

4. Conclusions

We presented a viable solution for the measurement of the WCT amplitude in a clinical setting.
Our electrocardiographic device does not require the patient to be encased in a metallic structure
submerged in water. Employing the latest components and printed circuit board technologies, we
produced a compact design that employs standard ECG cables and electrode placement. Our ongoing
clinical trial using this device has already confirmed the inadequateness of the WCT as a neutral
reference for ECG signals. Our measurements performed on 44 volunteer patients confirmed that
the WCT amplitude relative to lead II amplitude (average across the entire study’s population), is
51.2% (standard deviation of 27.4%), with peaks of over 100%. Our measurements also confirmed, as
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foreseen by Frank in the 1950s, that the WCT is another ECG lead with a high amplitude and typical
characteristic waveforms, hence it should be included in the signal space used to diagnose diseases.
We are currently assessing the clinical implications of our finding and continuing the data-recording
campaign with the aim of collecting a larger, statistically significant sample of recordings, which will
be released to researchers upon request.
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Appendix A

Reconstruction of cardinal leads from limb components

As mentioned in the methods section, device bandwidth and gains have been verified using
a proper signal generator, capable of generating 1 mVpp sine waves (Medi Cal Instruments model 220
Biomedical Function Generator) [26]. In addition, we assessed the point to point correlation between
limb leads reconstructed using the limb components and limb leads that are recorded directly.
To reconstruct the limbs, we simply operated a point by point subtraction between recorded signals and
assessed the correlation between signals using the embedded MATLAB correlation function [19,20].

As an example (see Figure A1) we can compute lead I from simple subtraction of the WCT’s
components Left Arm(LA) and Right Arm (RA) (lead I = LA – RA [1]). In all the assessed cases,
correlation scored in excess of 99% and signals cannot be distinguished unless labeled and plotted on
different axis. We conclude that the LA, RA and LL components that we record with our device are the
actual components of the WCT.
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