POLITECNICO DI MILANO
Dipartimento di Elettronica e Informazione
DOTTORATO DI RICERCA IN INGEGNERIA DELL'INFORMAZIONE

Evolutionary Testing
of Stateful Systems:
a Holistic Approach

Doctoral Dissertation of:
Matteo Miraz

Advisor:

Prof. Luciano Baresi
Coadvisor:

Prof. Pier Luca Lanzi
Tutor:

Prof. Gianpaolo Cugola
Supervisor of the Doctoral Program:

Prof. Barbara Pernici

2010 — XXII

PoLITECNICO DI MILANO

Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci, 32 [-20133 — Milano

A chi mi ha accompagnato,
sostenuto e incoragqgiato.

Abstract

Testing should be one of the key activities of every software development
process. However it requires up to half of the software development effort
when it is properly done. One of the main problems is the generation
of “smart” tests to probe the system, which is both difficult and time-
consuming. The research community has been proposing several ways to
automate the generation of these tests; among them, the search-based
techniques recently achieved significant results.

This doctoral dissertation presents TestFul, our evolutionary testing
approach for stateful systems; it is tailored to work on object-oriented
systems. It uses a holistic approach to make the state of object evolve,
to enable all the features the class provides, and to generate the shortest
test with the utmost coverage for the class under test. We employ sev-
eral complementary coverage criteria to drive the evolutionary search.
We aim to generate tests with high fault detection effectiveness. To
this end, we consider the system from complementary perspectives and
we combine white-box analysis techniques with black-box ones. The
evolutionary search is completed with a local one, and we establish a
synergic cooperation between them. The evolutionary search concen-
trates on evolving the state of objects, while the local search detects the
functionality not yet exercised, and directly targets them.

All the proposal were subject to an extensive empirical validation. We
devised a benchmark composed of independent benchmarks for tests,
public libraries, and third party studies. As comparison, we consider
both search-based, symbolic, and traditional (i.e., manually generated
by human being) approaches. The achieved results were encouraging:
TestFul efficiently generate tests for complex classes and outperforms the
other approaches. The proposals presented in this dissertation open new
interesting research directions. On one side, one can continue refining
the search strategy, by considering more advanced search techniques and
by leveraging more advanced coverage criteria. On the other side, one
can adapt the approach to work either at a coarse-grained level —and
focus on the integration testing— or on other kind of stateful systems
(e.g., components or services).

Riassunto

1l test dovrebbe essere una delle attivita chiave di ogni processo di svi-
luppo software. Tuttavia, se ben fatto, esso richiede fino alla meta dello
sforzo complessivo richiesto per lo sviluppo del sistema. Uno dei princi-
pali problemi € la generazione di test “intelligenti”, in grado di sondare a
fondo il sistema. La loro generazione & un’operazione difficile e dispendio-
sa. La comunita di ricerca ha proposto diversi metodi per automatizzare
la generazione di questi test, tra i quali, le tecniche basate sulla ricerca
hanno recentemente ottenuto risultati significativi.

Questa tesi di dottorato presenta TestFul, il nostro approccio per ge-
nerare test per sistemi con stato mediante algoritmi evolutivi. In partico-
lare, TestFul si focalizza su sistemi orientati agli oggetti, probabilmente
la tipologia piu diffusa di sistemi con stato. TestFul utilizza un approc-
cio olistico, che incentiva l’evoluzione dello stato degli oggetti usati nei
test in modo da attivare tutte le funzioni fornite dalla classe, e quindi
produrre il miglior test per la classe considerata. Per guidare la ricerca,
TestFul si avvale di diversi criteri complementari per giudicare la coper-
tura. In particolare, si avvale sia di tecniche black-box, sia di analisi
white-box, al fine di considerare il sistema da diverse prospettive e ga-
rantire un’elevata capacita dei test generati di trovare i potenziali errori.
Il processo di ricerca ¢ completato con una ricerca locale. La ricerca
evolutiva si concentra sull’evoluzione dello stato degli oggetti, mentre la
ricerca locale rileva la funzionalitd non ancora esercitata, e si focalizza
direttamente su quelle.

L’efficacia delle proposte fatte ¢ stata studiata mediante un’ampia e
sistematica validazione empirica. A tal proposito, & stato proposto un
benchmark composto da progetti considerati da altri studi empirici e da
librerie pubbliche. Come confronto, consideriamo sia i lavori che utiliz-
zano tecniche di ricerca, sia quelli che adottano 1’esecuzione simbolica,
sia gli studi che analizzano test generati da esseri umani. I risultati otte-
nuti sono incoraggianti, e confermano la capacita di TestFul di gestire in
maniera efficiente anche le classi piti complesse, superando le prestazioni
degli altri approcci. Le proposte presentate in questo lavoro di tesi apro-
no nuove interessanti direzioni di ricerca. Da un lato, si pud continuare
a perfezionare il processo di ricerca, esaminando tecniche di ricerca piu
avanzate e sfruttando criteri di copertura pit completi. D’altra parte,

VII

si pud cercare di far scalare I’approccio sia considerando diversi livelli di
granularita, concentrandosi sui test di integrazione, sia esaminando altre
tipologie di sistemi di con stato (ad esempio, componenti o servizi).

VIII

Contents

1.1.
1.2.

2.1.
2.2.
2.3.
24.

2.5.

3.1.
3.2.

3.3.
3.4.

. Introduction

Contributions
Qutline

A Holistic Approach

Evolutionary Algorithms . .
Test Representation
Global Search
2.3.1. TestFul: The Tool .
Design of the Experiments .
2.4.1. Threats to validity .
A First Empirical Evaluation
2.5.1. Tuning
2.5.2. FExperimental Results
2.5.3. Conclusions

Local Search
Seeding
3.2.1. Test Adaptation . .
Fitness Inheritance
Combined Improvement . .

. Guidance

Efficiency Enhancement Techniques

4.1. Coverage of the Behavioral Model

4.2.

4.3.

4.1.1. Empirical Evaluation

Coverage of the Control-Flow Graph

4.2.1. Local Search
4.2.2. Empirical Evaluation

Coverage of the Data-Flow Graph

4.3.1. Local Search
4.3.2. Empirical Evaluation

10
12
13
15
19
20
21
23
30

31
32
37
39
41
44

47
47
52
95
95
56
62
63
67

IX

Contents

5. Related Work
5.1. Non Search-Based
5.1.1. Specification-Basedo
5.1.2. Symbolic Execution
5.2. Search-Based Approaches
52.1. Blindsearch
52.2. Guidedsearch

6. Conclusions and Future Research Directions
A. Mutation Testing

Bibliography

77
7
77
78
79
80
82

87

91

92

List of Figures

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

2.7.

2.8.

2.9.

3.1.
3.2.
3.3.
3.4.
3.5.

3.6.
3.7.
3.8.

4.1.
4.2.
4.3.
4.4.
4.5.

Representation of Tests. 11
TestFul-generated JUnit test. 12
Architecture of TestFul. 14
TestFul as an Eclipse plug-in. 15
Tuning the size of the object repository. 23
Simple State Machine: (a) behavioral coverage and (b)

def-use pairs coverage achieved by random testing and
TestFul. Curves are averages over ten run. 25
Hard State Machine: (a) behavioral coverage and (b) def-
use pairs coverage achieved by random testing and Test-
Ful. Curves are averages over ten run. 26
Coffee Machine: (a) behavioral coverage and (b) def-use
pairs coverage achieved by random testing and TestFul.
Curves are averages over ten run. 28
Fraction: (a) behavioral coverage and (b) def-use pairs
coverage achieved by random testing and TestFul. Curves

are averages over ten run. 29
Two loops of TestFul. 32
Hybridization. oo 36
Coverage on class Fraction with a random search. 37
Seeding. oL Lo 38
Average performance improvement with class adaptation

on package java.util. 41
Speed-up with Fitness Inheritance. 42
Fitness Inheritance. 43

Combining Seeding, “Best” Hybridization, and Uniform
Fitness Inheritance. oL 46

ADABU’s object behavioral model for the Vector class. . 48

Behavioral model of class BoundSet. 50
Mutation Analysis on class Fraction. 54
Average structural coverage. L. 59
Branch Coverage vs. time limit. 61

List of Figures

5.1. Def-Use pairs coverage with random testing. Complete
coverage consists of 100 def-use pairs.

XII

List of Tables

2.1.

3.1.
3.2.
3.3.
3.4.

4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.

Benchmark.

Improvement with hybridization.
Improvement with seeding.
Improvement with Fitness Inheritance.
Combined improvement of Seeding, “Best” Hybridization,

and Uniform Fitness Inheritance.

Performance.o
Average Statement Coverage.
Average Branch Coverage.
Average number of def-use pairs covered.
Average number of predicate-use covered.
Mutation score.o oo
Mutation score comparison: p-value of the statistical hy-
pothesis testing Hy : mean(A) > mean(B;) vs. Hjp :
mean(A) < mean(B;) with B := { “Carleton Code”, “Car-
leton State”, “Sannio Code”, “Sannio State”, “ TestFul Ba-
SIC” b

XIII

1. Introduction

Our life is more and more permeated by software systems, and their re-
liability is becoming critical to the modern society. The National Insti-
tute of Standards and Technology confirms this trend and estimates the
yearly cost of software errors in 60 billion U.S. dollars [Tas02]|. Although
research in software validation and verification recently achieved several
important results, the most common approach to assess the quality of
software systems is through testing. However, testing might turn out to
be extremely expensive requiring up to half of the software development
effort [Bei90].

More in particular, testing a software system in a systematic and re-
liable way requires two distinct actions to take place: (i) the generation
an optimal set of “smart” tests to excercise the software as an overall
system and (ii) a rigorous way to compare the outputs of the system
undergoing the testing to catch and report any abnormal or unexpected
behavior.

Generating a “smart” and as small as possible set of tests is not a triv-
ial task and might require a lot of effort. The research community has
been working on proposals to alleviate the burden by generating tests
(semi-)automatically. Among these, search-based approaches (see for ex-
ample [MMSO01]) were particularly interesting. They deal with functions
with no internal state (e.g., libraries of functions) and rely on the divide
and conquer paradigm to exercise each feature separately. In contrast,
many modern systems (e.g., object-oriented systems) are stateful. The
behavior of the different functions heavily depends on their internal state.
This characteristic adds complexity to the testing problem [PY04], but
it also allows to better exploit the internal states so to exercise the dif-
ferent features without re-starting from scratch every time, thus saving
resources.

Tests that exercise single classes, isolated from the rest of the system,
are called unit tests. However, even at this low level of granularity, it is
not possible to exercise a class with all possible input values (even if we
consider a function with only one integer parameter, there are 232 possi-
ble configurations). Instead of chasing the “complete” test for a system,
tests are judged with respect to their fault-detection ability. However,
the measurement of tests’ fault detection effectiveness is undecidable.

1

1. Introduction

For this reason, tests’ thoroughness are often judged with respect to
some adequacy criterion. For example, the branch adequacy criterion
requires that tests execute each branch of the class. This information
can be used to measure the quality of tests by calculating the coverage
of selected ones. For example, the branch coverage is defined as the ratio
between the number of branches exercised by a test and the total number
of branches of the system being tested. The higher the coverage is, the
closer the tests are to fulfill the branch adequacy criterion. Albeit there
are not proofs that more coverage will make a test suite more effective in
finding faults, in general better coverage is associated with better tests.
Additionally, coverage is easily measured, while test effectiveness is in
contrast undecidable.

System undergoing a systematic testing process also require a rigorous
way to catch and report unexpected behavior. In this respect, test or-
acles allow to verify if a method behaves correctly, comparing its result
with the expected one [BY01]. Oftentimes, the developer is in charge of
this task, manually verifying the correctness of the output of the system.
Modern frameworks, such as jUnit [jun], allows one to embody those
checks directly in the tests, and automates the verification. Even if cur-
rently the developers are in charge of writing those control statements,
there are advanced techniques to perform these checks automatically. For
example, it is possible to leverage the mechanism of contracts [Mey92]
and automate the testing process [LCOT07]. Despite the effectiveness of
this technique, it is rarely used in development [Xie05]. Accordingly, sev-
eral alternative heuristics have been proposed that, for example, check for
program crashes [MFS90, KKS98| or uncaught exception [CS04, CSXO0§|
to pinpoint an unexpected behavior.

Our research focuses on the generation of “smart” tests for stateful
systems more than in the definition of oracles. We adopt a search-based
technique, and we leverage an evolutionary algorithm to generate the
best! test for the system. Differently from other approaches that adopts
a divide and conquer paradigm, we prefer a holistic approach. This
makes the state of the objects evolve, and leverages the states reached
to efficiently exercise all the behaviors of the system. The goal is to
generate the test with the utmost quality, measured in terms of some
given complementary coverage criteria. To detect errors, we reuse the
research results achieved in this field, and we support both the mecha-
nism of contracts [Mey92, LBR99, LCCT03| and the heuristics based on
uncaught exceptions [CS04, CSX08].

!The best for the system is the one that efficiently achieves the chosen adequacy
criteria.

1.1. Contributions

1.1. Contributions

This dissertation presents a novel approach able to efficiently generate
tests for stateful systems. The main contributions are:

Search-Based Software Testing Despite the seminal work of Tonella
[Ton04], most of the research on search-based software testing still
focuses on single functions, aiming to cover all their branches. In-
stead, object-oriented systems are widely diffused, and more com-
plete coverage criteria have been proposed. Accordingly, this re-
search directly targets this kind of systems, and considers several
complementary coverage criteria.

Holistic Approach We adopt an alternative approach to generate tests
for stateful systems —in particular for object-oriented ones— that
exploits internal states to save on effort. The proposal models
test generation as a search problem, which is addressed through
an evolutionary algorithm. Since the internal state of stateful sys-
tems tightly relates the features exposed by the system, instead of
chasing each feature separately, we prefer a holistic, incremental
approach. The internal states reached with previous tests are then
used as starting points for the next ones. Each test is rewarded
according to the number of features it exercises, and implicitly this
means that we reward the ability of a test to put the system in
interesting states. We use this measure to drive the evolutionary
engine and focus the effort of the search close to the best tests
generated so far. By recombining tests already able to exercise
different features (i.e., able to reach interesting states), it is likely
that we can activate further new features.

Efficiency Enhancement Techniques The research around evolutionary
algorithms proposed several efficiency enhancement techniques to
improve the efficiency of the search process. We consider them
to increase the performance of our approach, and faster converge
to the optimal test for the considered class. Indeed, we deeply
leverage one of them, the local search, and we propose a hybrid
approach. We establish a synergistic cooperation between the
(global) evolutionary search and the local search, and the results
of one are used as the starting point of the other. The evolutionary
search concentrates on evolving the state of objects, while the lo-
cal search detects the functionality not yet exercised, and directly
targets them.

1. Introduction

Complementary Coverage Criteria Despite most of the approaches only
consider the coverage of the control-flow graph —and they mainly
focus on the utmost level of branch coverage— the ability of these
coverage criteria to assess the quality of tests has been disputed
|[HFGO94|. Other coverage criteria only consider some aspects
of the system, hence they might fail to detect important errors.
Consequently, we use complementary coverage criteria to judge
the quality of tests. In particular, we combine white box criteria,
namely the statement coverage, branch coverage, and all def-use
pairs coverage, with a novel black box criterion, which rewards
tests according to their behavioral coverage. These coverage cri-
teria analyze the system from different perspectives, hence their
combined evaluation is able to better judge the quality of tests.
Moreover, we propose a pluggable architecture, which easily allows
one to extend the system and to introduce novel ways to judge the
quality of tests.

Extensive Empirical Validation All the proposal presented in this dis-
sertation are supported by an extensive empirical evaluation. To
this end, we select several classes from independent benchmark
for tests, public libraries, and third party studies. We also com-
pare our approach against the state of the art in test generation,
considering search-based, symbolic, and traditional (i.e., manually
generated by human beings) approaches. We compare the perfor-
mances in terms of the coverages of the control-flow graph and the
data-flow graphs. To better measure the fault detection ability of
the generated tests, we also use the mutation analysis. In order to
achieve more trustable results, we run the simulation several times,
and we calculate the average value and the standard deviation. Al-
together, we run our tool for 4,748 hours of CPU-time (or almost
200 days of CPU-time), and we considered more than 200 classes.

1.2. Outline

The remainder part of this dissertation is organized as follows.

Chapter 2 introduces the holistic approach. This leverages evolutionary
algorithms (briefly presented in the first part of the chapter) to
generate tests. The approach is holistic, since it search for tests
able to exercise all the features provided by the class by evolving the
state of objects. The Chapter also presents the benchmark we use

1.2. Outline

to validate empirically the proposals, and performs a preliminary
evaluation study.

Chapter 3 presents some efficiency enhancement techniques, which are
able to significantly improve the performance of evolutionary al-
gorithms. In particular, we focused on local search, seeding, and
fitness inheritance. The chapter briefly presents them, explains
how they are integrated in TestFul, and empirically evaluates their
contribution.

Chapter 4 considers three complementary analysis techniques, aimed to
evaluate the quality of tests from different perspectives. This infor-
mation is used to provide the search strategies with enough guid-
ance to fruitfully recombine tests and generate the “best” one (i.e.,
the one able to reveal most of the faults).

Chapter 5 analyzes the state of the art in automatic test generation, and
considers both “traditional” approaches and search-based ones.

Chapter 6 concludes the dissertation, summarizing the main achieve-
ments and outlining the future research directions.

2. A Holistic Approach

Search-based techniques do not concentrate on solving problems, but
scan the space of possible solutions to identify the “best” ones. Some of
them adopt random search strategies: they pick elements randomly and
keep the best ones. Others (e.g., hill climbing, evolutionary algorithms,
simulated annealing) impose some guidance; they measure how close to
the ideal solution each evaluated element is, and use this information to
drive the exploration of the solution space.

The application of search-based techniques to software testing is not
new |[MMSO01]. Search-based test generation approaches have already
been used to reveal failures in widespread systems [CLOMO07|. Instead
of analyzing the implementation or the specification of the system to
generate the tests, they generate (maybe randomly), evaluate, and refine
directly the sequences of operations that represent the tests.

These solutions, however, have still some issues. The works that adopt
a heuristic to drive the search process focus on a single element of the
control flow graph (e.g., a particular branch) at a time. Consequently,
these approaches (e.g., |Ton04]) need several runs to create a complete
test suite for the class under test. Instead, we must consider that the
tests for stateful systems —and Java classes are good representatives—
are conceptually composed of two parts: the first creates the desired
state of the system, while the second exercises the actual behavior. A
smart test generation approach must be able to exploit some synergies
and thus reuse the same state for testing different behaviors. The same
first part can be shared among different seconds parts, without any need
for recreating the same initial state repeatedly.

Moreover, targeting each element of the control flow graph separately
could be misleading or provide insufficient guidance. For example, Fer-
guson [FK96] shows that a condition may depend on others, and this
dependency may not be explicit in the control flow graph (but a com-
bined analysis of the control and data flow graphs is required to highlight
it). If we target these conditions separately from their dependencies, we
waste effort and reduce the overall efficiency of the approach. For this
reason, we want an approach able to use different kind of guidance, and
judge tests with different and complementary analysis techniques.

These considerations about efficiency, guidance, and reuse are the un-

7

2. A Holistic Approach

derpinnings of TestFul, our proposal for testing Java classes.

We leverage evolutionary algorithms (briefly presented in Section 2.1)
to generate tests. Accordingly, we had to choose a proper representa-
tion for tests (Section 2.2) and how to discriminate between good el-
ements and bad ones (Section 2.3, which applies our holistic approach
and explains the global search). Section 2.5 validates the whole approach
empirically.

2.1. Evolutionary Algorithms

Evolutionary algorithms are search methods inspired by the principles of
natural selection and genetics. They maintain a population of candidate
solutions that are evaluated using a fitness function. Operators inspired
by natural selection focus the search on the most promising individuals
(or candidate solutions), and operators inspired by genetics recombine
and mutate parts of existing individuals to discover better candidate
solutions. The schema of a typical evolutionary algorithm is reported
as Algorithm 1. Initially, a population of individuals is randomly gen-
erated (line 1). Then, the following four steps are repeated (line 2)
until a termination criterion is met. First, individuals in the population
are evaluated by computing their fitness to estimate their capability of
solving the problem (line 3). Next, selection is applied to generate the
population Py containing the individuals which should survive to the
next generation (line 4). Recombination is applied to the individuals
of P, with probability p, (line 5) and then mutation is applied to the
resulting population with probability p, (line 6). Recombination takes
two individuals, acting as parents, and produces two offsprings by mixing
their genetic material so that good features of the parents (good building
blocks [Gol02]) may be reassembled to produce potentially better candi-
dates. Mutation applies small random changes to the individuals in the

Algorithm 1 Evolutionary Algorithm.

1: P <~ RandomPopulation();

2: while Criterion Not Met do
P; < EvaluateFitness(P);
4 P, < Select(Py);
5 P, < ApplyRecombination(P,, py);
6: P, < ApplyMutation(Py, p,);
7
8

w

P« Py;
: end while

2.1. Evolutionary Algorithms

population. Finally, the new population P, replaces the old one (line 7)
and the cycle continues.

There are two key decisions involved in the design of an evolutionary
algorithm: how to represent candidate solutions and how to evaluate
them. Representation defines what type of genetic material the evo-
lutionary algorithm will recombine and mutate. Typically, a candidate
solution is represented as a chromosome consisting of a sequence of genes.
Recombination splits two genes (two candidate solutions) and mixes the
resulting parts. Mutation applies random modifications to the content of
a gene. The evaluation of candidate solutions is encoded in the compu-
tation of the fitness function that measures the quality of individuals to
ensure that better candidates will have more reproductive opportunities.
Ideally, the fitness function should provide effective guidance towards the
optimum solution.

Multi-objective evolutionary algorithms. The fitness function pro-
vides only one criterion to judge the quality of a candidate solution.
However, in many applications there are more, sometimes competing,
criteria to select the best solution. For instance, in this work we look for
short test sequences that also cover as many cases as possible. Therefore,
we try to both maximize the coverage and minimize the length of the
test sequences. Multi-objective evolutionary algorithms tackle problems
with multiple objectives and extend the basic framework (Algorithm 1)
by (i) introducing more fitness functions and (ii) modifying the selection
step (Algorithm 1, line 4) to take them into account.

In this way, the evolutionary algorithm targets the pareto frontier
between various objectives. The result of the search process is the set
of individuals that provide the best compromise among the different
objectives, and looks for the shortest tests with the best coverage. A
multi-objective evolutionary algorithm tries to reach the pareto frontier
by working on the non-dominated set of solutions. Elements belonging
to this set represent the best compromise found so far. The evolutionary
algorithm uses recombination to push the non-dominated set as close to
the pareto frontier as possible.

TestFul employs NSGA-IT [DAPMO02] as multi-objective evolutionary
engine, which is able to evolve the population of tests towards the best
solution according to the used coverage criteria. NSGA-II focuses on the
non-dominated set: it is able to achieve good coverage on the class under
test, and high efficiency at the same time.

Hybrid evolutionary algorithms. The individuals in a population
inherit qualities from their parents, but during their lifetime they also
try to improve themselves (e.g., by seeking better living conditions).

9

2. A Holistic Approach

Inspired by this observation, some researchers introduced the concept
of hybrid evolutionary algorithms that couple evolutionary algorithms
and methods for local search. In this case, after selection and crossover
have been applied, each individual has the opportunity to improve itself
by applying (for a limited number of steps) a local search (e.g., a greedy
search) to reach a nearby (sub-)optimum value. Differently from the real-
world evolution, the local search is performed by modifying the genetic
representation of individuals. The generated offspring inherit not only
the parents’ original chromosomes, but also the achieved improvements.
Empirical studies showed that hybrid evolutionary algorithms can be
faster and more efficient than “standard” evolutionary algorithms since
they can exploit the local information available in the surrounding of
good candidate solutions.

Parallelization. TestFul allows master-slave parallelization to speed-
up the fitness evaluation by distributing the execution of tests across
available processors. Note however that, TestFul works on a single pop-
ulation, only fitness evaluations are distributed onto available processors,
while selection, crossover, and mutation are performed on the entire pop-
ulation.

2.2. Test Representation

Evolutionary algorithms require a careful selection of the way tests are
represented. Good representations allow crossover and mutation oper-
ators to easily recombine good parts of the elements and form a high-
quality offspring, thus the evolutionary algorithm converges faster to the
optimal solution of the problem.

Even if there exist representations tailored to particular kind of classes
(e.g., for containers [Arcl0b|), TestFul uses a representation able to deal
with any Java class. This is composed of two parts: some variables and
a sequence of operations (see Figure 2.1).

The former are shared among all tests, and comprises variables for any
class that might be involved in the test; all these classes form the test
cluster. To calculate the test cluster, TestFul analyzes the class under
test (CUT) and by transitively including the type of all parameters of all
public methods (and constructors). Since abstract classes and interfaces
can be used as formal parameters, TestFul asks the user for additional
classes (i.e., concrete implementations of the abstract data types) and
adds them to the test cluster.

To enable polymorphism, it stores an object of type A either in a
variable with the same type or in a variable whose type is an ancestor of

10

2.2. Test Representation

Candidate test

ClassA[0] := new ClassA()

CuToO CuT1

ClassA 0 ClassA 1
ClassA 2 ClassA 3

Object
Repository

ClassA[1] := ClassA[0].clone()

CUT[O] := new CUT(ClassA[0])

CUTI[1] := new CUT[ClassA[1]]

ClassA[1].doSomething()

ClassA[0].doSomethingElse()

CUT[0].fooBar(CUT[1])

Figure 2.1.: Representation of Tests.

A (i.e., A’s super-classes or A’s implemented interfaces). Conversely, when
an object is selected from a variable of type A, it may be an instance of
A or of one of its subclasses.

Each test starts with all the variables set to null (or uninitialized in
case of primitive types). The sequence of operations works on the afore-
mentioned variables by using the values they contain or by storing new
ones. In this way, a test can evolve the content of the variables, and let
objects reach complex state configurations.

We consider the following operations:

e assign assigns a primitive value —i.e., boolean, byte, integer, long,
float, double— to a variable in the context with the proper type.

e create creates an object by using available constructors, and store
its reference in a variable of the context. As for parameters, it uses
objects and primitive values taken from variables in the context.
If one of the parameters has a primitive type and the used variable
has not been initialized, the operation is not valid and it is skipped.

e invoke invokes a method. The receiving object and actual pa-
rameters are taken from variables in the context. If the method
returns a non-void value, it may be stored in a variable of the con-
text. Note that if the method mutates the state of some objects
picked from the context, the change will be reflected on subsequent
operations using the same variable. Like with create, if one of the
used parameters is a primitive type and it has not been initialized,
the operation is skipped since it is not valid.

11

2. A Holistic Approach

public void testFull() throws Exception {

65 Object tmp = null;
%"g java.lang.Integer java lang Integer © = null, java lang Integer 1 = null;
°g SimpleState SimpleState © = null, SimpleState 1 = null;

SimpleState © = new SimpleState();

tmp = SimpleState O.getState():

java lang Integer © = (java.lang.Integer) tmp;
assertEquals((int)0, (int) (java.lang.Integer) tmp);

Operations

SimpleState O.nextChar(java lang Integer 0);

Figure 2.2.: TestFul-generated JUnit test.

TestFul allows the user to save the results of the test-generation process
as jUnit tests. The conversion process first performs some transforma-
tions, so to simplify tests by pruning irrelevant operations and by split-
ting long tests into shorter ones, making them human-comprehensible.
Afterward, each test is executed once again, and the behavior of the class
being tested is monitored. This collected behavior acts as oracle for re-
gression tests, and it is used to create assertions that verify whether
newer versions of the class acts like the tested one. Finally, tests are
converted and saved as jUnit tests (see Figure 2.2 for an example). The
structure of each jUnit test is close to the one internally used by TestFul,
exception made for the assertions. Each test starts with the declaration
of the variables, that is the object repository. Afterward, there is the se-
quence of operations that constitutes the test. Each operation works on
those variables, which are used as input parameters, as object accepting
the method call, and to store the result of the invocation. Operations
are followed by some assertions, to verify whether the behavior of the
class is in line with the one registered during the test generation.

2.3. Global Search

Stateful systems are particularly tedious to test. One must put objects
in proper states and provide the correct values for the input parameters
of the functions under test. Other search-based approaches either do not
use any guidance (e.g., random testing), or do not take in account the
internal states of objects, even if they explicitly target stateful systems.
Moreover, guided approaches apply the divide and conquer paradigm,
and chase each feature exposed by the system separately from the others.
In contrast, the features exposed by stateful systems are often tightly
related, since they depend on the internal state. Reaching the proper
configuration of the object’s state can be expensive, but it could enable

12

2.3. Global Search

different features, and new state configurations can be reached from it.

This is why we propose TestFul. It addresses Java classes and uses a
holistic approach to generate tests for a class. It also enables the reuse
of state configurations to exercise different features.

The fitness function in charge of driving the evolutionary algorithm
exploits coverage information: the higher the coverage is, the better.
TestFul monitors the execution of tests and calculates the coverage they
achieve on the class under test. A good coverage likely means that the
test is able to exercise significant parts of the class under test and to put
objects in interesting states, which in turn ease the selection of further
tests to exercise new parts of the class. TestFul employs a multi-objective
evolutionary algorithm [ZLTO01] to select tests according to their scores,
recombine them, and finally it generates the test for the class under test.

The architecture of TestFul allows one to plug different kinds of anal-
ysis techniques, aimed to measure different types of coverage criteria
(Chapter 4 presents three different coverage criteria, but one can easily
make TestFul use other criteria). Hence, the fitness function f(t) of a
test ¢ when n criteria are used is:

f(t) = (t.length, covy(t), ... ,cov,(t))

Since we want to ensure efficiency, the test’s size (f.length) must always
be minimized, while all coverage criteria cov;(t) must be maximized.

To generate new tests, TestFul takes two sequences from the previous
generation, and cuts their list of operations at a random point. Chil-
dren are obtained by recombining adequately the four pieces. The first
(second) child is generated by concatenating the first part of the first
(second) parent with the second part of the second (first) parent. Since
the cut points may be different in parents, it is likely that one child
becomes longer than the other. The recombination of variable-length
individuals tends to produce tests that are long enough to adequately
cover the class under test. However, the evolutionary algorithm is guided
to penalize unnecessarily long sequences.

Mutation modifies new individuals to avoid local optima. We propose
a simple mutation that may randomly (i) remove an operation from the
test, or (ii) add a randomly generated operation at a random point of
the test.

2.3.1. TestFul: The Tool

TestFul is fully implemented in Java, and it is available at http://code.
google.com/p/testful as an open source project licensed under GPL
v3.0 (http://www.gnu.org/).

13

2. A Holistic Approach

XML
descriptionsﬁ
i al Safe Te
Z> nstrumenter | | Eecuror

Java Instrumented
Bytecode Bytecode

v 1

T
Random Search Strategy
Seeding Z>

—_
o | R
Z> Test Adapter Z>

Tests for \ 4

other classes m

A

Ui

Test

Figure 2.3.: Architecture of TestFul.

Figure 2.3 reports the architecture of TestFul. The Search Strategy is
the main module of TestFul. It uses two kind of searches, namely the
global search and the local search', to generate the test with the utmost
coverage on the system. This module interacts with Random Seeding and
Test Adapter modules. These implement the seeding efficiency enhance-
ment technique and provides the Search Strategy with a better initial
population (Section 3.2 explains this technique). The Search Strategy
module relies on the Safe Test Ezecutor to execute the candidate tests
it generates, and calculate their level of coverage. The Safe Test Ezecu-
tor, as the name suggests, manages the execution of tests and ensures
that crashes in the classes under test does not stops the test generation
process. Moreover, this module provides the master-slave parallelization
technique, as it allows one to distribute the test execution among a clus-
ter of computers. The Safe Test Executor depends on the Instrumenter
module to modify the bytecode of the classes under test and insert the

!The local search module will be introduced in Section 3.1.

14

2.4. Design of the Experiments

tracking code required to measure the coverage of tests.

TestFul is released also as FEclipse plug-in, which integrates the Java
Development Tool allowing one to easily create tests for his own classes.
It is extremely simple to use: the user has only to right-click on the
class to be tested (Figure 2.4(a)), provide some information (e.g., the
behavioral abstractions), and wait until the generation process finishes
(Figure 2.4(b)).

= 24 THangle
< @ src
~ £ draw
D [J] Pointjava

P [J] PointzDjava
b [§] Point3Djava

[= JRE System Library [java-6-5un-1.6.0.16]
B mh Junit3

(a) Starting TestFul.

" Progress 32 3& ¥ =0

TestFul
| p————

Generating test cases: : 40 seconds remaining

(b) TestFul in action.

Figure 2.4.: TestFul as an Eclipse plug-in.

2.4. Design of the Experiments

To evaluate the ability of TestFul to generate tests, we devised a bench-
mark composed of several project. All the empirical evaluation we present
in this dissertation use (part of) this benchmark. For each considered
project, Table 2.1 shows the number of lines of code without comments
(LOC), the number of classes under test (#CUT), and the average cy-
clomatic complexity (CC).

This benchmark comprises projects taken from independent bench-
marks for test-generation approaches and public libraries. Note that the
projects contain some “easy” classes that act as data-structure and do
not contain branches. We chose not do target these classes because also
a naive tool would be able to reach their complete coverage in a couple
of seconds.

Array Partition This code is part of the Quicksort algorithm, one of the
fastest and most efficient sorting algorithms in use today. Quick-

15

2. A Holistic Approach

Table 2.1.: Benchmark.

Project Name LOC | #CUT | CC
Array Partition [DERO5| 38 1| 3.75
Binary Heap [DERO05] 97 1] 3.27
Binary Search Tree [DERO5] 180 1] 2.35
Commons Math v. 2.1 [Apa| | 31,814 102 | 2.12
Disjoint Set [DERO5] 130 2| 337
java.util v. 1.6.0 20 9,668 15| 2.33
JGraphT v. 0.8.1 [JGr| | 10,394 88 | 2.10
NanoXML Lite v. 2.2.1 1,046 1| 3.23
OrdSet [DER05] 231 1| 314
Red Black Tree [DERO05] 509 1] 3.70
Roops [roo] 3,215 14| 2.83
Siena [DERO5| 1,099 4| 3.05
Stack [DERO5] 160 2| 2.10
StateMachine [MS07] 75 2 | 10.00
Total 58,656 234 | —

sort is extremely common, used explicitly in many programs and
implicitly in others, since it is part of the Java libraries. Since it so
frequently used, correctness is required, and proving this correct-
ness for all situations is worthwhile.

This class divides an array into upper and lower halves, using the
first element (al0]) as a pivot. It does this by moving all elements
whose value is larger than the pivot to after all the elements whose
value is smaller than the pivot. Ideally, this pivot will be the
median value, and after partitioning the array would be evenly
divided between low and high values. It should also be noted that
the algorithm uses an in-place partitioning scheme to save memory.
As the name indicates, this class is implemented with an array
rather than a linked list or tree of any kind.

Binary Heap The project contains an implementation of a binary heap,
which is a data structure which has all the constraints of a binary
tree and some additional ones to make it well formed.

Binary Search Tree The project contains an implementation of a binary
search tree, which is a data structure that have low memory over-
head and still allow fast (less than O(N) in all but the worst case,
O(log(N)) if the tree is balanced) searches.

16

2.4. Design of the Experiments

Commons Math The Apache Commons Maths is a lightweight, open
source, self-contained library that addresses mathematics and statis
tics problems, and it is widely used in several products.

In particular, this project contains the class Fraction. This is
an immutable class that represents fractions and provides the ba-
sic operations between them. Since Fraction is immutable, it
can be considered a particular instantiation of the object-oriented
paradigm. This characteristic hinders the approach behind Test-
Ful, since it is not possible to evolve the state of created objects.
Nevertheless, we chose to include this kind of class in our bench-
mark and verify the behavior of TestFul on immutable classes, since
these classes are widely used in real-world systems.

Disjoint Set This project contains two implementations of the Disjoint
Set structure. This handles dynamic partitions of a set X com-
posed of the first n integers, where n is specified when the object
is instantiated. Each implementation ensures that the union of all
subsets is X, and the intersection between any two subsets is empty.
At the beginning there are n subsets, one for each element in X.
The user can thus join two subsets, or find the subset a number
belongs to. The authors [DER05] provide two implementations of
this class: a one marked as reference, and a one marked as fast,
which is more challenging.

package java.util The Sun’s java.util package contains several imple-
mentations of the Collection interface. A collection in Java rep-
resents a group of objects, known as its elements. Some collections
allow duplicate elements and others do not, some are ordered and
others unordered. This package is commonly used to evaluate au-
tomated test-generation approaches.

JGraphT JGraphT is an open-source library that supports graph trans-
formations. It supports different algorithms, and supports various
types of graphs including directed and undirected graphs, graphs
with weighted / unweighted / labeled or any user-defined edges,
various edge multiplicity options, including: simple-graphs, multi-
graphs, pseudographs, unmodifiable graphs, and subgraphs graphs
that are auto-updating subgraph views on other graphs

NanoXML Lite The NanoXML project is a small open source XML
parser for Java. It provides several implementations, and we use
the Lite one, which provides a full XML parser in a single class.
The extensible markup language, XML, is a way to mark up text in

17

2. A Holistic Approach

a structured document. It is designed to improve the functionality
of the web by providing more flexible and adaptable information
identification.

OrdSet The OrdSet project contains a single Java class, which repre-
sents a bounded, ordered set of integers. The OrdSet class pro-
vides methods for adding a single element, removing a single ele-
ment, and creating the union of two ordered sets. Despite its small
size, it has a complex internal data structure. Consequently, the
statechart that models its behavior and its control-flow graphs are
comparable with those describing bigger projects.

Red-Black Tree This project contains only a single class, whose inter-
nal data structure is the Red-Black tree, a self-balancing tree with
search, insert, and remove methods with a time complexity of
O(log(n)). For this reason, the same data structure is used in Sun’s
implementation of the class java.utils.TreeMap, which is used in
several related work as benchmark.

Roops This project was used as benchmark for a competition between
bug finding tools and automatic test case generators for Java and
C+#. Tt defines a common notation for writing benchmarks for tools
that decide Reachability in Object Oriented ProgramS (Roops).
Roops is general enough to be useful for many different researchers,
working on different tools for different applications and different
languages. A common benchmark notation with standardized reach-
ability goals should allow the community to share and build upon
each others benchmarks, and enable researchers to compare empir-
ical results.

Siena Siena (Scalable Internet Event Notification Architecture) is an
Internet-scale event notification middleware for distributed event-
based applications deployed over wide-area networks, responsible
for selecting notifications that are of interest to clients (as expressed
in client subscriptions) and then delivering those notifications to
the clients via access points.

The Java version of Siena? is logically divided into a set of six
components (consisting of nine classes of about 1.5KLOC), which
constitute a set of external components C, and a set of 17 other
classes of about 2KLOC, which constitute an application that could
be constructed using C.

2Sjena is available both for Java and for C++.

18

2.4. Design of the Experiments

Sorting This project contains classes able to manage a sequence of num-
bers, allowing the user to add a number at the end of the list and to
retrieve the sorted list. The class implements the following sorting
algorithms: Insertion Sort, Shell Sort, Heap Sort, Merge Sort, and
Quick Sort.

Stack This project contains two implements the stack data structure
with LIFO (Last-In, First-Out) access policy. The two implemen-
tations differ on the internal data structure: one uses an array,
while the other adopts a list. Both of them check for overflows
(the user tries to insert an element in a full stack) and underflows
(the user tries to remove an element from an empty stack).

State Machine This project is inspired by a function present in the VIM
text editor [vim|. It implements a state machine with ten states
that verifies whether the user activates a certain functionality by
providing a particular sequence of ten characters.

The code was previously analyzed in [MS07|, where the authors
showed that a long random sequence of invocations on a single
object can easily traverse the state machine towards the accepting
state.

We extended the previous state machine and created a variant,
called HardStateMachine, in which if a wrong character is sup-
plied, the object is put in an erroneous state and all subsequent
characters are discarded. In this case, the generation of meaning-
ful tests is much more difficult since it has to generate the exact
sequences of invocations that traverse the state machine, without
wrong characters.

Vending Machine This project contains class CoffeMachine, a vari-
ant of the well-known CoinBox [KGHT95|. It simulates a coffee
machine in which users can select the desired drink by invoking
method chooseTarget; they can insert coins, and as soon as the
price of the selected beverage is reached, they can get the desired
drink by using method get ().

2.4.1. Threats to validity
This section analyzes the main threats that can affect the validity of the
experiments we performed [WRH™'00].

Threats to conclusion validity concern issues that affect the ability
to draw the correct conclusions between the “treatment” and the outcome

19

2. A Holistic Approach

of the experiments. To limit these threats, we did not interfere anyhow
with the experiments, and ran the experiments on dedicated servers.
Moreover, to limit the random fluctuations of performance, we selected
a benchmark composed of several projects, and we performed several
runs for each class.

Threats to internal validity concern factors that might affect the re-
sults of the experiments but are not controlled in the experiments them-
selves. To limit these threats, we ran TestFul using its default setting
and we asked for the advice of experts on how to use symbolic execu-
tion. Moreover, our solution is based on results published in flagship
conferences and journals.

Threats to construct validity concern the way we judged the out-
come of the experiments. To this end, we performed two different kinds
of experiments. The first one judges the quality of tests according to
structural and data-flow coverages. It is widely accepted that the higher
the coverage is, the better tests are, even if a high coverage is not enough
to guarantee high quality. For this purpose, we also performed a second
experiment using mutation analysis, which confirmed the results of the
first experiment and limited these threats [ABLNO6].

Threats to external validity concern external factors that might limit
the generalization of the results. Although the results we show are lim-
ited to the considered projects, we carefully selected different types of
software artifacts from different sources. In particular, our benchmark
includes the java.util package, which has been widely used also in
other empirical studies, and two widely used software libraries, namely
JGraphT and Apache’s Commons Math.

2.5. A First Empirical Evaluation

This Section aims to validate the holistic approach behind TestFul. In
particular, we want to analyze the ability of the coverage criteria —used
as fitness function— to drive the evolutionary algorithm towards the op-
timal test. In the positive case, if we analyze the coverage criteria during
the evolutionary search, we would see them progressively increase (fol-
lowing a negative exponential), and eventually reach the optimal value.
Otherwise, if the fitness function is not able to provide a good guidance,
the coverage criteria would have a ragged evolution, composed of steps
mixed with long plateaus.

Moreover, we also validate the efficiency of our proposal by comparing
it against a random search approach. In particular, we use a Java im-
plementation of AutoTest [MCLLO7]| as a yardstick, since it is one of the

20

2.5. A First Empirical Evaluation

most advanced proposal using a random search. Despite its simplicity,
random search proved to be effective and it outperformed more advanced
techniques [Ham06, CPLT08, PLB08, Arc10b|. In fact, it allocates all
the computational effort in the exploration. In contrast, TestFul tends
to be more incremental, and the effort is divided between an exploitation
phase and the exploration phase (implemented respectively through the
crossover and the mutation operators).

Both approaches are asked to maximize two complementary coverage
criteria: the behavioral coverage and the all def-use pairs coverage.

The former (deeply explained in Section 4.1) monitor the test execu-
tion to infer a behavioral model of the class being tested. The complete-
ness of the inferred model only depends on the quality of the executed
test, hence we use this information as criterion to judge tests.

The latter requires to analyze the data-flow interactions of the Class
Under Test enabled during the execution of the test. When a statement
assigns a value to a variable, it is said to define the value of the variable.
Similarly, a use is a statement that uses the value of a variable. A
definition-use pair (def-use pair, or du-pair) is a couple of statements
in which the former sets the value of a variable and the latter uses it. The
all def-use pairs coverage criterion measures the quality of generated
tests according to their ability to exercise all these pairs [RW85].

As a benchmark, we used four classes: a class implementing a simple
state machine inspired to a piece of code of the VIM text editor [vim], a
more challenging version of the same state machine, a variant of the well-
known CoinBox [KGH'95|, and a class taken from the Apache Commons
Maths library [Apa].

All these classes are free of errors: our analysis does not consider the
issue of detecting failures, but instead it focuses on measuring the ability
of the approaches to generate tests that reach high coverage criteria. The
detection of failures and the identification of errors is outside the scope of
this work. The tool supports the mechanism of contracts [Mey92| and —
if contracts are missing— employs the simple heuristic used in [PLEB07].

For each class, we applied both random testing and TestFul ten times
and evaluated the quality of the obtained results in terms of (i) def-use
pairs coverage, (ii) behavioral coverage, and (iii) size of the result. In
this way, we evaluate the capability of a test to reach high coverages, its
generation cost, and its suitability for regression testing.

2.5.1. Tuning

To compare random testing and TestFul we first needed to determine
the best configuration for each method. In particular, we focused on two

21

2. A Holistic Approach

aspects: the generation of random elements and the set up of the object
repository.

Generation of Random Elements. Both random testing and Test-
Ful need to create random operations. This step represents the core
of random testing, whose tests are nothing more than a long random
sequence of operations. In TestFul, this operation generates the initial
random population and it is also used to mutate tests. Although ran-
dom element generation may exploit domain-specific information, in this
study, we followed the approach by Ciupa et al. [CLOMO7| and imple-
mented plain random generation, without any use of domain-knowledge.
In this way, the differences between the performance of random testing
and TestFul only depend on the exploration strategies.

Object Repository. Both random testing and TestFul generate tests
that work on a repository of N objects. The size of the repository is an
obvious crucial factor for performance. On the one hand, small repos-
itories may prevent the creation of a good test case. For example, if
we consider class Fraction, a repository containing one object per class
would prevent any mathematical operation with two or more fractions.
On the other hand, huge repositories mean that each object has a very
small probability to be selected and very long sequences of invocations
might be needed to achieve even simple results.

Interestingly, although the size of the repository is crucial for the per-
formance of the generation processes, to the best of our knowledge, it has
never been subject of an empirical evaluation. In contrast, we performed
a set of experiments to determine the best repository’s size for the two
methods. First, we selected two of the four classes (namely, Fraction
and the SimpleStateMachine) and applied random testing and TestFul
on both of them with varying repository’s sizes. For each configuration,
we performed ten runs. The average behavioral coverage and the average
def-use pairs coverage on the two classes is reported in Figure 2.5(a) and
2.5(b), respectively, for random testing and TestFul. The results confirm
what anticipated: runs with either a small repository or a too large one
have bad performance. These results witness that a good repository’s size
for random testing is between 2 and 8 (corresponding to the best config-
urations for SimpleStateMachine and Fraction, respectively). TestFul
is less sensible to the size of the repository, and achieves better results
on both classes when the repository hosts 4 objects per class. For this
reason, in the experiments presented here, we run random testing and
TestFul, respectively, with a repository of 8 and 4 objects.

22

100.00%

85.00%

relative coverage

80.00%

75.00%

2.5. A First Empirical Evaluation

'/
/¢

—o— SimpleStateMachine b-cov

~m- SimpleStateMachine du-cov
Fraction b-cov

= Fraction du-cov

repository size

(a) Random testing

100.00% M
—
95.00%

90.00%

85.00%

relative coverage

80.00%

75.00%

/

—— SimpleStateMachine b-cov
—a— SimpleStateMachine du-cov
Fraction b-cov
== Fraction du-cov
1 2 4 8 16 32 64

repository size

(b) TestFul

Figure 2.5.: Tuning the size of the object repository.

2.5.2. Experimental Results

To have a fair comparison between the two methods, we set a limit on the
computation time to generate a test. Each run lasted six hours of CPU
time for a total of 480 hours (or 20 full days). We used an IBM System
p5, with a Power5 1.5 Ghz CPU and a heap of 1 GByte. All the reported
statistics are averages of ten runs. The comparison presented here takes
into account (1) the behavioral coverage, (2) the def-use pairs coverage,
and (3) the size of the result. In particular, the size is fundamental

23

2. A Holistic Approach

for regression testing: if the approach is able to generate a reasonably
compact test, would be convenient to use the same test to ensure the
correctness of new versions of the class.

Simple State Machine. To analyze the perfomance of random testing
and TestFul on this class, we used a simplified version of the random
character generator used in [CLOMO7| that,

e 40% of the times generates a special character:
{ 4\07’ 4 77 (\n7’ (\I.?’ (\t? };

e 40% of the times, generates one of the 89 keyboard characters,
including alfa-numeric ones and punctuation.

e 20% of the times generates a number between 0 and 255, and selects
the character with the corresponding extended ASCII code.

Each character accepted by the state machine has the same probability
to be generated: 4&)% + 22%? ~ 0.528%.

Using this policy to generate characters, we run random testing and
we noted that generated tests reach at most the second state of the state
machine. The analysis of the runs showed that this was due to the high
probability (25%) of replacing an object in the repository with a new
one, thus vanishing the effort spent to reach the state. Accordingly, we
reduced the probability of generating a new object to 1% to favor random
testing on this sequential task.

The behavioral and def-use pairs coverage for random testing (solid
dots) and TestFul (empty dots) are reported in Figure 2.6. In this case,
good behavioral coverage and def-use pairs coverage can only be achieved
by identifying a sequence that activates all the possible states — a goal
that is difficult to achieve with simple random search. In fact, in this
case TestFul clearly outperforms random testing, generating a complete
test in about one hour. Most interestingly, TestFul generates compact
tests, with less than 500 operations.

Hard state machine. This class is more challenging than the previous
one because any error in the input sequence brings the state machine
into a halting (or absorption) state that vanishes all the effort spent to
reach the previous state. Figure 2.7 reports the obtained performance.
As in the previous case, our approach clearly reaches a better behavioral
and def-use pairs coverage. Again, TestFul produces also compact test
sequences, consisting of approximatively 40 operations.

It is worth noticing that neither random test nor TestFul were able to
stress the class completely. The analysis of the runs shows that these re-
sults are caused by the error state: only one of the ten possible sequences

24

2.5. A First Empirical Evaluation

40

=) Ay
w
2
< 30t 1
w
>
(@)
° ol TESTFUL © |
< RANDOM TESTING)
o
o
>
< 10
w
m
0 1 1 1 1 1 1
0 1le+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07
NUMBER OF INVOCATIONS
(a) Behavioral coverage
100 r
w
O]
<
5 75 r E
>
(@)
O
) TESTFUL ¢}
% 50 RANDOM TESTING
a
w
n
2 25
LL
w
a

0 1le+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07
NUMBER OF INVOCATIONS

(b) Def-Use Pairs coverage

Figure 2.6.: Simple State Machine: (a) behavioral coverage and (b) def-
use pairs coverage achieved by random testing and TestFul.
Curves are averages over ten run.

25

2. A Holistic Approach

35
w 30 ,
O}
<
o
(i}
>
o
@)
-
<
o
o
>
<
I
L
m 5l |

TESTFUL ©
0 ‘ RANDOM TESTING e
0 5e+07 le+08 1.5e+08
NUMBER OF INVOCATIONS
(a) Behavioral coverage

35
o 30f]
<
o
L
>
o
@)
N
x
<
o
L
n
-
U
L 5+]
a TESTFUL ©

0 ‘ RANDOM TESTING e

0 5e+07 1e+08 1.5e+08

NUMBER OF INVOCATIONS

(b) Def-Use Pairs coverage

Figure 2.7.: Hard State Machine: (a) behavioral coverage and (b) def-
use pairs coverage achieved by random testing and TestFul.
Curves are averages over ten run.

26

2.5. A First Empirical Evaluation

reaches the accepting state. Note however that, although TestFul does
not reach complete coverage within the time limit of six hours, it gradu-
ally explores the program’s space and (at the end) its performance shows
a slowly increasing trend. In contrast, the performance of random testing
is clearly stucked at a level corresponding to the easily reachable states.

Coffee machine. On this class, both random testing and TestFul
reached a complete coverage in a short amount of time (less than 10
minutes of CPU time). Accordingly, our analysis focuses on the perfor-
mance achieved within the first million of operations. Figure 2.8 shows
the results. Both approaches achieve a similar behavioral coverage while
TestFul covered more def-use pairs. Moreover, as it happened in all the
other cases, TestFul generated more compact tests (composed of around
50 operations), while random test required a much longer sequence of
operations (around 300,000).

Fraction. Figure 2.9 presents the results for this class. Random testing
reaches a better behavioral coverage than TestFul and it is also faster
in obtaining the highest def-use pairs coverage. These results are easily
explained by considering the characteristics of the problem. The class is
immutable and therefore a series of invocations on the same object does
not improve the test coverage. Only the creation of new objects in an
undiscovered state leads to an improved coverage of the test. However,
finding the correct values for calling the constructor is similar to finding
a needle in a haystack. Without domain-specific knowledge, random
testing scores better because it creates new instances of the fraction
clags more often, while TestFul tends to focus on the existing ones. As
a consequence, random testing can achieve better behavioral and def-
use pairs coverage. Note however that, although the class is simple and
suitable for the approach, still random testing was not able to converge
to an optimal result within the six hours of simulation, while TestFul
achieved its sub-optimal result in approximately three hours. This fact
suggests that TestFul has a better exploration strategy, and it will be able
to reach even better results as soon as we use domain-specific knowledge.

An important aspect of automatic test generation is the size of the
final test sequence: the shorter, the better. In this perspective, TestFul
appears very promising since, although it did not achieved the same
behavioral coverage as random test (for class Fraction), it generates test
sequences that are dramatically shorter. In fact, TestFul generated test
sequences consisting of 5,000 invocations on average. To reach the same
coverage, random testing requires approximatively 200,000 invocations
(i.e., 40 times more invocations than TestFul).

27

2. A Holistic Approach

25
(]
O}
<
o
(i1
>
o
© 20 | TESTFUL o |
é RANDOM TESTING e
o
>
<
T
L
m

15 L L L L

0 200000 400000 600000 800000 1le+06
NUMBER OF INVOCATIONS
(a) Behavioral coverage

30
(]
O
<
o
>
3 25 .
@)
N
x
<
o
L p
o 20
-]
u
(]
a TESTFUL ©

15 ‘ _RANDOM TESTING e

0 200000 400000 600000 800000 1le+06

NUMBER OF INVOCATIONS

(b) Def-Use Pairs coverage

Figure 2.8.: Coffee Machine: (a) behavioral coverage and (b) def-use
pairs coverage achieved by random testing and TestFul.
Curves are averages over ten run.

28

2.5. A First Empirical Evaluation

250
[IN}
Q
<
i
S 200 1
O
© TESTFUL ©
é RANDOM TESTING °
o
S 150 :
<
I
L
m
100 1 1 1 1
0 le+07 2e+07 3e+07 4e+07 5e+07
NUMBER OF INVOCATIONS
(a) Behavioral coverage
160
1]
Q
&
K140
>
o
@)
9 100 TESTFUL © |
% RANDOM TESTING °
o
L
(92}
> 100 1
L
L
[a]
80 1 1 1 1
0 le+07 2e+07 3e+07 4e+07 5e+07

NUMBER OF INVOCATIONS

(b) Def-Use Pairs coverage

Figure 2.9.: Fraction: (a) behavioral coverage and (b) def-use pairs cov-
erage achieved by random testing and TestFul. Curves are
averages over ten run.

29

2. A Holistic Approach

2.5.3. Conclusions

Our results, although limited to four subjects, highlight some interest-
ing aspects regarding the perfomance of random testing and TestFul.
Firstly, in all the cases, TestFul generated the most compact tests. Sec-
ondly, random testing appears to explore the search space more widely,
and achieves better results on extremely simple features. However, it
performs poorly on classes with a complex state since its capability of en-
abling complex behaviors of the system under test appears to be limited.
TestFul explores the search space less than random testing and therefore
its performance decreases on classes with a simple (immutable) state, but
with a huge number of possible combinations. However, TestFul can put
objects in complex states and therefore it typically outperforms random
testing on classes with complex states. Finally, both random testing and
TestFul were not able to cope with particularly complex classes (e.g., the
hard state machine). Our analysis of the runs witness that, in the case
of random testing, this is caused by a lack of guidance; in contrast, for
TestFul, this is due to a too coarse guidance.

30

3. Efficiency Enhancement
Techniques

Chapter 2 presented the holistic approach behind TestFul, and we proved
its ability to generate good tests for Java classes with complex inter-
nal states. However, TestFul is still computationally expensive and
it requires a significant amount of CPU time [MLBO09]. This is why
this Chapter focuses on improving the evolutionary engine of TestFul
through the use of modern efficiency enhancement techniques (EETSs)
[Gol02, Sas02, Sas07], and considers three classes of techniques: seeding,
local search, and fitness inheritance.

This chapter explains each efficiency enhancement technique and eval-
uates their impact on the performance of TestFul. To this end, we de-
vised a benchmark consisting of the six classes: Disjoint Set Fast,
Fraction (from the Apache Commons Math project), Red-Black Tree,
Sorting, Stack Array, and State Machine (see Section 2.4 for a de-
tailed explanation). We compared the original version of TestFul against
(i) the three enhanced versions using each of the enhancements and (ii)
the version with all the enhancements altogether.

We run each version of TestFul ten times for 10 minutes of CPU time'
each and traced the evolution of the best solutions found in terms of
branch coverage. The higher the branch coverage is, the more valuable
generated tests are. To perform the comparison, we first computed the
average performance of the best individual during the evolution using the
original and an enhanced version of TestFul. Figures 3.2, 3.4, 3.7, and 3.8
reports the performance plots for some of the experiments: x represents
the time elapsed, while y summarizes the average branch coverage of the
best test created so far. We calculated the average evolution speed as
the integral of the average branch coverage with respect to time. We
used this value to compare the enhanced version of TestFul against the
base one, and measure the improvement ratio (Tables 3.1, 3.2, 3.3, and
3.4).

We wused a dedicated simulation server with an Intel Core2 Quad CPU
Q6600@2.40GHz with 4 gigabytes of RAM

31

3. Efficiency Enhancement Techniques

Global evolutionary Search

Figure 3.1.: Two loops of TestFul.

3.1. Local Search

The holistic approach behind TestFul rewards tests according to their
ability to put objects in interesting states. To this end, Chapter 2 shows
how the information contained in coverage criteria can be used to drive
an evolutionary engine towards the creation of the optimal test for a
class.

However, some classes have features that can only be tested via par-
ticular sequences of invocations with precise values as parameters. If
the population of the evolutionary algorithm does not contain all the
invocations needed, recombination and mutation can hardly generate a
suitable test, quickly and reliably. Indeed, the fitness function that drives
the global search does not provide enough guidance towards uncovered
elements. For this reason, we hybridize the global search performed by
the evolutionary algorithm by introducing a local search step that in-
tegrates the genetic operators. We establish a feedback loop between
the two search: the results of one are used as starting point of the other.
Consequently, this efficiency enhancement technique is deeply integrated
in TestFul, whose resulting structure is shown in Figure 3.1.

The global search (depicted in light gray) prepares the state of the
objects involved in the test using methods provided by the classes. We
employ an evolutionary algorithm to search for the test that is able to
reach all the interesting internal states. As fitness function, we use the
level of coverage, according to some criteria (see Chapter 4) that the

32

3.1. Local Search

test achieves: the higher it is, the more likely the test is able to reach
interesting states.

The local search (depicted in dark gray) considers the tests evolved in
the global search, analyzes their coverage criteria, and detects what is
missing. Then, it adopts a search technique to modify the test and reach
what was missing. If the search is successful, the modified test —which
has a higher coverage of (at least) one criterion— is merged back in the
population of tests evolved by the global search.

The local search only considers a small portion of individuals. In
particular, we consider three policies: best, §%, and 10%. The first one
only uses the best test of the population; the other ones randomly select
the 5% or 10% of individuals of the entire population.

On the selected tests, TestFul considers the coverage criteria to create
a list of potential targets. A target is something that has not been
covered yet, and its fulfillment would improve the test and raise at least
one coverage criterion. Since we want “local” targets, we only consider
those targets that can be reached by flipping the outcome of a single
conditional statement. The search is thus “local” since it focuses on the
neighborhood of a test and tries to improve it with respect to a single
condition.

For each target, TestFul stores the number of attempts, and each time
it focuses on the targets with fewer attempts. When the local search fails
to reach a target, TestFul increases its number of attempts, and thus the
next local search may prefer other targets. In several cases —for exam-
ple, when a flag variable is used— covering other targets may also ease
covering the current one. In other cases, a target simply requires more
effort: this is why TestFul adjusts the maximum number of iterations of
the local search according to the number of attempts done.

Among the targets with the same number of attempts, TestFul picks
the easiest to reach. For this purpose, it analyzes the values used in
the controlled condition. If one of them is a parameter of the method,
it is possible to modify its value directly, thus the easiness of the tar-
get increases. Moreover, some conditions provide more guidance than
others, thus targets controlled by the former are easier to reach than
those controlled by the latter. To approximate the level of guidance,
we consider the types of elements being compared. If the comparison
is among numbers, it is possible to measure the distance to the desired
outcome; conversely, the comparison of boolean values or references does
not provide any clue.

Before starting the local search, TestFul simplifies the sequence of op-
erations by pruning all the irrelevant ones. The resulting test is equiva-
lent to the original one, since it is able to put objects in the same states

33

3. Efficiency Enhancement Techniques

and exercises the same conditions in the same way.

As for the local search, TestFul employs a simple hill climbing. This
creates a mutated version of the test, and verifies if its execution is
closer to reach the target than the original version. If it is the case, the
mutated version replaces the original one; otherwise the mutated version
is discarded. The search continues until the target is hit or the maximum
number of iterations is reached.

Even if hill climbing is a simple search technique, we experienced good
results. This can be motivated by considering the particular context in
which it is used: it has only to change the outcome of an exercised
condition. Other works instead prepare the state of objects, reach the
condition, and exercise the desired branch [Ton04|. This is why they
adopt more powerful search techniques, such as evolutionary algorithms
or particle swarm optimization.

To create a mutated version of the test, randomly we pick an operation
and either we

e remouve it. It may happen that removing an operation from the test
facilitates the execution of the targeted branch. For example, if we
wanted to check whether a collection is empty, we may remove
insertion operations to shrink the collection and move it closer
to the empty one. The test may also contain useless operations;
removing them easies the search algorithm.

e add a random operation before or after it. The test may require
some additional invocations to change the values of some condi-
tions. For example, consider the check for inserting an element in
a size-bounded collection: adding more elements to it helps aug-
ment the collection’s size, eventually stressing the impossibility to
add further elements.

e change the values it uses: if the selected operation stores a primi-
tive value in a variable of the context (i.e., it is an assign operation),
we try to change the stored value. We added a random value to
the original one, or flip the value if it is a boolean variable.

In order to drive the search process, we use a simplified version of
[WBS01]. Consequently, we focus on the condition that contains the
targeted branch. That condition is in the form a @ b, where a and b
are constants, local variables, or fields variables, and & an admissible
relational operator. Since our instrumentation is performed directly on
the bytecode, these are the only conditions we find. Those that involve
more parts are translated at compile time in a set of simple ones. We

34

3.1. Local Search

then monitor the execution of the test, and we focus on the condition
that contains the targeted branch. Each time the condition is exercised,

we record the values used in the evaluation, measuring the distance? as:

+00 > unsatis fied surroundings
distance(a @ b) == ¢ —o0 > target executed
|a — b| <> otherwise

This distance (its minimum value, if the condition is executed multiple
times) is used as fitness function for the search algorithm. Note that, if
the search process has to decide between two versions of the test with
the same distance, we always prefer the shortest one. In this way the
search converges faster, and the desired branch is reached earlier.

Sometimes the conditions that allow the local search to reach the target
(surroundings in the formula) can be unsatisfied. This happens, for
example, when the monitored condition is never executed. In this case,
the local search pick a wrong direction and it moves away from the target;
consequently TestFul gives the distance the maximum value.

Performance Evaluation. The data in Table 3.1 suggest that the
performance improvements due to hybridization heavily depend on the
type of the class under test.

Hybridization works well on classes with complex internal states that
are difficult to reach, as in the case of the State Machine. Instead, when
applied to a class with simple state and a huge number of configurations
(e.g., class Fraction), hybridization may even slow down the convergence
to the optimum (Figure 3.2(a)).

This can be explained by considering that, in this particular type of
problems, the exploration of feasible configurations is more important
than reaching a particular state. In the experiments discussed here, all
versions of TestFul run for the same amount of CPU time. Accord-
ingly, hybridization introduces an overhead that results in a decrease of
the overall performance since it reduces the CPU time available for the
exploration.

When applied to typical classes (with a moderately difficult internal
state), the hybridization can lead to an interesting gain in performance,
as shown in Figure 3.2(b) for class Disjoint Set Fast.

Overall, the results of Table 3.1 suggest that it is better to apply
the local search on the best elements of the population (laying on the

2For references, strings, and boolean values, we do not calculate the distance between
a and b. Instead, if the condition is executed, but the branch is not reached, we
set the fitness to a constant positive value.

35

3. Efficiency Enhancement Techniques

Table 3.1.: Improvement with hybridization.

Hybridization
Class best 5% 10%
Disjoint Set Fast || +43.94% | +35.61% | +28.13%
Fraction -1.05% -16.69% -18.97%
Red-Black Tree +64.78% +24.01% +6.07%
Sorting +15.90% +12.23% +9.69%
Stack Array +18.21% +18.36% +18.33%
State Machine +399.97% | +347.49% | +315.39%
average +90.29% | +70.17% | +59.77%
——————————— base —&— 5% —®— 10% —@— best
140.0
120.0
[
3 100.0
§ 80.0
g 600
G 4004}
m
20.0
0.0 T T T T
0 2 4 6 8 10
time (min)
(a) Performance on class Fraction
——————————— base —&— 5% —®— 10% —@— best
[
3
9
S
E
o
m
0.00 . T T T
0 2 4 6 8 10

time (min)

(b) Performance on class Class Disjoint Set Fast

Figure 3.2.: Hybridization.

36

3.2. Seeding

frontier). In fact, our novel hybridization technique that focuses on the
best elements outperforms the traditional hybridization approach, which
adopts a uniform sampling of the whole population.

3.2. Seeding

In [MLB09, MBL10], TestFul considered an initial population of ran-
domly generated tests. However, such random populations usually have
poor quality and contain tests that are not able to exercise any feature of
the class being tested. As a consequence, TestFul’s evolutionary engine
would start from a scarce supply of building blocks, which might hinder
the search [Gol02].

To mitigate this problem, this work adds an initial seeding step to
TestFul to improve the quality of the initial population and speed up
the early stage of the evolutionary process (by providing better building
blocks right from the start). For this purpose, we applied a very short
step of random testing to generate the initial population of TestFul. Ran-
dom testing simply performs random sequences of invocations and we
only keep the best ones as tests. In our previous experiments [MLB09],
we showed that random test usually finds good tests in the very first
moments of its application, as Figure 3.3 shows. Accordingly, we seeded
the initial population by applying a short 60-second run of random test-
ing. This resulted in a higher-quality initial population and in an initial
supply of good building blocks.

Performance Evaluation. Seeding leads to significant improvements
in all the classes (ranging from 11.75% to a stunning 98.27%), but the

250

200

coverage
-
%
o
!

.

o

o
I

50

time (min)

Figure 3.3.: Coverage on class Fraction with a random search.

37

3. Efficiency Enhancement Techniques

Table 3.2.: Improvement with seeding.

Class Seeding
Disjoint Set Fast || +53.79%
Fraction +11.75%
Red-Black Tree || +98.27%
Sorting +13.35%
Stack Array +19.06%
State Machine same
average +32.70%
——————————— base seeding
1204 —————————— e
® 100 |
3
o 804
3 .
© e
< pa
v ,/
g 40/
=2 ,
20
0 T T T T
0 2 4 6 8 10
time (min)
(a) Performance on class Fraction
——————————— base seeding
200
Y 150
@©
o
>
8 1004 U e
<
2 .
g so{ 7
0 T T T T
0 2 4 6 8 10
time (min)

38

(b) Performance on class Red-Black Tree

Figure 3.4.: Seeding.

3.2. Seeding

State Machine. The initial population generated through random testing
supplies good building blocks to the evolutionary engine that fruitfully
mixes them and generates better tests quickly.

In simple problems, like the Fraction, seeding can almost solve the
problem (Figure 3.4(a)): the branch coverage in the initial population
is very close to the optimum. Class Fraction is however very simple
and therefore also the original TestFul quickly reaches the optimum, and
the overall improvement due to seeding is only 11.75% (Table 3.2). In
[MBL10|, we noticed that random testing was able to work better than
TestFul on class Fraction. We explained this phenomenon by considering
that the Fraction is a class with a simple internal state (just composed
of a numerator and a denominator), but with a huge number of possible
configurations. TestFul uses an incremental approach and works longer
on discovered states. Instead, random testing does not impose any guid-
ance and explores the search space wider: it performs better in early
phases, slowing down later on.

The seeding technique exploits the initial good performance of random
testing to create an initial population with good building blocks, so the
evolution starts with a good branch coverage, very close to the optimal
one. Hence, TestFul easily recombines the tests and generates optimal
tests for the class faster than the normal version.

In more complex problems, like Red-Black Tree, seeding provides a
better starting point for the evolutionary search and results in a faster
convergence to the optimal solution (Figure 3.4(b)). In this case, the
original TestFul cannot reach the same performance (in the limited time
we set), accordingly, the improvement due to seeding is high, i.e., 98.27%.

Seeding is not effective on the State Machine (Table 3.2), where we
have already shown [MBL10] that random testing cannot generate good
tests even when applied for large amounts of CPU time. Accordingly, it
is also unable to create interesting individuals for the initial population
in TestFul.

3.2.1. Test Adaptation

The test adaptation mechanism performs a step further, and allows one
to seed the initial population by adapting tests already created for other
classes.

Often there are multiple implementations of the same feature, each
tailored to particular needs. If one wants to test one of these imple-
mentations, it seems reasonable to use the tests created for the other
implementations as starting point, and then focus on the particular re-
quirement addressed by the considered class. In order to recognize if

39

3. Efficiency Enhancement Techniques

two classes provide a different implementation of a same feature, Test-
Ful verifies if they are in the same inheritance tree or if they implement
a common interface. If it is the case, it is possible to reuse the tests
generated for one class to seed the initial population of the other class.
In this case, TestFul adapts the available tests, keeping all the method
invocation that are supported by the class being considered. The result-
ing tests are then executed and ranked according to their coverage level.
This is done because TestFul’s evolutionary algorithm uses a relatively
small population size (512 individuals), hence it should keep only the
most promising tests.

A particular case of this scenario is when one wants to test a new
version of a class. Obviously, in this case the two versions of the class
provides some features in common, and it is worth to use as starting
point the tests generated for the previous version of the class.

Performance Evaluation. In order to evaluate the improvement given
by the test adaptation, we used as benchmark the package java.util.
This package provides several implementations of containers (i.e., Col-
lections in the Java jargon), each to fit particular requirements and
using a different internal data structure.

We treated the package as a single project, with no initial test avail-
able. Then, we run TestFul with the test adaptation feature enabled on
all the classes of the package in sequence. The first class in the sequence
did not reuse any test, the second class reused the tests generated for the
first class, and the last class reused the tests generated for all the other
classes in the package. In this way, we simulate a typical application of
this feature when one wants to create tests for a project never considered
before. Consequently, we judge the approach by considering the average
performance of the package, calculated as the mean performance over all
the classes.

As yardstick we run the version of TestFul with only the seeding tech-
nique based on a random-search. Indeed, it is known [Arcl0b] that ran-
dom search have very good performance on containers, hence we expect
that the base version is particularly difficult to overcome.

Figure 3.5 reports the average performance improvement on package
java.util when the test adaptation feature is enabled. As it is possible
to see, it is worth to adapt tests created for other classes. TestFul is pro-
vided with better genetic material, and its performances are improved.
This improvement is noticeable in both the early and the later stages of
the evolution. Consequently, this technique is able to overcome a ran-
dom search to supply an initial population of tests, and it also enable
TestFul to generate tests with an higher level of coverage.

40

3.3. Fitness Inheritance

6%

iy
N /\VAV/‘“\

2%

Delta in Statement Coverage

1%

0% T T T T T
0 5 10 15 20 25 30

time (min)

Figure 3.5.: Average performance improvement with class adaptation on
package java.util.

3.3. Fitness Inheritance

The evaluation of the fitness function is extremely expensive since it
requires the execution of an entire test sequence, and thus test generation
can be dramatically slow. To speed up the evaluation, we introduced
the concept of fitness inheritance. At each generation, the usual fitness
evaluation is only performed on part of the population, while remaining
individuals (corresponding to the proportion p; of the population) inherit
the fitness from their parents. Fitness inheritance has been widely used
and proved effective in many applications (e.g., [Sas02, Sas02, Sas07]).

To add fitness inheritance in TestFul, we enhanced the crossover oper-
ator to calculate the inherited fitness of a newly created test as a function
of its parents’ fitness and their number of statements. Note that, such
an inherited fitness is cheap to compute, but it only provides an approx-
imation.

In TestFul, we tested two strategies to distribute the computational
effort among individuals: uniform selection chooses the individuals ran-
domly from the population by using a uniform distribution; frontier se-
lection focuses on the best individuals on the frontier. The latter mainly
evaluates the most promising individuals, making them less likely to in-
herit the fitness from their parents.

41

3. Efficiency Enhancement Techniques

Performance Evaluation. Inheritance reduces the number of fitness
evaluations, but it usually introduces noise that may hinder the conver-
gence to the optimum. Hence, to analyze the effect of fitness inheritance
in TestFul we have to consider two important aspects. On one hand,
we must study the speed-up perceived by the evolutionary engine: each
generation requires fewer evaluations, thus it is possible to process more
generations within the same time-limit. For this purpose, Figures 3.6(a)
and 3.6(b) show the average number of generations processed against
the elapsed simulation time. As foreseen, fitness inheritance allows the
evolutionary engine to complete more generations. Note that in complex
problems (e.g., class Red-Black Tree), the gain is moderate with the uni-
form selection policy, while it is higher if the evaluation effort is focused

----------- base —a—— uniform —®— frontier

1400
1200
«» 1000 -
S
= 800
©
@
2 600
9]
© 400
200
0
0
time (min)
(a) Speed-up on class Stack Array
----------- base —a— uniform —m— frontier
1000
800
(%]
C
O 600
=
©
@
c 400
)
(®)]
200
0

time (min)

(b) Speed-up on class Red-Black Tree

Figure 3.6.: Speed-up with Fitness Inheritance.

42

Branch Coverage

Branch Coverage

3.3. Fitness Inheritance

Table 3.3.: Improvement with Fitness Inheritance.

Fitness inheritance
Class . .
frontier | uniform
Disjoint Set Fast || +36.45% | +5.84%
Fraction -15.72% -3.98%
Red-Black Tree -18.57% | +26.88%
Sorting +13.58% | +16.50%
Stack Array +0.55% | +1.73%
State Machine same same
average +2.72% | +7.83%

140.00

120.00
100.00 -
80.00 -

60.00 { A/

20.00 +

0.00

T
0.000 2.000

T
4.000

time (min)

T T
6.000 8.000 10.000

(a) Performance on class Fraction

——————————— base —a— uniform —®— frontier

time (min)

(b) Performance on class Disjoint Set Fast

Figure 3.7.: Fitness Inheritance.

43

3. Efficiency Enhancement Techniques

on the frontier. The former might over-estimate long tests, leading to
a population with longer elements. This phenomenon is limited if the
elements on the frontier are evaluated more often.

On the other hand, we must analyze the ability of the evolutionary
engine to deal with a noisy fitness function. To recognize whether the
noise hinder the evolutionary process, we consider the average branch
coverage achieved by the best individual. The improvement on all con-
sidered classes is positive, albeit limited. However, it heavily depends on
the characteristic of the class being tested. For the State Machine, fit-
ness inheritance results in the same performance. This is due to the poor
guidance that the fitness function provides for this class; thus, reducing
the number of evaluations does not help achieve better results.

In classes with a great number of simple states (e.g., Fraction), the
recombination is more likely to generate tests that exercise new behav-
iors. However, this can only be detected when the test is evaluated, and
fitness inheritance is likely to hinder the convergence (see Figure 3.7(a)).
This phenomenon is amplified if we focus the evaluation effort on the
frontier: the evolutionary engine focuses more on the same set of tests,
ignoring other behaviors detectable by individuals not belonging to the
frontier. Classes like Disjoint Set Fast (see Figure 3.7(b)) let the in-
ternal state evolve through an ordered sequence of method invocations.
Consequently, the ability of a test to exercise certain behaviors heavily
depends on the qualities of its parents, and the fitness inherited is very
close to its actual value. Moreover, new behaviors are easier to reach
by working on tests able to exercise more behaviors: better results are
achieved when the evaluation effort if focused on the frontier.

3.4. Combined Improvement

At the end, we enabled all the three efficiency enhancement techniques
and chose the best hybridization policy and the uniform fitness inheri-
tance. The results of Table 3.4 show that in all the classes there is a
significant improvement over the original version of TestFul. In some
cases, these efficiency enhancement techniques allow TestFul to gener-
ate faster a test with the same structural coverage (see the results for
class Fraction in Figure 3.8(a)). However, they also allow TestFul to
generate tests with higher quality (see the results for class Sorting in
Figure 3.8(b)).

Note that different efficiency enhancement techniques can cooperate
to increase the performance even more. This is the case of the State
Machine: hybridization improves performance of 400%, while fitness in-

44

3.4. Combined Improvement

heritance has no effect. However, when applied together, hybridization
enables fitness inheritance to contribute more in increasing performance,
reaching a speed-up of 473%.

45

3. Efficiency Enhancement Techniques

Table 3.4.: Combined improvement of Seeding, “Best” Hybridization,
and Uniform Fitness Inheritance.

Branch Coverage

Branch Coverage

Figure 3.8.: Combining Seeding, “Best” Hybridization,

46

Class overall
Disjoint Set Fast | +54.85%
Fraction +10.96%
Red-Black Tree +90.12%
Sorting +18.28%
Stack Array +19.06%
State Machine +472.60%
average +110.98%
——————————— base enhanced
L e e——EETS
100 |
80 -
60
40
20
°3 ! ; : ; 0
time (min)
(a) Performance on class Fraction
----------- base enhanced
80
70 4
N
50 -
30 4
0]
104
0 | T T |
0 2 4 6 8 10
time (min)

(b) Performance on class Sorting

ness Inheritance.

and Uniform Fit-

4. Guidance

Modern software systems are complex, and multiple analysis techniques
are required to form an overall and detailed enough picture. Even if
someone only considers a simple procedure, and he focuses only on
the functional properties, it is known that the control-flow graph alone
can fail to provide enough guidance towards a particular goal [FK96].
The object-oriented paradigm introduces even more subtle dependen-
cies, since the behavior of an object might also depends on its state.

In order to provide TestFul with enough guidance, we use different
analysis techniques, and we reward tests according to several, comple-
mentary coverage criteria. In particular, we combine a black-box cri-
terion, presented in Section 4.1, with two white-box criteria, namely
the structural coverage (Section 4.2) and the data-flow coverage (Sec-
tion 4.3).

4.1. Coverage of the Behavioral Model

Methods of object oriented systems activate different behaviors depend-
ing on the internal state of the object accepting the call and on the actual
values of the input parameters. Consequently, if one wants to execute a
precise behavior, he must follow a precise interaction protocol with the
system and have to both prepare the state of the object and invoke the
right method with the adequate parameters. Considering all the inter-
action protocols for a given class, the object behavioral model would be
obtained. This model analyzes the class from an external point of view
(i.e., it is a black-box analysis technique).

We propose to measure the ability of tests to cover the object behav-
ioral model, and to use this black-box information to drive evolutionary
global search of TestFul.

The remaining part of this section first introduces ADABU, an ap-
proach to mine the object behavioral model, then presents our approach
to mine and represent the behavior of classes, and finally explains how
TestFul can leverage this information to drive the global evolutionary
search.

47

4. Guidance

clear()

removel

Figure 4.1.: ADABU’s object behavioral model for the Vector class.

Mining Object Behavioral Models

Even if object behavioral models are considered important, they often
are missing, incomplete, or outdated. Consequently, there are several ap-
proaches that reassemble the object behavioral model using static and/or
dynamic analysis.

ADABU [DLWZ06] monitors the execution of tests on the system to
mine object behaviors. Its goal is to provide the user with a model of
the normal behaviors of the system. As formalism, it uses finite state
machines, where nodes represent “meaningful” states of the system and
edges depict transitions between states. The former are obtained by
applying simple abstraction functions to observable properties, while the
latter are just method invocations. For example, Figure 4.1 reports the
behavioral model of the class Vector. It comprises two states: empty
and not empty. They are directly deducted from the observer method
isEmpty. In this case, the same two states can be obtained by applying
the ADABU’s abstraction functions to the observer method size: size <
0 is meaningless, size = 0 corresponds to empty, and size > 0 is not
empty. Fdges indicate the effects of method invocations, and pinpoint
the new states that the object might assume. It is worth to notice that
the model is not a detailed specification of the system, as it does not
explicit, for example, neither the object returned nor the final state of
the object when the remowve operation is invoked in the not empty state.
However, the developer can analyze it to understand the overall behavior
of the class and to spot high-level errors (for example, the presence of
an add edge headed towards the empty state would be a symptom of an
error).

Towards a more complete Behavioral Model

We note that the model proposed in ADABU is oversimplified, and it
might fail to properly render the behaviors of systems. In particular, we

48

4.1. Coverage of the Behavioral Model

highlight two main limitations: it might fail to recognize some object
states, and it does not consider the parameters of methods.

Some states cannot be recognized by only considering a single property
and applying a simple abstraction. For example, let us introduce class
BoundSet, which implements a set with a limited number of elements. In
order to recognize whether a BoundSet instance is full, the size property
and the ADABU’s abstraction functions are not enough; instead one have
to also consider the capacity property and adopt a more sophisticated
abstraction function that compares the two properties.

The object behavioral model used in ADABU only considers the state
of the object, and neglects the used parameters. On the contrary, the
behavior of object-oriented systems depends on both the internal state
and the given parameters. For example, considering class BoundSet,
method insert behaves differently if the provided parameter is already
in the set or not.

For these reasons, we provide more advanced abstraction functions,
and we also consider the actual parameters used in method invocations.

We provide the user with several parametric abstraction functions,
which allows him to abstract both methods and states of the class, by
considering the provided parameters.

Boolean accepts a boolean expression, and creates two states —true and
false— depending on the value of the expression.

Reference accepts an expression whose result is a reference, and dis-
criminate whether it is null or non-null.

String requires an expression with type string, and creates the following
states: null, empty, and not empty.

Number accepts an expression that generate a number (natural or float-
ing point). The user can also provide some expressions as param-
eters, which are used as yardstick (if none is provided, the default
“0” value is used). The abstraction function returns the interval
that contains the number returned by the expression. For example,
the this.size() property of the class BoundSet, when no parame-
ters are provided, is abstracted in three states': this.size() < 0,
this.size() = 0, and this.size() > 0. Conversely, we shown that
if one provides as parameter both 0 and this.capacity(), all the
interesting states are detected: this.size() < 0, this.size() = 0,

Tn this case, the Number abstraction function behaves like the ADABU’s abstrac-
tion function.

49

4. Guidance

insert (e € set) insert (€ ¢ set) insert (e € set)
&\ew BoundSet ()
insert (e ¢ set) insert (e ¢ set)
/\ /—\

0 < size < capacity size = capacity

_/ _/

remove () remove ()

remove () remove () insert (e ¢ set)

Figure 4.2.: Behavioral model of class BoundSet.

0 < this.size() < this.capacity(), this.size() = this.capacity(),
and this.size() > this.capacity().

Membership accepts an expression whose result is a reference, and, as
parameters, some expressions that return a collection of elements
(e.g., Iterables, Iterators, or arrays). As result, indicates if the
provided reference is included in some parameters, or not.

Before and after executing each operation of the test, we analyze the
state of the system through observers. Abstract states —that summarize
the influence of the internal state on the behavior of the system— are
obtained by using parametric abstraction functions. These accept as
input an expression —in which the user specifies how to inspect the
system by invoking its observers— and provide as output the abstract
state of the system. For example, if we consider the BoundSet class, the
user can specify to abstract the expression this.size() using the number
abstraction function, by comparing its value against 0 and the expression
this.capacity() (i.e., they are provided as parameters). Consequently,
the following abstract states are identified: (size < 0), (size = 0), (0 <
size < capacity), (size = capacity), and (size > capacity). In this
example, the first and the last states are meaningless, but the other
three are respectively the empty, non-empty, and full abstract states
(Figure 4.2).

Edges between nodes render the effect of a method invocation on the
abstract state. For example, a remove from a full set makes the ab-
stract state change to non-empty. Moreover, the behavior of methods
can also depend on provided actual parameters. Our approach allows ex-
pressions to reference the method’s parameters through special variables
(the i*" parameter is accessible through the p; variable). For example,
the method insert behaves differently if the parameter is a duplicate
element. For this reason, the user can provide the expression p0 to
consider the (first) argument of the method invocation, and choose the

50

4.1. Coverage of the Behavioral Model

membership abstraction function with this as parameter. In this way,
two versions of the insert method are created, depending on whether
the value being inserted already belongs to the set or not.

Behavioral coverage

The object behavioral model explicits the different behaviors that meth-
ods can have, according to the current state of the object and the used
actual parameters. For example, method insert behaves differently if
the BoundSet is empty, non-empty, or full, and if the element being in-
serted is already present in the set or not. Consequently, we reward tests
according to their ability to cover the edges of the behavioral model. In
fact, different edges represent a different behavior of the class. For ex-
ample, a test that invokes method add both on the empty state and the
not empty state is more worth than a test that only performs the first
method call.

In order to measure the behavioral coverage, we monitor the system
while each test is executed, and we infer the behavioral model that corre-
sponds to the interactions exercised. Then, we reward each test accord-
ing to the number of different behaviors it is able to exercise (i.e., the
number of edges), and we calculate its behavioral coverage (covpep)-
This information directly contributes to the fitness function.

Our approach also establishes a feedback loop between the construc-
tion of the behavioral model and the test generation. Behavioral models
are inferred by monitoring the execution of tests, and tests are rewarded
according to the completeness of the inferred models. Hence, as soon
as a test exercises a new feature, its behavioral model becomes more
complete, its behavioral coverage increases, and the evolutionary engine
will use that test more often as a basis for generating new tests. This
leads to the creation of (i) a test able to exercise all the features of the
system, and (ii) a model that completely renders them in a format that
can be read by a human being. To the best of our knowledge, only
Xie [Xie06] establishes a similar feedback loop between model inference
and test generation. Our approach differs from Xie’s one on the under-
lying model: he focuses on the contracts of classes [Mey92], leverages on
Daikon [ECGN99]| to infer them automatically, and uses a specification-
based test-generation approach, instead we adopt the object behavioral
model.

ol

4. Guidance

4.1.1. Empirical Evaluation

Chapter 2 shows how we used the information contained in the behavioral
coverage to drive the holistic evolutionary algorithm. Our preliminary
empirical evaluation (see Section 2.5) confirms that the evolutionary al-
gorithm can leverage this information to select tests, fruitfully recombine
them, and converge towards an optimal test.

We were able to leverage the abstraction function to successfully ex-
tract the behavioral model from several classes of our benchmark:

State Machine. The behavioral model of this class is simply the state
machine implemented by the class. The expression this.getState al-
lows one to determine the current state of an object. Then, we applied
the Number abstraction function, with the id of the states as parameters,
to achieve the abstract states.

Coffee Machine. We abstract the coffee machine basing on the values
of methods getTarget and getState. The former is compared against two
options: zero (the user has not selected any beverage) and a positive
value. The state is compared with the target’s value, forming the follow-
ing states: {(state=0), (0<state<target), (state=target), (state>target)}.

Fraction. The behavior of a fraction object heavily depends on its in-
ternal state (i.e., the number it represents). Obviously several visible
states are equivalent (e.g., % = %), abstractions must reassemble the be-
havioral model correctly. We analyze the state of the object by applying

the Numerical abstraction function to the following observers:

floatValue: we compare the floating point value of the fraction (f) against
-1, 0, 1. In this way we produce the following states:
{(f<_1)7 (f:_l)a (_1<f<0)7 (f:())’ (0<f<1),
(f=1,>D}

denominator: the denominator of a fraction can only assume positive
values or zero by construction. Our abstraction discriminates these
two cases by producing two abstract states:
{(den = 0), (den > 0)}.

numerator: we compare the numerator with the value of the denomi-
nator, its opposite, and 0. Accordingly, we generate the following
states:
{(num < —den), (num = —den), (—den < num < 0), (num = 0),
(0 < num < den), (num = den), (num > den)}.

The overall behavioral model of this class is the combination of these
states. Some combinations are infeasible (e.g., if the numerator is less

52

4.1. Coverage of the Behavioral Model

than the denominator, the corresponding float value cannot be greater
than 1), while others have special meaning: for example, when the de-
nominator is zero, the fraction either represents a not a number (NaN)
or an infinite value, depending on whether the numerator is zero.

Fault-detection ability of the Behavioral Coverage

However —since the behavioral coverage constitutes a novel coverage
criterion— we must investigate its fault-detection ability.

We select as benchmark the class Fraction, which is a well-designed
class with a non-trivial behavior. We compare the behavioral coverage
against two widely accepted coverage criteria: the branch coverage and
the all du-pairs coverage. They reward tests according to their coverage
of the control-flow and data-flow graphs, respectively.

To perform a good comparison we generate an uniformly distributed
set of tests for each considered criterion. We focus on the upper 50%
coverage, and we generate 10 tests for each 0.1% coverage (e.g., we have
ten tests between 87.6% and 87.7%). To generate tests without intro-
ducing any bias, we used three versions of TestFul, each guided by the
considered criterion only. Even if this limited guidance might prevent
TestFul to generate tests with the complete coverage of the system, it
allows us to compare the criteria and draw important conclusions. Then,
we applied the mutation analysis (briefly summarized in Appendix A) to
measure the fault detection ability of each test (i.e., its mutation score).
Andrews et al. [ABL05, ABLNO06| show that this technique is able to
replicate the typical mistakes that developers do, and it is adequate to
compare two different coverage criteria.

Figure 4.3(a) reports the result of the experiment, and for each con-
sidered criterion compares the coverage level (reported on the x-axis)
against the mutants killed (y-axis). The low mutation score (below 70%)
is due to the presence of equivalent mutants. We were not able to prune
them out because the tool we used applies mutation schemata directly on
the bytecode, and it does not allow us to inspect each mutant individu-
ally. However, this is recognized to be a common problem [DLS78, BS79].
It does not undermine the comparison since it influences in the same
manner all the three coverage criteria, it does not undermine the com-
parison. The graph shows the good fault-detection ability of tests with
an high level of behavioral coverage, which outperforms both the branch
coverage and the du-pairs coverage criteria. Consequently, it seems rea-
sonable to judge the quality of tests according to their ability to exercise
all the user-visible behaviors.

Interestingly, a previous version of the class Fraction was not correct

93

mutants killed (%)

mutants killed (%)

o4

Guidance

70.0%

behavioral

60.0%

du pairs branch

50.0%

40.0%

100.0%

30.0%
20.0%

50.0% 60.0% 70.0% 80.0% 90.0%

coverage (%)
(a) Tests generated for the complete class.
70.0% +
behavioral
60.0%
50.0%
du pairs

40.0%
30.0% branch
20.0% T T T T

50.0% 60.0% 70.0% 80.0% 90.0%

coverage (%)

(b) Tests generated for the incomplete class.

Figure 4.3.: Mutation Analysis on class Fraction.

100.0%

4.2. Coverage of the Control-Flow Graph

Algorithm 2 Branch selection example.
1: if a>5 then
2 if b<0 then
3 do something
4 else

5: do something

6

7

8

9

end if
: else
: do something
. end if

since it failed to handle fractions with a zero denominator. In particular,
the code require to handle those special states was completely missing,
and it was added in later releases. This allow us also to study the ability
of the considered coverage criteria to overcome errors presents in the
class and assign the correct quality to tests. Consequently, we perform
another empirical study. For each criterion, we select tests according to
their coverage on the wrong class, and we calculate their mutation score
on the correct class. As initially expected, white-box criteria perform
poorly. They were not able to correctly judge the tests because the code
to handle the special cases was completely missing, hence tests with a
high coverage have a low mutation score. Instead, the behavioral coverage
analyzes the system using a black-box technique: it was not misguided by
the missing code, it was able to correctly judge tests, and it selected tests
with a higher mutation score, outperforming the white-box techniques.

4.2. Coverage of the Control-Flow Graph

The global search seeks for a test able to put objects in interesting states.
In order to recognize them, TestFul uses as heuristic the level of struc-
tural coverage that each test achieves. The higher it is, the more the
test is able to exercise the involved classes, thus the more likely it puts
objects in interesting states. In particular, we adopt both statement and
branch coverages, and we add covsyms and covprqnen, cOomponents to the
fitness function. Note that the former is able to detect behaviors not
covered by the latter, such as handling an exception.

4.2.1. Local Search

To apply the step of local search presented in Section 3.1, we identify as
targets the branches that are reachable, but not exercised yet.

95

4. Guidance

A branch b is said to be reachable, but not exercised, when it belongs to
a condition already evaluated and b has never been taken. For example,
let us consider the program fragment of Algorithm 2 together with a
simple test that exercises it with a and b set to 2 and 3, respectively.
The condition at line 1 is evaluated, the false branch is taken, and line 8
is executed. The true branch (lines 2-6) is reachable, but not exercised.
Conversely, since the condition at line 2 is not evaluated, its branches
(lines 3 and 5) are neither reachable nor exercised.

4.2.2. Empirical Evaluation

We compared TestFul against some promising search-based approaches
able to work on stateful systems, namely jAutoTest (a version of Auto-
Test [LCO107], developed for Java), randoop [PLEB07], and etoc [Ton04].
jAutoTest mainly differs from AutoTest in the ability to generate a syn-
opsis of the executed test, usable for regression testing. It monitors the
random execution of the system, storing those operations that exercise
uncovered statements or branches. Consequently, the synopsis achieves
the same level of coverage as the whole random execution.

We chose a benchmark of 15 classes from the project listed in Sec-
tion 2.4: Array Partition, Binary Heap, Binary Search Tree, Coffee
Vending Machine, Doubly Linked List,Disjoint Set (both the refer-
ence and the fast versions), Fraction (from the Apache Commons Math
project), State Machine (both the Simple and the Hard versions), Red
Black Tree, Sorting Stack (both the version using an Array and that
using a List), and Vector.

Among them, Red Black Tree shares the same data structure as
java.utils.TreeMap, used in several related works as benchmark. Hard
State Machine extends the Simple State Machine used in [MS07]| by
introducing a sink error state that hinders the generation of tests able
to reach the target goal.

To judge the effectiveness of each considered approach, we set the time
limit for the test generation to 5, 10, 20, 40 minutes: the more time is
available, the better the resulting test should be. For each combination
of classes, tools, and time limits, we performed ten runs, generating each
time a test. To calculate the statement coverage and the branch coverage,
we replayed each test using cobertura [cob|, a third party code coverage
reporting tool. To achieve more accurate results, the comparison was
made on the average value over the ten runs. We evaluated the quality
in terms of (i) statement coverage, (ii) branch coverage, and (iii) size of
generated tests.

Our experiments stressed the tools heavily, requiring a total of 750

56

4.2. Coverage of the Control-Flow Graph

hours of CPU-time on an Intel Xeon E5530@2.40GIz with 6 gigabytes
of RAM. Instead of using toy examples, we preferred to work with real
classes, taken from independent parties, but this caused some problems.
Because of the prototypical level of the tools, given the 600 simulation
runs for each tool, TestFul, jAutoTest, randoop, and etoc successfully
completed 598, 595, 235, and 583 runs respectively.

Randoop was not able to handle two classes of our benchmark, namely
Stack Array and Stack List, and terminated its execution throwing an
exception. Since these problems are mainly related to errors in the im-
plementation in the tool, we did not penalize the approach by excluding
these two classes while we calculate its average performance. Moreover,
the memory required by randoop increased with the duration of the runs,
and we were not able to successfully generate and replay a test with runs
longer than ten minutes. With longer time limits, either the tool crashed
running out of memory, or the replay failed due to the impossibility of
compiling the generated test (the compilation ran out of memory, requir-
ing more than 5 gigabytes).

Similarly, we were not able to replay directly tests created by etoc for
the Stack Array class. After investigating the problem, we discovered
that some of the methods of that class declare to throw an exception,
but that was ignored by the generated jUnit tests. In this case, we solved
this naive error by manually modifying the generated tests.

In order to evaluate the approaches more than the tools, we discarded
the results when we got errors (e.g., out of memory? or non-termination?)
either in the test generation or in its replay. Thus, we calculated the
average performance for each tool on each class within the time limit by
only considering successful runs. Finally, for each approach and for each
time limit, we calculated an abridged version of the results by calculating
the average performance over all considered classes.

By analyzing the structural coverage achieved on each class, we no-
ticed that often a complete coverage was not achieved by any tool. We
investigated this phenomenon, and we found that it appears only on
clagses taken from the independent repository. This can be explained
with two reasons.

e The classes contain some unreachable code, such as some private
utility methods never used in the class.

2We used a heap size of 1,800Mb and 5,000Mb respectively for test generation and
test replay (including its compilation).

31f an approach required 30 minutes more than the time limit to generate a test,
we terminated the run marking it as non-terminated. Similarly, if a test replay
required more than 45 minutes, we marked the run as non-terminated.

o7

4. Guidance

e The classes declare protected or friendly methods never invoked
explicitly. Note that all approaches behave as external users of the
class, and thus they only considered public methods.

Since these two facts impacted on all the tools the same way, we decided
not to modify our benchmark.

Experimental Results

This section provides a summary of the experiments performed?. For
each time limit (i.e., 5, 10, 20, and 40 minutes) we run the simulations
using all the four tools. Table 4.1 reports the average performance (u)
and the related standard error (s) of the size of generated tests (Lines
Of Code), statement coverage, and branch coverage. The last two values
are also plotted in Figure 4.4.

If we consider the mean of structural coverages (both statement and
branch coverage), TestFul outperforms the other approaches for all time
limits and confirms its ability to generate good tests by working both at
class and method level. Moreover, the more time is available, the bigger
the gap between TestFul and the other tools is.

If we consider the standard error of the mean, we can recognize two
groups: one formed by jAutoTest and randoop, and the other by etoc
and TestFul. The first group has a higher standard error, which remains
constant even with long runs. The second group has a minor standard
error. It is also important to note that this decreases with long runs when
TestFul is employed. This can be explained by considering the way the
search space is explored: the first group uses a blind search, while the
second uses some kind of guidance. The presence of guidance ensures
more repeatable results, thus lowering the standard error. Moreover,
TestFul’s error decreases as runs became longer, which suggests that it
is converging towards a (sub-)optimal solution.

As far as the size of generated tests is concerned, TestFul creates a test
suite smaller than randoop and jAutoTest, but bigger than etoc. On top
of that, the tests generated by TestFul are more suitable for regression
testing, since the replay time is comparable with the time required to
replay etoc’s test (both require a few seconds). In contrast, jAutoTest
and randoop generated huge tests, difficult to use in the form they are
for regression testing (they would require several minutes to run).

It is also interesting to analyze the possible relationship between the
size of the tests and the length of the runs for the four tools. Randoop

“The complete set of results is available at
http://home.dei.polimi.it/miraz/testful/icst10.

o8

4.2. Coverage of the Control-Flow Graph

100.00

90.00

80.00 3

70.00 4=

60.00 =

e

R RRARRRARRRY o

5min 10min 20min 40min

B9 jAutoTest randoop etoc [] TestFul

(a) Average Statement Coverage.

100.00

90.00

.l_
80.00 +—
i

e

70.00 41T

60.00

SRR

RRRRRR
B s

5min 10min 20min 40min

£ jAutoTest randoop etoc [] TestFul
(b) Average Branch Coverage.

Figure 4.4.: Average structural coverage.

99

4. Guidance

Table 4.1.: Performance.

(a) 5-minute runs.

Size of Tests Statement | Branch
Tool Coverage | Coverage
p(s) LOC p(s) % p(s) %
JAutoTest | 315,448 (1383,760) 79.3 (5.8) | 72.5 (7.2)
randoop | 3,835,150 (509,377) | 74.3 (7.8) | 64.3 (9.6)
etoc 83 (17) 76.5 (5.5) | 65.8 (6.5)
TestFul 23,634 (12,196) 85.2 (4.0) | 79.0 (4.9)
(b) 10-minute runs.
. Statement | Branch
Tool Size of Tests Coverage | Coverage
p(s) LOC p(s) % p(s) %
JAutoTest | 357,130 (153,461) 80.4 (5.8) | 4.1 (7.1)
randoop | 7,823,575 (984,493) | T4.5 (7.7) | 64.8 (9.5)
etoc 85 (17) 76.9 (5.4) | 66.3 (6.5)
TestFul 16,694 (9,160) 879 (3.4) | 82.3 (4.1)
(¢) 20-minute runs.
. Statement | Branch
Tool Size of Tests Coverage | Coverage
p(s) LOC p(s) % p(s) %
jAutoTest | 367,860 (164,300) | 81.1 (5.8) | 74.8 (7.1)
etoc 86 (18) 77.0 (5.4) | 66.3 (6.6)
TestFul 9,600 (6,208) 87.9 (3.4) | 823 (4.1)
(d) 40-minute runs.
. Statement | Branch
Tool Size of Tests Coverage | Coverage
p(s) LOC p(s) % p(s) %
JAutoTest | 368,662 (169,718) | 81.2 (5.8) | 75.1 (7.1)
etoc 88 (20) 77.3 (5.6) | 66.1 (6.6)
TestFul 8,054 (5,845) 90.1 (3.8) | 85.2 (4.0)

shows a direct relationship: the size of 10-minute runs are slightly more
than twice the size of 5-minute runs. This phenomenon prevents us to
have runs longer than 10 minutes. The size of the tests generated by etoc
and jAutoTest are almost stable. For jAutoTest, this can be explained
by considering that it only emits the synopsis of the whole execution.
TestFul instead generates shorter tests with longer runs. To understand

60

4.2. Coverage of the Control-Flow Graph

this, we should consider the problem of bloat [LP97]. Evolutionary al-
gorithms using variable-length elements tend to introduce sequences of
useless genetic material, called introns. The presence of introns eases
the recombination and the mutation of elements, since the probability
to split or alter useful elements decreases. Our fitness function contains
a component aimed to minimize the length of individuals, but its overall
contribution is limited. We might increase its weight, but acting in this
way we would decrease the exploration of the solution space, pushing
the search towards shorter tests, and decreasing the capability of Test-
Ful to generate good tests. Since the size of the result was acceptable,
we decided to leave the fitness function unchanged; the user may always
adopt some analysis techniques (e.g., def-use analysis, slicing, or delta
debugging) to produce a smaller tests, as shown in [LOZ107].

Figure 4.5 compares branch coverage against time limits to under-
stand whether the approaches achieve better results with longer runs
(statement coverage shows a similar trend). The more the available time
increases, the more thoroughly TestFul exercises the class under test.
jAutoTest shows a similar behavior, but with a much less gain. Con-
versely, the performances of the other tools remain almost stable. This
phenomenon can be explained by considering that jAuto Test and TestFul

90.00

E\Ol el
o 80.00
(@)}
©
—
]
> I
o 2
o */
S
c 70.00 H
©
—
[an]
v —V
a a a
60.00 , ,
5 10 20 40

time (min)

e jAUtOTEST - _ randoop —x— etoc I TestFul

Figure 4.5.: Branch Coverage vs. time limit.

61

4. Guidance

have a similar internal test representation. This representation fosters
the evolution of objects’ states, thus longer runs reach more complex
configurations and achieve higher structural coverages.

4.3. Coverage of the Data-Flow Graph

Many objects have a hidden internal state, which heavily influences the
behavior of methods. For this reason, tests for object-oriented systems
are often rewarded by considering the coverage of the data-flow graph,
which correctly relates methods that cooperate by exchanging data (e.g.,
through objects’ fields).

When a statement assigns a value to a variable v, that statement is
said to define the value of v. Similarly, a use is a statement that uses
the value of a variable. If there are two statements s; and s, in which the
first one defines the value of a variable v (def, = {s4}), and the second
one uses the value of v (use, = {s,}), and if a path exists from s4 to s,
in which v is not re-defined (killed), then there is an association between
the definition and the use, and they form a du-pair (definition-use pair).

Several coverage criteria use this concept [RW85]. In particular, Test-
Ful adopts the all du-pairs coverage criterion, which requires that the
tests exercise all feasible du-pairs. In this way, if an erroneous value is
produced and assigned to a variable, it should also affect a statement
that uses that value. In TestFul this corresponds to extending the fit-
ness function with covg,(t), and to reward tests according to the number
of exercised du-pairs. The higher the value is, the more the test exer-
cises the class, and the more likely it will be selected by the TestFul’s
evolutionary algorithm.

Note that our work does not need to calculate the whole set of possible
du-pairs, which is an extremely expensive operation especially when per-
formed inter-procedurally. In fact, TestFul only requires the number of
du-pairs that have been exercised to determine whether a test exercises
the class more than another one. This is done by instrumenting the class
under test (a) to track the definitions of each variable and (b) to form a
du-pair when the variables are used.

Sometimes the uses in “normal” computational statements (c-use) and
those in predicates (p-use) are considered to be different; in this case,
one should count a p-use for each branch that starts from the pred-
icate |[RW85]. For example, consider the simple example reported in
Algorithm 3. Variable v has a single definition (line 1) and a single use
(line 2), hence there is a single def-use pair. However, the use happens in
a conditional statement with two outgoing branches, and there are two

62

4.3. Coverage of the Data-Flow Graph

Algorithm 3 P-Use example.

v < read)()

if v >0 then
do__something

else

do_something else
end if

D O W N

p-uses: one for the “true” branch and one for the “false” branch.

Using these definitions, all c-use and all p-use adequacy and coverage
criteria have been defined: they require to exercise all the definitions
that reach all the computational and predicate uses, respectively. It
is worth to note that the all du-pairs adequacy criterion subsumes the
all c-use one, while it does not subsume the all p-use criterion. The
all p-use criterion relates uses with the branch executes, hence “false”
and “true” uses of a conditional statement are treated as different uses.
For this reason, TestFul allows the user to judge tests also according to
the all p-use criterion, and extend the fitness function with the couvy,
component.

4.3.1. Local Search

Data-flow information can be used in two different ways to perform the
step of local search we presented in Section 3.1. On one side, data-flow
information can be used to identify as targets those def-use pairs that
are feasible on the systemn, but that are not executed by any test. On the
other side, we can leverage data-flow information to refine the identified
targets by removing those that are infeasible.

Improving the data-flow coverage

In order to improve the def-use coverage, one could focus on reaching
a new def-use pair and improve the all du-pairs coverage. To solve this
problem, one should enforce a complex constraint: the targeted definition
and the targeted use shall be executed, and the definition shall not be
killed before reaching the use. However, the local search cannot be asked
to solve such complex constraints, as it would probably fail in addressing
the three parts of the constraint.

Instead, we use the data-flow information to identify as targets uncov-
ered p-uses. Since chasing new definition-use pairs is too complex for the
local search, we want to make the existing pairs reach all the possible
branches, so to augment the p-use coverage criterion (Obviously, for each

63

4. Guidance

definition-use pair we only consider the branches of the condition that
contains the use). To this end, we collect and analyze the p-use coverage,
composed by triples in the form (def, use, branch). Obviously, there is a
relationship between uses and branches, as they refer to the same condi-
tion. We analyze the def-use pairs and the branch separately, so to spot
whether definitions that reach a p-use fail to enter all the branches of the
related condition. Finally, we identify these missing (def, use, branch)
as p-uses targets.

For example, consider the condition at line 6 in Algorithm 4: it con-
tains a predicate-use of the variable v. Analyzing the code, it is clear
that definitions at lines 2 and 4 reach that statement, hence the to fulfill
the p-use adequacy criterion one should cover the following p-uses:

{(2,6,true), (2,6, false), (4,6, true), (4,6, false) }

Let us suppose that a test only covers the first one. TestFul analyzes
the p-use coverage and identifies that the test is able to pair definition 2
with p-use 6, but this pair fails to execute the false branch. Accordingly,
TestFul prompts as target the p-use triple: (2,6, false). This target is
added to those identified by the control-flow analysis. In the considered
example, the false branch of condition at line 1 is never executed, and it
is prompted as a branch target. Suppose that this target is selected and
successfully reached by the local search (indeed, branch targets are easier
and hence more likely to be selected than data-flow targets). Suppose
also that the resulting test have an improved p-use coverage, composed
by the triples:
{(2,6,true), (4,6, false)}

TestFul, analyzing the coverage, reckons that the test pairs definitions
2 and 4 with p-use 6. Analyzing the branch covered by each pair, TestFul
understands that there are missing p-use entries. TestFul identifies that
definitions 2 and 4 reach the condition, but they fail to reach all the

Algorithm 4 P-Use selection example.

1: if condition then
2 v+ vl

3: else

4: V4 v2

5. end if

6: if v then

7 do something

8

: end if

64

4.3. Coverage of the Data-Flow Graph

branches of that condition. In fact, definition 2 enters the ¢rue branch,
but misses the false one. Similarly, definition 4 executes the false branch,
but leaves out the true one. Accordingly, TestFul identifies as p-use
targets the missing triples: (2,6, false) and (4,6, true).

Identification of unfeasible targets

The list of targets might contain two types of targets: some aiming to
improve the branch coverage, other to higher the p-use coverage. The
local search then selects one of these targets, and searches for a test
able to solve it (i.e., either reach the selected branch or exercise the
given p-use). If a solution is found, it is merged into a test, so that the
evolutionary algorithm of TestFul can reuse it.

To guarantee that a high efficiency of the approach, it is mandatory to
avoid spending computational effort on targets not easily reachable from
the current test. For this reason, we leverage control-flow and data-flow
information to detect whether a target is not feasible or if a target de-
pends on other ones. During the instrumentation of the classes, TestFul
saves the variables, the constants, and the comparison that compose each
conditional statement. Since the instrumentation is made on the Java’s
bytecode directly, only “simple” conditions are found, composed of two
values (variables or constants) and a comparison operator. This infor-
mation is used a run-time to understand which values can reach each
conditional statements, and to determine whether one of its branches
can be reached or not. Given a condition in the form a @b, there can be
three different cases:

e Both a and b are constants.
e ¢ is a variable and b is a constant (or vice versa).
e Both a and b are variables.

The first case, notwithstanding it can be automatically resolved by
an optimizing compiler, makes some target unreachable at all. In fact,
the outcome of the condition is fixed, as there is no way to change the
values and the comparison operator. Even if TestFul does not prune the
unreachable code during the instrumentation, it is able to detect if such
unfeagible branch is targeted. Since TestFul makes available at run-time
the information regarding the condition, it have the values being used in
the condition (in this case, they are constant), hence it can pre-calculate
the outcome and detect unfeasible branches.

To handle the second case, TestFul verifies if the variable can only
assume a limited set of values, and if it is possible to pre-determine

65

4. Guidance

the outcome of the condition. For this reason, it analyzes the data-flow
information to collect the definitions of the variable (a) that reach the
conditional statement. If all these statements define a with a constant
value, it is possible to determine the values the variable can assume, and
verify if the target can be reached or not. In the latter case, the target
is marked as unreachable (starting from the current test). However,
a can be defined without using any constant value (e.g., by invoking
a function). In this case, we cannot limit the values the variable can
assume (we say that the variable is “free” to assume any value).

The third case is an extension of the second case. In order to pre-
determine the outcome of the condition, both variables must be initial-
ized with constant values.

For example, we can consider the classical use of a flag variable re-
ported in Algorithm 5.

Algorithm 5 Usage of a Flag-variable.
: flag < false > Definition 1
: for all e € elems do
if condition(e) then
flag < true > Definition 2
end if
end for
if flag then > Use 1
target
end if

Let us suppose that line 8 is not executed. In this case, TestFul selects
both lines 4 and 8 as targets, with the corresponding conditions (lines
3 and 7, respectively). The first condition (Line 3) uses a free variable,
hence TestFul correctly does not mark it as infeasible. The second con-
dition (Line 7), instead, uses the value contained in variable flag (Use
1). However, the du-pairs coverage reports that Use I is only reached
by Definition 1 (line 1), which sets the value of the flag with a constant
value (“false”). This value does not satisfy the condition being addressed
(line 3), which requires the flag to be “true”. In this way, TestFul de-
tects that the condition cannot be targeted directly, and it discards the
corresponding target. Consequently, TestFul directly targets the right
condition (i.e., the one at line 3), and it does not wast computational
effort by applying the traditional trial-and-error process used by other
evolutionary approaches [FK96].

We can use the def-use pairs coverage to ensure that the local search
does not takes blind alleys. In some situations, a change of the test

66

4.3. Coverage of the Data-Flow Graph

Algorithm 6 Simple test for the class Water.
1: Double d = 212.0;
2: Water w = new Water();
3: w.setFarenheitTemperature(d);
4: w.checkStatus();

can make the values of the variable get closer to the target, but turn-
ing out the target itself infeasible. For example, consider a the class
Water which allows the user to set a Fahrenheit temperature and check
its status (solid, liquid, or gas). Suppose that the melting point is
never tested, and a local search targets it by starting from the test re-
ported in Fig. 6. The distance between the initial test and the target is
|212 — 32| = 180. A simple improvement would be to remove operation
setFarenheitTemperature (line 3): the constructor sets the tempera-
ture to zero degrees and the distance would become |0 — 32| = 32. The
hill climbing algorithm would prefer the new version of the test, since it
seems closer to the target. Instead, if that change is accepted, the local
search loses its ability to control the temperature of the water, and the
target can not be reached.

To avoid entering these blind alleys, we analyze the du-pairs coverage,
focusing on the variables used the targeted condition. If a change makes
these variables to be only defined with incompatible constant values, we
discard the change since it makes the local search loose its ability to
control the values of the variables.

4.3.2. Empirical Evaluation

As aforementioned, we want to: (a) investigate whether the information
gathered from the data-flow graph helps TestFul generate better tests
and (b) compare the quality of the tests produced by TestFul against
the quality of the tests produced by means of other approaches.

To fulfill the fist goal, we selected three configurations of TestFul to
progressively refine the fitness function used, and better understand the
impact of data-flow information:

e Configuration basic is only driven by the statement and branch
coverage criteria. This configuration does not exploit the informa-
tion gathered from the data-flow graph and it is used as touchstone.
The fitness function is:

f(t) = (t.length, covsgmi(t), covy(t))

67

4. Guidance

e Configuration +du extends the basic one with the all du-pairs
coverage criterion. It also uses the data-flow graph to improve the
local search and reach targets more efficiently. The fitness function
becomes:

f(t) = (t.length, covsmi(t), covp,(t), covg,(t))

e Configuration +puse also adds the p-use coverage criterion. The
fitness function becomes:

f(t) = (t.length, covsimt(t), cov,(t), covgy(t), covpyse(t))

Note that TestFul-basic provides significant improvements with re-
spect to the version presented in [MBL10|. The main differences are the
integration of efficiency enhancement techniques [MLB10], a better im-
plementation of the hill climbing algorithm, the removal of user-provided
information to drive the evolutionary process, and some further minor
improvements that allow TestFul to better deal with complex software
systems (e.g., support for arrays).

To assess the quality of defined tests, we exploited the symbolic execu-
tion engine of Java Path Finder |PMB™08|, which is a widely used tool
in the testing community, to generate tests in a different way. Instead
of supplying concrete inputs to the program (e.g., numbers), it provides
symbolic values and uses them to execute the program (i.e., it performs
a symbolic execution). When conditional statements are reached, Java
Path Finder uses the symbolic values being compared to create a set of
formulae —one for each branch— that contains the constraints to execute
them. Traditional constraint solvers are used to obtain the actual val-
ues for the parameters. The plan was to compare these tests, and those
generated by the three versions of TestFul, both in terms of levels of
coverage and through mutation analysis. However, it is known [UOH93|
that mutation analysis is an expensive techniques, as it requires to run
each generated test on each mutated version of the class. In our case,
the benchmark comprises more than 200 classes, each of them has more
than 2’500 mutants; we have run 10 times the three versions of TestFul,
and each of these 30 generated tests requires in average 2,5 second to
run®. With these settings, an exhaustive mutation analysis would require
200-2500-10-3-2,5 ~ 434 days. Moreover after some first experiments,

SWe use time-based threshold to detect mutants that make the program not ter-
minate. It is set as five times the original execution time, as it seems a good
compromise between efficiency and accuracy. However, this threshold higher the
average test execution time as we experience several of non-terminating mutants.

68

4.3. Coverage of the Data-Flow Graph

it seemed that the tests we generated with Java Path Finder were only
able to kill few mutants. This is why we decided to save on resources
and use mutation analysis only to compare the tests generated by Test-
Ful with the results published by Mouchawrab et al. [MBLD10] about
the quality of tests generated by human beings for a class OrdSet.

Since the classes we considered had no contracts we could exploit to
detect failures, we used a widely accepted heuristic [PLEBO7]: there is a
failure in a method invocation when it throws an unexpected exception
(in case of NullPointerException we discarded the failure if we gave the
method a null parameter). However, unchecked exceptions are widely
used to warn the user in case of violations of method’s preconditions:
they are reported in the documentation (e.g., in the javadoc), but they
are often not part of the interface (Java does not oblige one to declare
when unchecked exception can be thrown). To make the heuristic work,
we enriched method interfaces by adding the unchecked exceptions listed
in the documentation.

To define the baseline, we ran TestFul-basic. Besides providing in-
teresting data about the coverage achieved (Table 2), this first run also
revealed several failures. Some of them are due to exceptions used to sig-
nal an invalid usage of the class not reported in the documentation. For
example, if one iterates over a Collection while it is being modified, a
ConcurrentModificationException is thrown. More interestingly, we
were also able to find a real error in java.util. It is able to handle
self-referring collections:

Collection<Object> ¢ = new ArrayList<Object>();
c.add(c);

System.out.println{c.toString());

// prints "[(this Collection)]"

However, it is not able to deal with two collections that refer each other
reciprocally:

Collection<Object> a = new ArrayList<Object>();
Collection<Object> b = new ArrayList<Object>();
a.add(b);

b.add(a);

System.out.println(a.toString());

In this case, method toString enters an infinite recursive loop ter-
minated by the virtual machine by throwing a StackOverflowError.
TestFul reported such an error automatically, while several works on the
automatic generation of tests [Ton04, XMSNO05, PLEBO07| targeted this

69

4. Guidance

package, but they did not discover it. The official Java bug database
reports the error as open issue (entry 4275605).

Given the amount of unreported unchecked exceptions and failures,
after running TestFul-basic we decided to run the comparison with Java
Path Finder by disabling the fault-detection ability of the tools to speed-
up the assessment. Note that the goal was to compare the test generation
capabilities, and thus disabling this feature had no impact on the results.

To generate tests, we used three virtual machines with a single core
of an Intel Xeon E5530@2.40GHz CPU and 1.5 gigabyte of RAM (the
heap size of the java virtual machine was limited to 1 gigabyte). We
generated tests for each class using both Java Path Finder and the three
configurations of TestFul. We gave each tool 30 minutes of CPU-time.
Since TestFul’s performance depends on a random sequence of numbers,
we repeated its experiments ten times to achieve more accurate results,
and the comparison we made is on the mean values. In contrast, Java
Path Finder is deterministic.

Experimental Results

The results obtained by carrying out the experiments described in the
previous section can be organized in two main groups:

e the first group containing the coverage level cover both the impact
of data-flow information on the tests generated through TestFul
and the comparison with Java Path Finder;

e the second group about mutation analysis provide interesting re-
sults about the quality of the tests generated with TestFul with
respect to those obtained through other approaches.

Structural and Data-Flow Coverage The inclusion of data-flow infor-
mation can either improve or worsen the performance of TestFul.

On one side, we have to consider that tracking data-flow coverage
requires that the tool to collect more data from each test execution.
Tracking du-pairs and p-uses is far more complex (i.e., it requires more
time) than tracking the structural coverage, hence there is a chance to
lower the overall performance. To quantify the slow-down imposed by
the deeper instrumentation, we considered the number of method invoca-
tions performed by the three configurations of TestFul in their 30-minute
runs. On average, the basic configuration of TestFul performs 5,000,000
method invocations, while the +du and +puse ones only 3,850,000 (23%
less) and 3,750,000 (25% less) invocations, respectively. This confirms

70

4.3. Coverage of the Data-Flow Graph

our hypothesis that the instrumentation required to track the data-flow
coverage can limit the performance of TestFul.

On the other side, TestFul capitalizes the data-flow information to
improve the local search, and this should improve its performance.

For these reasons, we analyzed the average structural and data-flow
coverage of the tests generated by each configuration of TestFul and by
the symbolic execution engine of Java Path Finder.

Tables 4.2 and 4.3 report the average structural coverage, and show the
statement and branch coverages respectively. They also show the sample
standard deviation (std). All the configurations of TestFul outperform
the symbolic execution engine of Java Path Finder on all the projects
except the State Machine. Note that we picked this project from [MS07],
and we expected symbolic execution approaches to work well on these
clagses. As for the three configurations of TestFul, we can note that
the average structural coverage does not decreases when the data-flow
coverage is monitored, albeit it allows TestFul to perform less method
invocations. Conversely, the data-flow information allows TestFul to
increase its structural coverage on complex classes, and in particular it
fills the gap with the symbolic execution engines on State Machine.

Tables 4.4 and 4.5 consider the coverage on the data-flow graph, and
report the average (and the sample standard deviation) number of cov-
ered def-use pairs and predicate-uses, respectively. Once again, the basic
configuration of TestFul outperforms the symbolic execution engine of
Java Path Finder on all the projects, but State Machine and Stack.
The reasons for the State Machine have been motivated above; those for
the Stack can be explained by considering that symbolic execution en-
gines target the all-paths coverage, hence they are able to exercise more
the data-flow graph than the basic configuration of TestFul. Instead,
it seems that the ability of TestFul to reach a high level of structural
coverage allows it to have a good coverage also on the data-flow graph
(albeit with a huge standard deviation). Moreover, if we make Test-
Ful consider the data-flow coverage, the number of covered def-use pairs
and p-uses increases (and the previous problems are solved). Both the
+du and +puse configurations increase the average du-pairs covered
and lower its standard deviation. The actual improvement varies and
depends on the projects: some almost double their average data-flow
coverage (e.g., Binary Search Tree), while others keep the same average
value, but reduce the standard deviation (e.g., Commons Math). Fi-
nally, note that the +du configuration exercises several predicate-uses,
confirming its ability to cover the data-flow graph. However, if one ex-
plicitly targets them and uses the 4puse configuration of TestFul, the
number of covered predicate-uses further increases.

71

4. Guidance

Table 4.2.: Average Statement Coverage.

class

Statement coverage (%)

JPF Dbasic +du +puse (std)
Array Partition 93 100 100 98 (6)
Binary Heap 6 98 100 (100 (0)
Binary Search Tree | 95 100 100 (100 (0)
Commons Math 19 88 86 (87 (1)
Disjoint Set 17 100 100 (100 (0)
java.util 22 86 86 (86 (1)
JGraphT 22 77 2 67 (2)
NanoXML Lite 16 65 57 61 (7)
OrdSet 7 95 9% 95 (0)
Red-Black Tree 35 100 100 (100 (0)
Roops 6 94 93 (94 (1)
Siena 45 96 95 95 (1)
Stack 55 97 97 97 (0)
StateMachine 64 46 68 (1 57 (7)

Average 35 89 89 88

Table 4.3.: Average Branch Coverage.
) Branch coverage (%)

class JPF basic +du +puse (std)
Array Partition 90 100 (0) 100 _ (0) 97 (5)
Binary Heap 0 97) 100 (0) 100 (0)
Binary Search Tree 95 100 (0) 100 (0) 100 (0)
Commons Math 9 82 (2) 81 (0) 81 (1)
Disjoint Set 0 100 (0) 100 (0) 100 (0)
java.util 11 0 (2) 8 (1) 79 (1)
JGraphT 12 66 (3) 61 (1) 56 (1)
NanoXML Lite 5 51 (10) 40 (12) 4 (9
OrdSet 4 9 (0) 90 (0 920 (0)
Red-Black Tree 27 100 (0) 100 (0) 100 (0)
Roops 1 6 (2) 84 (0) 85 (2)
Siena 21 86 (2) 84 (3) 84 (1)
Stack 46 93 (0) 93 (0 93 (0)
StateMachine 55 30 (3) 61 (22) 42 (7)

Average 27 83 84 82

72

4.3. Coverage of the Data-Flow Graph

Table 4.4.: Average number of def-use pairs covered.

class

Number of def-use pairs covered

JPF basic +puse (std)
Array Partition 18 23 29 (4)
Binary Heap 0 33 42 (0)
BinarySearch Tree 70 74 116 (0)

Commons Math 882 30857 31161
Disjoint Set 2 12 12 (0
java.util 922 7215 8712 (208)
JGraphT 311 11002 10064 (290)
NanoXML Lite 38 179 182 (12)
OrdSet 1 221 285 (2)
Red-Black Tree 72 528 77 (81)
Roops 21 394 401 (20)
Siena 481 1479 1588 (4)
Stack 59 41 62 (0)
StateMachine 40 21 34 (6)

Table 4.5.: Average number of predicate-use covered.

class Number of predicate-use covered
JPF Dbasic +puse (std)
Array Partition 14 15 20 (3)
Binary Heap 0 14 20 (0)
Binary Search Tree 29 29 53 (0)

Commons Math 122 6,732 6,517
Disjoint Set 2 6 8 (0)
java.util 234 2,518 3,243 (77)
JGraphT 65 2,035 1,822 (68)
NanoXML Lite 6 46 42 (9)
OrdSet 0 83 12 (1)
Red-Black Tree 20 210 327 (23)
Roops 6 67 66 (7)
Siena 142 463 556 (6)
Stack 27 17 31 (0)
StateMachine 25 10 19 (3)

73

4. Guidance

Mutation Analysis To investigate the effectiveness in detecting faults,
that is the quality, of generated tests, we employed mutation analy-
sis [DLS78, ABLN06]. Mutant operators generate multiple mutated ver-
sion of the code of interest, each one with a single fault seeded. Tests
are judged according to the number of mutated versions they are able
to detect (kill). However, the application of mutant operators might
create equivalent mutants, which are semantically identical to the orig-
inal program, hence tests cannot kill them. For example, a > b and
a > b are equivalent if a cannot be equal to b. To correctly judge the
fault-detection ability of tests, one should (manually) identify and prune
equivalent mutants.

Although mutation analysis requires huge computational effort, it pro-
vides a good estimation of the fault-detection abilities of tests [ABLNO06],
allowing one to compare different ways to generate them.

In particular, Mouchawrab et al. [MBLD10| compare the fault detec-
tion effectiveness of state testing against structural testing on classes
with state-driven behavior. They performed a series of controlled ex-
periments involving students from two universities: Carleton university
(Canada) and Universita del Sannio (Italy). One of the three projects®
they use as benchmark is OrdSet, which manages a bounded and ordered
set of integers, and provides operations to add and remove an element,
and merge two sets. Even if this project comprises a single class with
a limited number of lines of code, its complexity is comparable to the
other two projects of their study.

Since the source code of class OrdSet and the mutants they used
are publicly available —through the Software Infrastructure Repository
[DERO5]— and [MBLD10] provides sufficient data, we replicated the sta-
tistical study. However the authors did not provide the tests they used
in their experiments (because of copyright issues) and thus we could
only perform a comparison on the overall mutation score, while we could
not compare the non-equivalent mutation score or verify whether the
student-written tests and those generated by TestFul are complemen-
tary.

Mouchawrab et al. used MuJava to automatically generate a large set of
mutants (more than 800), but they did not remove or mark the equivalent
ones, hence we performed this task manually. Table 4.6 reports the
average mutation score and the standard deviation of the tests reported
in [MBLD10|” and those generated by the three configurations of TestFul.

®The other two projects used in [MBLD10] manage multi-threaded applications,
which are currently not supported by TestFul.

"For the sake of simplicity, we use the same notation used in [MBLD10], and we
label with “code” (C) the structural tests, and with “state” (S) the state tests.

74

4.3. Coverage of the Data-Flow Graph

Table 4.6.: Mutation score.
all mutants not equivalent
mean (std) mean (std)
Carleton Code || 56.15% (19.99%)
Carleton State || 50.27% (17.20%)
Sannio Code || 70.31% (12.69%)
Sannio State | 71.96% (12.41%)
)
)
)

Provenience

TestFul basic | 85.36% (1.78%
TestFul +du || 89.32% (0.18%
(0.20%

93.15% (1.95%)
97.50% (0.20%)

TestFul +puse | 89.28% 97.46% (0.32%)

Table 4.7.: Mutation score comparison: p-value of the statistical hypoth-
esis testing Hop : mean(A) > mean(B;) vs. Hy : mean(A) <
mean(B;) with B := { “Carleton Code”, “Carleton State”,
“Sannio Code”, “Sannio State”, “ TestFul Basic” }.

A ‘ Bcc Bcs Bsc Bss Btb
TestFul basic | 1.0000 1.0000 0.9987 0.9985 —
TestFul +du | 1.0000 1.0000 0.9998 0.9998 1.0000
TestFul +puse | 1.0000 1.0000 0.9998 0.9998 1.0000

With these last tests, we were also able to prune equivalent mutants and
thus we also report the mutation score for non-equivalent mutants.

According to these data, TestFul outperforms the tests generated by
the students, since its tests have both a higher average mutation score
and a lower standard deviation. To have a statistical confirmation of this
conjecture, we also performed a statistical hypothesis test between Hy :
“tests created by TestFul outperform tests generated by human beings”
vs Hip : “tests created by TestFul do not outperform tests generated by
human beings”, and the p-values® are reported in Table 4.7.

All the p-values are close to 1, hence we can safely assume that Hy
is true, and that the tests generated by TestFul are better than those
created by human beings. Additionally, the last column of Table 4.7
compares the performance of the basic version of TestFul against the
+du and +puse versions. Since the p-values are close to 1, there is
a statistical confirmation that TestFul generates better tests if it also
considers data-flow information.

8Fixed a significance level o, a p-value smaller or equal than « indicates that Hy
should be rejected. If « is set to 0.95, then results that are only 5% likely or less,
given that Hy is false, are deemed extraordinary.

75

4. Guidance

Finally, as for costs, the tests generated by TestFul are (obviously)
cheaper: its generation is completely automatic and it only requires 30
minutes (instead of the three or four hours given to the students). The
cost for executing each generated test is also reasonable with an average
of Tms.

76

5. Related Work

The body of work on the automated generation of tests is vast [PYO08].
During the years, researchers proposed several approaches to (semi-)
automatically generate tests for a given piece of software. These work
can differ for several reasons: the property of the system being tested
(i.e., functional or non-functional), the scale of the system (i.e., unit
tests, integration tests, system tests, or acceptance tests), the type of the
system (e.g., functions, classes, or agents), the type and the amount of
information of the system being used (i.e., black-box, gray-boz, or white-
boz), or the technique used to generate tests (e.g., symbolic execution or
search-based approach).

The goal of this chapter is not to be exhaustive, but to provide the
reader a brief overview of the most promising approaches proposed in
literature. For this reason, it focuses on those approaches that generate
functional unit tests, grouping them into two groups: Non Search-Based
and Search-Based approaches. The former are sketched in Section 5.1,
which consider those work that do not rely on any search-based tech-
nique, and generate tests by analyzing the internal structure of the pro-
gram or its specification. The latter are presented in Section 5.2, which
deeply analyzes these approaches that reduces the generation of tests to
a search problem, addressed using different search techniques.

5.1. Non Search-Based

The most promising “traditional” techniques that (semi-) automatically
generate tests gravitate around two main groups: specification-based and
symbolic execution.

5.1.1. Specification-Based

The generation of functional unit tests is a common and fundamental
step in software development, but it presents several challenges. When
produced manually, unit tests are often not sufficient to detect errors,
mainly due to the limited amount of time available. However, even
if some automated technique is used, there is the need of an oracle,

77

5. Related Work

that is a technique to determine whether the system has behaved cor-
rectly or not. Albeit there are several techniques for fest oracles [BYO01],
in recent years techniques based on a specification language (such as
JML [LBR99, LCC*03|) received some attention. The presence of a
machine-comprehensible specification can be exploited to generate tests.
For example, Korat [BKMO02]| uses the method preconditions to automat-
ically generate all non-isomorphic tests up to a fixed size. Then, it uses
the postconditions to check if the method behaves correctly.

However, sometimes the specifications are partial or absent. Xie [Xie05,
Xie06] tackled these cases, and proposed an approach that combines the
specification inference [ECGNO1| with the generation of the test. His
work [PE05, XN05, XN06, CSX08]| first infers an operational model of
the system being tested. Then, he uses a classifier to identify illegal,
fault-revealing, and mormeal inputs. Illegal inputs are just discarded,
since they do not satisfy the system’s preconditions. Fault-revealing in-
puts are reduced and prompted to the user, which can inspect them and
decide if they reveal a fault or not. Normal inputs are used to generate
new inputs, and continue the exploration.

5.1.2. Symbolic Execution

One of the most accepted approach is the symbolic execution [KinT75,
Kin76, Cla76b, How77, RHCT76].

Instead of supplying concrete inputs to the program (e.g., numbers),
it provides symbolic values and uses them to execute the program (i.e.,
it performs a symbolic execution). When conditions are reached, it uses
the symbolic values being compared to create a set of formulae —one
for each branch— that contains the constraints to execute them. In this
way, each path of the program can be associated with the set of con-
straints on the input parameter to traverse it [BEL75, Cla76al. State
of the art constraint solvers can be used to obtain the actual values
for the parameters, and generate test data to reach all the paths of
the program. Several approaches were proposed to apply these tech-
nique to object-oriented systems, and automatically generate tests for
classes [BHR100, BOP00, MOP02, Bal05, XMSN05, dPX*06, DRH07].
Moreover, Visser [VPP06]| combines the symbolic execution with model
checking to efficiently explore all the possible test sequences (up to a
predefined size).

However, symbolic execution has some limitations. The number of
paths of a program grows exponentially with the number of branches in
the code, and it is often unbounded because of loop (this is known as the
“path explosion” problem). Additionally, symbolic execution is limited

78

5.2. Search-Based Approaches

by the power of constraint solvers to deal with complex expressions. It
also fails to manage large or complex programs, since maintaining and
solving constraints becomes computationally intractable. To (partially)
solve these problems, Larson and Austin [LA03| combined concrete and
symbolic execution. The program is executed using values provided by
the user, and symbolic path constraints are generated for that specific
execution. Then, the collected constraints are solved to check whether
there are potential inputs that —on the same execution path— would
have led to a violation. Afterward, Godefroid [GKS05] extended the
approach by proposing to incrementally generate test values. Instead
of searching for violations, he uses the constraints to look for alterna-
tive paths. In particular, he explores all the paths of the program in a
depth-first manner, by negating the conjunction of the path constraints.
Sen [SMAO05, SA06] goes a step further and developed a method to rep-
resent and track constraints that capture the behavior of a symbolic
execution of a unit with memory graphs as inputs. Finally, these pro-
posal were finalized and implemented in industrial-grade tools, such as
Java PathFinder [PMB*08| and the Visual Studio IDE [TDHO0S|.

5.2. Search-Based Approaches

Search Based Software Engineering (SBSE) applies search-based tech-
niques to solve software-engineering problems. It suggests to reformulate
the software engineering problem as an optimization problem. Accord-
ingly, it is possible to leverage state of the art search algorithms and the
high-performance computing power to efficiently find —from among all
possible solutions to the problem— the one that meets the user’s require-
ments. This process allows one to tackle problems often intractable by
other methods, leads to innovative and insightful solutions, and partially
or fully automates previously manually intensive tasks.

Search Based techniques have been applied to several software en-
gineering problems, among which we mention Coding and Design Tools
[JHHO8, JGHLO7, PHY10, NBY09, PEBC07, AWY08|, Distribution and
Maintenance [HT07, GHLM06, WCJP08, EB07, BE06, EB08|, Manage-
ment |[WCTY09, GHA09, EB09, PHAQO7|, Requirements / Specifica-
tions [ZH10, Zhal0, ZAD'10, DZAN09, HKRY09, BHSS06, ZHMO07,
FHM109, FHM™08, HSS06, ZFHO08], and Testing / Debugging. The
last category has been particularly active, and includes approaches to
generate tests for verifying functional [Ham77, PHP99, Ton04, MTROS|
and non-functional [GM02, BLS05, TWS06] properties of the system, to
minimize the test suite [LOZT07, HO09], and to automatically gener-

79

5. Related Work

ate patches to fix the errors [WFGN10, FNWG09, WNGF09, FGFW10,
SFW10].

In this section, we analyze search-based techniques to generate unit
tests for verifying functional properties of the system. We organize them
in two main groups: blind and guided search techniques.

5.2.1. Blind search

Random testing [Ham94| is probably the most famous search-based ap-
proach for the automatic generation of tests. It simply performs a ran-
dom sequence of invocations on the system under test. Notwithstanding
its simplicity, random testing can be as effective as other traditional
approaches [CY96]. When failures are detected, random testing tools
are able to provide witnesses, which are sequences of operations able to
reveal them.

In contrast, the use of randomly-generated tests for regression testing
is problematic. It is possible to identify two parts of the process: ensuring
that errors fixed in the past are not reintroduced, and ensuring that the
new version provides functionality that must be preserved. The former
is satisfiable by means of witnesses. The latter instead necessitates to
replay the whole sequence of random operations. This requires a huge
amount of time, but allows one to obtain the same level of confidence
as with the previous version of the application. To alleviate this issue it
is possible to use the random search. Even if the two techniques share
the same blind search strategy, random search requires an objective to
maximize (e.g., the branch coverage). Accordingly, the execution of tests
is monitored so to collect those tests that achieve the utmost level of the
chosen objective.

Among available approaches, we mention AutoTest [MCLLOT7|, one
of the most advanced tools for random testing, specifically designed for
object-oriented systems. AutoTest supports the evolution of each object
through a sequence of random invocations of its methods and exploits
contracts [Mey92] to spot if an output value, or the state of an object, is
incorrect, and thus reveals a failure [LCOT07]. Ciupa et al. [CLOMO7]
performed an empirical evaluation of random testing and found that the
random seed influences achieved performances. We tried to investigate
this dependency and we discovered that their tool uses a linear congru-
ential method [Knu97| to generate random numbers —a weak method
with severe limitations (e.g., the serial correlation between successive
values) that is not recommended if randomness is critical. Accordingly,
we replaced the random number generator of AutoTest with Mersenne
Twister [MN98]. We applied the modified tool to a class implementing

80

5.2. Search-Based Approaches

a simple state machine, and performed several runs of 30 minutes (the
same duration of the experiments reported in [CLOMO07]), measuring
the structural coverage. Figure 5.1 shows the coverage of the actual 100
def-use pairs. Even with a powerful random number generator, random

30 T T T T T T T T
28 | .
26 | | N

24 1 S |

22 |y — | =
20 .
18 1
16 .

0 200 400 600 800 1000 1200 1400 1600 1800
time (s)

DEF-USE PAIRS COVERAGE

Figure 5.1.: Def-Use pairs coverage with random testing. Complete cov-
erage consists of 100 def-use pairs.

testing cannot converge to the complete coverage of the 100 def-use pairs.
These results are coherent with those in [CPL108|, which show that dif-
ferent executions of random tests tend to identify different failures. This
phenomenon, eagily explained by the fact that the search space is not
properly explored even with long runs, is the major motivation of our
work: a guided algorithm can explore the search space more fruitfully
and thus lead to better tests.

To augment effectiveness, some works also propose adaptive random
testing (ART) to ensure that generated values are equally distributed
over the input domain [CLMO04]. The idea is that the more distant values
are, the better they are able to reveal failures. However, empirical studies
show that ART tools do not discover failures earlier; instead they reveal
a different set.

Random testing techniques requires to tune some parameters, so to
achieve an high fault-effectiveness. Albeit some default parameters has
been proposed [CPL108], the optimal setting depends on the class being
tested. For this reason, Andrews [AHLL06] employs an evolutionary
algorithm to find the optimal settings for the random testing session.
The evolutionary algorithm uses, as fitness function to determine the
quality of a given setting, the level of structural coverage that a short

81

5. Related Work

session of random testing achieves.

Other approaches, such as [PLEBO07], enhance traditional random test-
ing with taboo-search. Taboo-search techniques explore the search space
in an incremental manner, as they consider the neighborhood of the solu-
tion found so far. Additionally, they memorize the last decisions made,
80 to steer the search process towards new directions and avoid to be
trapped in local optima. Accordingly, these approaches generate tests
incrementally by adding a randomly-chosen operation to a previous test.
They analyze each test, and categorize it as error-revealing, new, or il-
legal. Frror-revealing tests are prompted to the user, and they are not
used to create new tests anymore. New tests are able to create objects
not equivalent to those created by previous tests. They are presented
to the user for regression testing (they represent a normal behavior of
the system), and are used as basis for generating new tests. Illegal tests
contain an illegal operation that violates the invoked method’s precon-
ditions. These tests are discarded and are not used for generating new
tests.

5.2.2. Guided search

Other search-based test generation techniques are guided since the search
process is directed towards the satisfaction of a goal.

In structural testing, the goal is to reach the maximum coverage for a
given criterion (e.g., cover all branches in the system). McMinn [McMO04]
highlights two main approaches: coverage-oriented and structure-oriented.
The former rewards the tests that cover more structural elements; for ex-
ample, Watkins [Wat95] tries to achieve full path coverage on stateless
systems. Its work was not able to achieve good results, mainly because
the approach was not able to provide enough guidance to the search
process.

Structure-oriented approaches tackle separately each uncovered struc-
tural element identified by the coverage criterion [Kor90]. Before ap-
plying the search algorithm, the system under test is analyzed to select
the set of structural elements of interest. For example, branch coverage
identifies all the edges outgoing from each conditional statement, and
path coverage identifies all the execution paths of the system. Then,
the algorithm selects one of these structural elements and uses a search
algorithm to generate a test able to reach it. These proposals follow the
“divide and conquer” approach, handling structural elements separately
even if they are often tightly related. Trying to reach each element by
starting from scratch requires unnecessary effort. This phenomenon is
particularly important in stateful systems since a lot of effort is required

82

5.2. Search-Based Approaches

to put objects in useful states.

There are several works that refine the structure-oriented approach by
proposing functions able to better guide the search process. Initially,
they use the control flow graph of the program to judge the distance
between the test and the desired structural element [MMS01, WBS01,
BSS02, Arcl0a]. By comparing the execution flow of the test with the
control flow graph, one can identify the conditional statement responsi-
ble for the deviation of the execution flow from the target. The quality
of the test is then judged by using two elements: approach level and
branch distance. The first measures the number of conditional state-
ments between the flow deviation and the target. The second focuses on
the conditional statements where the execution flow deviates from the
desired one, and measures the distance between the actual values and
those needed to take the branch that would lead to the target.

These proposals work on stateless systems: they consider the invoca-
tion of a single function and generate the input parameters to reach the
selected structural element. In contrast, Tonella [Ton04]| was the first
to focus on object-oriented systems. For each branch in the class under
test, he searches for a sequence of operations able to prepare the state
of objects and exercise the selected branch. However, his work does not
capitalize on the state of objects: the fitness function is the same as that
of works that operate on stateless systems, and when a new branch is
targeted, the search process restarts from the beginning.

Arcuri’s research [AY07c| was set on the generation of tests for object-
oriented systems. He particularly stressed containers [AY07a, AY0S|,
which represent an interesting type of classes. His proposal integrates
the Tonella’s work with a more advanced fitness function, which consider
both the approach level and the branch distance. However, Arcuri’s
approach systematically applies the divide and conquer paradigm, does
not capitalize on the state of objects, and the search process starts from
scratch every time.

The proposals presented so far are able to successfully guide the search
process towards the selected target, but they are not able to deal with de-
pendencies not explicit in the control flow graph. Even if some attempts
to handle common cases were made, stateful systems introduce many
more hidden dependencies, and to the best of our knowledge, nobody
has proposed a fitness function able to make them explicit.

For example, Cheon [CKO06] leverages JML specifications to provide
guidance to the evolutionary algorithm. However, his proposal has severe
limitations, and a high-quality specification of classes often is missing.

Wappler [WS07] considers encapsulation of class member which pre-
vents methods from being freely accessed. If the target is contained in a

83

5. Related Work

non-public method, the test must firstly invoke such method, and later it
is possible to use the traditional fitness function. Accordingly, they pro-
pose to modify the fitness function so to reckon the call points, allowing
the non-public method to be called.

The “flag variable” is another typical example that these proposals fail
to handle. In this case, the information gathered from the control flow
graph is misleading, and it might result in a coarse guidance. Instead, one
should integrate the control-flow analysis with the data-flow information.
Ferguson was the first who proposed the chaining approach [FK96], to
combine control-flow with data-flow analysis. His approach was refined
by many other authors [BS03, MH03, MH04, MH05, MH06, AAAQ9].

Harman [HHH'04, MBH09| was the first to introduce Testability Trans-
formation. 1t is a source-to-source transformation that is applied on the
system being tested, with the purpose to ease the application of test
data generation technique and improve their performance. For exam-
ple, one transformation modifies the program so to remove the use of
flag variables. The modified version of the program contains hence a
very complicated control-flow structure that mime the same behavior
of the original program, but it is better suited for the automated test
generation. The modified program is to be used for the test-data gener-
ation only, as it is more complex to understand and less maintainable.
Additionally, some transformations —in order to ease the data genera-
tion for some targets— might also change the semantics of other parts of
the program. Interestingly, the application of testability transformations
open new research possibilities. Tonella [MHBTO06]| transforms the pro-
gram so to explicit the different paths that lead to the target and makes
several sub-population (species) compete over them. McMinn [McMO09|
uses testability transformations to create a de-optimized version of the
program to use as oracle. For example, they note that the usage of some
floating-point variables might lead to approximation errors, avoidable
by using more advanced (but more expensive) representations. The pro-
posal follows by monitoring the differences between the base version of
the program and the de-optimized one. He uses an evolutionary algo-
rithm to maximize the difference and allow the user to understand the
importance of the error.

There are several proposals that apply different search techniques
to solve the generation of tests. Arcuri experiments novel evolution-
ary search methods, namely Memetic Algorithms [AY(07b] and Estima-
tion of Distribution Algorithms [SSAY07], achieving promising results.
Windisch et al. [WWWQ07| successfully applies Particle Swarm Opti-
mization to software testing, which —in his experiments— outperforms
evolutionary algorithms. Wappler [WW06b, WWO06a] uses the strongly-

84

5.2. Search-Based Approaches

typed genetic programming to generate tests. His approach relies on
a tree-based representation of tests, which ensures the feasibility of all
operations. Additionally, he divides the search process into two steps.
The first one concentrates on the structure of the test, working on the
tree-based representation. In this phase, the test is a skeleton that pin-
points the methods to call, but without specifying the actual parameters.
These are the subject of the second step of the search process, where a
genetic algorithm concentrates on finding the optimal values (both prim-
itive types and objects) for parameters. A similar search strategy is also
used in other works. For example, [LI08, LI07]| leverages a finite state
machine to generate the sequence of method calls, and then use a genetic
algorithm to find the optimal value for actual parameters.

Some other approaches use genetic algorithms to generate tests for
data-flow coverage. For example, Ghiduk et al. [GHGO7] target du-pairs
separately: for each pair, they provide a fitness function that targets a
complex constraint: the definition and use must be executed without any
kill in between. To provide a smoother guidance, they propose a measure
of closeness derived from the dominance relations. However, this work
has the same limitations as Tonella’s work: it does not capitalize when
an object reaches a valuable state and tackles each du-pair separately.

Harman and McMinn [HMO7] were the first to perform a theoretical
study on the scenarios in which evolutionary algorithms are suitable
for structural test case generation. They identify a particular type of
fitness function, namely the Royal Road [MFH91], where evolutionary
algorithms provably perform well. Harman et al. [HHLT07] studied the
influence between the size of the input domain (the search space) and the
performance of search-based algorithms. They discovered that, finding
input parameters that do not influence a target, helps guided methods
but does not help blind methods. Other authors continue this theoretical
analysis. Arcuri concentrates on why meta-heuristics can be effective in
software testing [Arc09]|, and then he considers the role of the test’s
length on the ability to reach all the targets of the class [Arc10c].

Finally, there are approaches that aims to generate tests by using mu-
tation analysis [LLR07, ABA0O7, MMTO03, BFJT05]. The authors claim
that other coverage criteria might generate tests with a low fault de-
tection effectiveness. Instead, mutant analysis mime errors that real
developers do. It correctly calculates the quality of tests by counting the
number of mutants they kill. Since mutant analysis is very expensive to
use, they use a search technique inspired to the immune system. Mu-
tants represents infections, while tests are the vaccine. Both of them are
allowed to evolve and compete, developing more subtle mutations and
more sophisticated tests.

85

6. Conclusions and Future
Research Directions

The research presented in this dissertation proposes TestFul, that is a
novel approach for the automatic unit test generation tailored to stateful
systems. In particular, we tackle the test-generation problem as a search
problem, solved using a holistic evolutionary algorithm. Compared to
the state of the art in search-based test generation, TestFul recognizes
and reuses useful state configurations to exercise different features.

To augment the efficiency of the approach, we leverage three tech-
niques: local search, seeding, and fitness inheritance. Local search in-
tegrates the global evolutionary search to form a hybrid approach. We
establish a synergic cooperation between the two searches, as the results
of one are used as tarting point of the other. Seeding provides TestFul
with a high-quality initial population that can speed up the initial part
of the evolutionary process. To this end, we both (i) run a short run of
random test, and (ii) we adapt tests already generated for compatible
classes. Fitness Inheritance speeds up the search process by replacing the
evaluation of the fitness function of some individuals with an estimated
fitness inherited from their parents.

TestFul leverages complementary coverage criteria to drive the evo-
lution of tests. Accordingly, it employs a multi-objective evolutionary
algorithm to evolve candidate tests by combining the different coverage
criteria with the compactness of the tests.

Several complementary coverage criteria are in charge to measure the
quality of tests and guide the test-generation process. The behavioral
coverage criterion employs a black-box analysis technique to detect the
behaviors of the class that tests execute, and reward tests accordingly.
The statement coverage and branch coverage criteria are white-box: both
measure the quality of tests according to the coverage the control-flow
graph. These criteria are able to provide an effective guidance towards
their fulfillment, hence most of the test-generation approaches uses them.
However, those approaches only use this information to judge tests, but
it is known that tests with an high level of branch coverage might not
detect several errors. For this reason, we make TestFul to consider data-
flow information in its test generation process. In this way, it can detect

87

6. Conclusions and Future Research Directions

data-dependencies among methods and combine this information with
control-flow data. Accordingly, we reward tests also by considering both
all du-pairs coverage and all p-uses coverage criteria.

To validate the effectiveness of each proposal, we devised a benchmark
composed of more than 200 classes, taken from literature, real-world ap-
plications, and other independent benchmarks. The comparison is per-
formed by both considering (i) previous versions of TestFul, (ii) other
search-based approaches, and (iii) more “traditional” ways to generate
tests. Obtained results, although limited to the considered problems,
highlight the validity of the overall proposal, and show its good per-
formances. It seems that other approaches have a limited capability of
enabling complex behaviors of the class under test, due to some inher-
ent limits of the symbolic execution or a poor guidance for search-based
approaches. In contrast, TestFul explores the search space by using an
incremental approach (i.e., by exploring the space closer to current solu-
tions). This allows TestFul to put objects in useful states and therefore
it typically pays on classes with complex states.

Future Research Directions

The novel approach introduced in this research opens interesting research
directions:

e We show the ability of the behavioral coverage to guide TestFul
and generate tests with a high fault-detection ability. However,
the behavioral coverage requires the user to provide additional in-
formation. This information is used both to discern meaningful
properties of the system from auxiliary ones, and to abstract them
0 to elicit the behavioral model of the system. It would be interest-
ing to automate also this step, and provide a way to automatically
detect how to reassemble the behavioral model.

e The data-flow coverage criteria are able to detect methods that
cooperate by exchanging data. We already show how to apply the
local search when a p-use is involved, and we achieved important
results. However, it would be interesting to consider a generic
def-use pair not yet exercised, and guide the evolution towards its
fulfillment.

e Even if the chosen criteria assign each test with a good quality, it
would be interesting to consider if other analysis techniques provide
a better insight on the system under test.

88

We moved some early steps on the exploitation of the domain
knowledge to improve the search strategy. It would be interesting
to continue this research and systematically perform the residual
testing [PY99]. Moreover, it would be interesting to reuse both the
information present in user-written tests and the “normal” execu-
tion of the system, and perform the

The proposal presented in this dissertation focuses exclusively on
the unit-testing. It would be interesting to consider coarse-grained
levels, and focus on the integration testing.

Even if the approach we present aspire to applicable to every state-
ful systems, currently we only focused on object-oriented programs.
It would be interesting to consider other types of stateful systems,
namely components and services.

Beside the local search, the evolutionary algorithm modifies tests
by performing a random change, which uses a uniform selection
mechanism. It is interesting to move a step further, and improve
both (i) the selection of the objects from the repository and (ii)
the selection of the statements to apply to the objects — two key
factors for the development of tests in classes with complex inter-
nal states. For this purpose, one should to investigate the use of
a multi-objective probabilistic model-building genetic algorithm to
replace the current evolutionary engine. The probabilistic model
should be mainly used to implement an adaptive mutation (and
not for crossover, as in the typical “Probabilistic Model Building
Genetic Algorithm”); thus, it will estimate the probability to ad-
d/replace a certain object to the test sequence or to add/replace a
certain type of statement.

89

A. Mutation Testing

Mutation analysis [DLS78, ABLNO06| is a widely-used technique to de-
termine the effectiveness in detecting faults of the different tests. It uses
mutant operators to generate multiple mutated version of the class, each
one with a single fault seeded.

Offut [OLR196] analyzed the different mutant operators and found
that only five of them are sufficient for mutation analysis. Consequently,
we created mutants of the original program by using these five operators:

o Absolute Value Insertion focuses on arithmetic expressions, forcing
the result to take zero, a positive value, or a negative one;

o Arithmetic Operator Replacement focuses on arithmetic expres-
sions, replacing arithmetic operators (e.g., +) with others;

o Logical Connector Replacement focuses boolean expressions, re-
placing logical operators (e.g., &&) with others, or making the
whole formula true or false;

e Relational Operator Replacement focuses on comparisons, replac-
ing relational operators (e.g., <) with others;

e Unary Operator Insertion focuses on expressions, replacing each
used numerical value v with 0, —v, v+1, or v —1, and each boolean
value with true or false;

The application of such mutant operators might create equivalent mu-
tants, which are semantically identical to the original program, hence
tests cannot kill them. For example, a > b and a > b are equivalent
if @ cannot be equal to b. To correctly judge the fault-detection ability
of tests, one should (manually) identify and prune equivalent mutants.
The detection of equivalent mutants is extremely time-consuming, since
it must be performed manually. In this work, we prune equivalent mu-
tants by using a commonly used heuristic that marks mutants not killed
by any test as equivalent mutants [BS79, DLST78|.

We generated tests for each class using the different configurations
of TestFul. Fach time, the tool was given 20 minutes of CPU-time on
an Intel Xeon E5530@2.40GHz with 6 gigabytes of RAM. To achieve

91

A. Mutation Testing

more accurate results, we repeated each experiment ten times, and the
comparison we made is on the mean values. A test is run on each of
these versions, and if a failure manifests itself, then the mutant is said to
be killed; otherwise the mutant is alive. The fault detection effectiveness
of each test is measured by considering the percentage of killed mutants.

To recognize if a mutant is killed, we analyzed wether the mutated
program behaves differently from the original one. Consequently, we
analyzed the test execution on the original program, and after each in-
vocation we observed the status of the object accepting the method call
and of produced result. Then, we ran the mutated versions of the pro-
gram, and we monitored again the same properties: differences between
the normal execution and the mutated ones witnessed the capability of
the test to reveal the effects of the mutator and consequently the mu-
tant was killed. Moreover, some mutants might lead the program not to
terminate (for example, if we set to zero the step of a loop). Obviously,
a test able to make these mutated programs not to terminate is able
to kill these mutants, since the observed behavior is different from the
original one. Consequently, we set a threshold for the test executions
on mutants, calculated as five times the execution time of the tests on
the original program. If a mutant made a test require more than this
threshold to execute, than we marked it as killed.

92

Bibliography

[AAAQ9]

[ABAO7]

[ABLOS]

[ABLNOG]

[AHLLO6]

[Apal

[Arc09]

[Arc10a]

[Arc10b]

Zeina Awedikian, Kamel Ayari, and Giuliano Antoniol.
Mc/dc automatic test input data generation. In Rothlauf
[Rot09], pages 1657-1664.

Kamel Ayari, Salah Bouktif, and Giuliano Antoniol. Auto-
matic mutation test input data generation via ant colony.
In Lipson [Lip07], pages 1074-1081.

James H. Andrews, Lionel C. Briand, and Yvan Labiche. Is
mutation an appropriate tool for testing experiments? In
Gruia-Catalin Roman, William G. Griswold, and Bashar
Nuseibeh, editors, ICSE, pages 402-411. ACM, 2005.

James H. Andrews, Lionel C. Briand, Yvan Labiche, and
Akbar Siami Namin. Using mutation analysis for assess-
ing and comparing testing coverage criteria. IFEE TSE,
32(8):608-624, 2006.

James H. Andrews, Susmita Haldar, Yong Lei, and Felix
Chun Hang Li. Tool support for randomized unit testing.
In Mayer and Merkel [MMO06|, pages 36—45.

Apache Software Foundation. The Apache Commons Math-
ematics Library. http://commons.apache.org/math/.

Andrea Arcuri. Insight knowledge in search based software
testing. In Rothlauf |[Rot09], pages 1649-1656.

Andrea Arcuri. It does matter how you normalise the branch
distance in search based software testing. In ICST2010
[ICS10], pages 205-214.

Andrea Arcuri. Longer is Better: On the Role of Test Se-
quence Length in Software Testing. In Proceedings of the 3rd
International Conference on Software Testing, Verification

and Validation (ICST), 2010.
93

Bibliography

[Arcl0c|

[AWYO08]

[AY07al

[AYOT7h]

[AY07c|

[AY08]

[Bal05]

[BE06]

[Bei90]

94

Andrea Arcuri. Longer is better: On the role of test se-
quence length in software testing. In ICST2010 [ICS10],
pages 469-478.

Andrea Arcuri, David Robert White, , and Xin Yao. Multi-
objective improvement of software using co-evolution and
smart seeding. In Proceedings of the 7Tth International Con-
ference on Simulated Evolution And Learning (SEAL ’08),
pages 61-70, Melbourne, Australia, 7-10 December 2008.
Springer.

A. Arcuri and X. Yao. Search based software testing of
object-oriented containers. Information Sciences, 2007.

Andrea Arcuri and Xin Yao. A memetic algorithm for test
data generation of object-oriented software. In Xin Yao,
editor, Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, pages 2048-2055, 2007.

Andrea Arcuri and Xin Yao. On test data generation of
object-oriented software. Testing: Academic and Indus-
trial Conference Practice and Research Techniques - MUTA-
TION, 2007. TAICPART-MUTATION 2007, pages 72-76,
Sept. 2007.

Andrea Arcuri and Xin Yao. Search based software test-
ing of object-oriented containers. Information Sciences,
178(15):3075 — 3095, 2008. Nature Inspired Problem-
Solving.

T. Ball. A theory of predicate-complete test coverage and
generation. In Formal Methods for Components and Objects,
pages 1-22. Springer, 2005.

[ain Bate and Paul Emberson. Incorporating scenarios and
heuristics to improve flexibility in real-time embedded sys-
tems. In Proceedings of the 12th IEEE Real-Time And
Embedded Technology And Applications Symposium (RTAS
06), pages 221-230, San Jose, California, USA, 4-7 April
2006. IEEE.

Boris Beizer. Software testing techniques (2nd ed.). Van
Nostrand Reinhold Co., New York, NY, USA, 1990.

[BELT75]

[BFJT05|

[BHR*+00]

[BHSS06]

[BKM02]

[BLS05]

[BOOS]

[BOPOO]

[BSTY]

[BS03]

Bibliography

R.S. Boyer, B. Elspas, and K.N. Levitt. SELECT — A for-
mal system for testing and debugging programs by symbolic
execution. In Proceedings of the international conference on
Reliable software, pages 234-245. ACM, 1975.

Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and
Yves Le Traon. From genetic to bacteriological algorithms
for mutation-based testing. Softw. Test., Verif. Reliab.,
15(2):73-96, 2005.

Thomas Ball, Daniel Hoffiman, Frank Ruskey, Richard Web-
ber, and Lee J. White. State generation and automated class
testing. Softw. Test., Verif. Reliab., 10(3):149-170, 2000.

Paul Baker, Mark Harman, Kathleen SteinhAftifel, and
Alexandros Skaliotis. Search based approaches to compo-
nent selection and prioritization for the next release prob-
lem. In Proceedings of the 22nd IEEFE International Confer-
ence on Software Maintenance (ICSM '06), pages 176-185,
Philadelphia, Pennsylvania, 24-27 September 2006. IEEE.

Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko
Marinov. Korat: automated testing based on java predi-
cates. In ISSTA, pages 123-133, 2002.

Lionel C. Briand, Yvan Labiche, and Marwa Shousha. Stress
testing real-time systems with genetic algorithms. In Beyer
and O’Reilly [BOO05|, pages 1021-1028.

Hans-Georg Beyer and Una-May O’Reilly, editors. Ge-
netic and Evolutionary Computation Conference, GECCO
2005, Proceedings, Washington DC, USA, June 25-29, 2005.
ACM, 2005.

Ugo A. Buy, Alessandro Orso, and Mauro Pezzé. Automated
Testing of Classes. In Proceedings of the International Sym-
posium on Software Testing and Analysis (ISSTA), pages
39-48, 2000.

D. Baldwin and F. Sayward. Heuristics for determining
equivalence of program mutations. Technical Report 276,
Yale University, Department of Computer Science, 1979.

André Baresel and Harmen Sthamer. Evolutionary testing
of flag conditions. In Cantt-Paz et al. [CPFD'03|, pages
2442-2454.

95

Bibliography

[BSS02]

[BYO01]

[Cat06]

[CKO06]

[Cla76a]

[Cla76b]

[CLMO04|

[CLOMO7]

[cob]
[CPFD*03]

96

André Baresel, Harmen Sthamer, and Michael Schmidt. Fit-
ness function design to improve evolutionary structural test-
ing. In William B. Langdon, Erick Canti-Paz, Keith E.
Mathias, Rajkumar Roy, David Davis, Riccardo Polj,
Karthik Balakrishnan, Vasant Honavar, Gunter Rudolph,
Joachim Wegener, Larry Bull, Mitchell A. Potter, Alan C.
Schultz, Julian F. Miller, Edmund K. Burke, and Natasa
Jonoska, editors, GECCO, pages 1329-1336. Morgan Kauf-
mann, 2002.

L. Baresi and M. Young. Test oracles. Technical Report CIS-
TR-01-02, University of Oregon, Department of Computer
and Information Science, 2001.

Mike Cattolico, editor. Genetic and Evolutionary Computa-
tion Conference, GECCO 2006, Proceedings, Seattle, Wash-
ington, USA, July 8-12, 2006. ACM, 2006.

Yoonsik Cheon and Myoung Kim. A specification-based
fitness function for evolutionary testing of object-oriented
programs. In Cattolico [Cat06], pages 1953-1954.

L. A. Clarke. A system to generate test data and symboli-
cally execute programs. IEEE Trans. Softw. Eng., 2(3):215—
222, 1976.

Lori A. Clarke. A program testing system. In Proceedings of
the 1976 annual conference, ACM 76, pages 488-491, New
York, NY, USA, 1976. ACM.

T.Y. Chen, H. Leung, and [.LK. Mak. Adaptive Random
Testing. In Springer, editor, Proceedings of Advances in
Computer Science — ASIAN, volume 3321/2005, 2004.

Ninca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand
Meyer. Experimental Assessment of Random Testing for
Object-Oriented Software. In Proceedings of the Interna-
tional Symposium on Software Testing and Analysis (IS-
STA), pages 84-94, 2007.

Cobertura. http://cobertura.sourceforge.net/.

Erick Cantu-Paz, James A. Foster, Kalyanmoy Deb,
Lawrence Davis, Rajkumar Roy, Una-May O’Reilly, Hans-
Georg Beyer, Russell K. Standish, Graham Kendall, Stew-
art W. Wilson, Mark Harman, Joachim Wegener, Dipankar

[CPL*08]

[CS04]

[CSX08]

[CY96]

[DAPM02]

[DERO5|

[DLST78]

[DLWZ06]

Bibliography

Dasgupta, Mitchell A. Potter, Alan C. Schultz, Kathryn A.
Dowsland, Natasa Jonoska, and Julian F. Miller, edi-
tors. Genetic and Bvolutionary Computation - GECCO
2003, Genetic and Evolutionary Computation Conference,
Chicago, IL, USA, July 12-16, 2003. Proceedings, Part
1, volume 2724 of Lecture Notes in Computer Science.
Springer, 2003.

Ilinca Ciupa, Alexander Pretschner, Andreas Leitner,
Manuel Oriol, and Bertrand Meyer. On the predictability
of random tests for object-oriented software. In ICST2008
[ICS08|, pages 72-81.

Christoph Csallner and Yannis Smaragdakis. Jcrasher: an
automatic robustness tester for java. Softw. Pract. Exper.,
34(11):1025-1050, 2004.

Christoph Csallner, Yannis Smaragdakis, and Tao Xie.
DSD-Crasher: A hybrid analysis tool for bug finding.
ACM Transactions on Software Engineering and Method-
ology (TOSEM), 17(2):1-37, 2008.

Tsong Yueh Chen and Yuen-Tak Yu. On the expected num-
ber of failures detected by subdomain testing and random
testing. IEEE TSE, 22(2):109-119, 1996.

Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Me-
yarivan. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Fvolutionary Computa-
tion, 6(2):182-197, 2002.

Hyunsook Do, Sebastian G. Elbaum, and Gregg Rother-
mel. Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact.
Empirical Software Engineering: An International Journal,

10(4):405-435, 2005.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on test data selection: Help for the praticing programmer.
IEEE Computer, 11(4):34-41, Apr 1978.

Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski,
and Andreas Zeller. Mining Object Behavior with ADABU.

97

Bibliography

[dPXF06]

[DRHO07|

[DZANOY]

[EBO7]

[EB0S]

[EB09)

[ECGN99)

98

In WODA ’06: Proceedings of the 2006 international work-
shop on Dynamic systems analysis, pages 17-24, New York,
NY, USA, 2006. ACM.

Marcelo d’Amorim, Carlos Pacheco, Tao Xie, Darko Mari-
nov, and Michael D. Ernst. An empirical comparison of au-
tomated generation and classification techniques for object-
oriented unit testing. In ASE, pages 59-68. IEEE Computer
Society, 2006.

Xianghua Deng, Robby, and John Hatcliff. Robby, and John
Hatcliff. Kiasan/KUnit: Automatic Test Case Generation
and Analysis Feedback for Open Object-Oriented Systems.
In Proc. Testing: Academia & Industry Conference—Practice
& Research Techniques, pages 3—12, 2007.

Juan J. Durillo, Yuanyuan Zhang, Enrique Alba, and An-
tonio J. Nebro. A study of the multi-objective next release
problem. In Proceedings of the 1st International Symposium
on Search Based Software Engineering (SSBSE '09), pages
49-58, Cumberland Lodge, Windsor, UK, 13-15 May 2009.
IEEE.

Paul Emberson and lain Bate. Minimising task migration
and priority changes in mode transitions. In Proceedings of
the 13th IEEE Real-Time And Embedded Technology And
Applications Symposium (RTAS '07), pages 158-167, Belle-
vue, Washington, USA, 3-6 April 2007. IEEE.

Paul Emberson and lain Bate. Extending a task allocation
algorithm for graceful degradation of real-time distributed
embedded systems. In Proceedings of the 2008 Real-Time
Systems Symposium (RTSS '08), pages 270-279, Barcelona,
Spain, 30 November - 3 December 2008. IEEE.

Paul Emberson and lain Bate. Stressing search with scenar-
ios for flexible solutions to real-time task allocation prob-
lems. IEEFE Transactions on Software Engineering, 2009.

Michael D. Ernst, Jake Cockrell, William G. Griswold, and
David Notkin. Dynamically Discovering Likely Program
Invariants to Support Program Evolution. In Proceedings
of the International Conference on Software Engineering

(ICSE), pages 213-224, 1999.

[ECGNO1]

[FGFW10)

[FHMT08]

[FHM*09]

[FK96]

[FNWG09]

[GHAO9]

[GHGO7]

Bibliography

Michael D. Ernst, Jake Cockrell, William G. Griswold,
and David Notkin. Dynamically discovering likely pro-
gram invariants to support program evolution. [FEE TSE,
27(2):99-123, 2001.

Ethan Fast, Claire Le Goues, Stephanie Forrest, and West-
ley Weimer. Designing better fitness functions for au-

tomated program repair. In Martin Pelikan and Jiirgen
Branke, editors, GECCQO, pages 965-972. ACM, 2010.

Anthony Finkelstein, Mark Harman, S. Afshin Mansouri,
Jian Ren, and Yuanyuan Zhang. “fairness analysis" in re-
quirements assignments. In Proceedings of the 16th IEEE
International Requirements Engineering Conference (RE
'08), pages 115-124, Barcelona, Catalunya, Spain, 8-12
September 2008. IEEE.

Anthony Finkelstein, Mark Harman, S. Afshin Mansouri,
Jian Ren, and Yuanyuan Zhang. A search based approach
to fairness analysis in requirement assignments to aid ne-
gotiation, mediation and decision making. Requirements
Engineering Journal (RE '08 Special Issue), 14(4):231-245,
December 2009.

Roger Ferguson and Bogdan Korel. The chaining approach
for software test data generation. ACM TOSEM, 5(1):63—
86, 1996.

Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and
Claire Le Goues. A genetic programming approach to auto-
mated software repair. In Rothlauf [Rot09], pages 947-954.

Stefan Gueorguiev, Mark Harman, and Giuliano Antoniol.
Software project planning for robustness and completion
time in the presence of uncertainty using multi objective
search based software engineering. In Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO ’09), pages 1673-1680 (Best Paper Award),
MontrATal, Canada, 812 July 2009. ACM.

Ahmed S. Ghiduk, Mary Jean Harrold, and Moheb R. Gir-
gis. Using Genetic Algorithms to Aid Test-Data Generation
for Data-Flow Coverage. In Proceedings of the 1/th Asia-
Pacific Software Engineering Conference (APSEC), pages
41-48, 2007.

99

Bibliography

[GHLMO6]

[GKS05]

[GMO2]

[Gol02]

|Ham77|

[Ham94|

[HamO06|

[HFGOY4]

[HHH*04]

[HHL*07]

100

Nicolas Gold, Mark Harman, Zheng Li, and Kiarash Mah-
davi. Allowing overlapping boundaries in source code using
a search based approach to concept binding. In Proceed-
ings of the 22nd IEEE International Conference on Soft-
ware Maintenance (ICSM ’06), pages 310-319, Philadel-
phia, USA, 24-27 September 2006. IEEE.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart:
directed automated random testing. In Vivek Sarkar and
Mary W. Hall, editors, PLDI, pages 213-223. ACM, 2005.

Hans-Gerhard Groft and Nikolas Mayer. Evolutionary test-
ing in component-based real-time system construction. In
Erick Cantu-Paz, editor, GECCO Late Breaking Papers,
pages 207-214. AAAT 2002.

David E. Goldberg. The Design of Innovation: Lessons from
and for Competent Genetic Algorithms. Kluwer Academic
Publisher, 2002.

Richard G. Hamlet. Testing programs with the aid of a
compiler. IEEE TSE, 3(4):279-290, 1977.

Richard Hamlet. Random testing. In Encyclopedia of Soft-
ware Engineering, pages 970-978. Wiley, 1994.

Dick Hamlet. When only random testing will do. In Mayer
and Merkel [MMO06], pages 1-9.

Monica Hutchins, Herbert Foster, Tarak Goradia, and
Thomas J. Ostrand. Experiments of the Effectiveness of
Dataflow- and Controlflow-Based Test Adequacy Criteria.
In Proceedings of the International Conference on Software
Engineering (ICSE), pages 191-200, 1994.

Mark Harman, Lin Hu, Robert M. Hierons, Joachim We-
gener, Harmen Sthamer, André Baresel, and Marc Roper.
Testability transformation. IEEE TSE, 30(1):3-16, 2004.

Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil
McMinn, and Joachim Wegener. The impact of input do-
main reduction on search-based test data generation. In
Ivica Crnkovic and Antonia Bertolino, editors, ESEC/SIG-
SOFT FSE, pages 155-164. ACM, 2007.

[HKRY09]

[HMO7]

[HO09]

[How77]

[HSS06]

[HT07]

[1CS08]

[ICS10]

[JGHLO7]

Bibliography

Mark Harman, Jens Krinke, Jian Ren, and Shin Yoo. Search
based data sensitivity analysis applied to requirement en-
gineering. In Proceedings of the 11th Annual Conference
on Genetic and Evolutionary Computation (GECCO '09),
pages 1681-1688, Montreal, Canada, 8-12 July 2009. ACM.

Mark Harman and Phil McMinn. A theoretical & em-
pirical znalysis of evolutionary testing and hill climbing for
structural test data generation. In David S. Rosenblum and
Sebastian G. Elbaum, editors, ISSTA, pages 73-83. ACM,
2007.

Hwa-You Hsu and A. Orso. Mints: A general framework and
tool for supporting test-suite minimization. In Software En-
gineering, 2009. ICSE 2009. IEEE 31st International Con-
ference on, pages 419 -429, May 2009.

W.E. Howden. Symbolic testing and the dissect symbolic
evaluation system. IEFEE Transactions on Software Engi-
neering, 3:266-278, 1977.

Mark Harman, Alexandros Skaliotis, and Kathleen Stein-
hAfifel. Search-based approaches to the component selec-
tion and prioritization problem. In Proceedings of the 8th
annual Conference on Genetic and Evolutionary Computa-
tion (GECCO 06), pages 1951-1952, Seattle, Washington,
USA, 8-12 July 2006. ACM.

Mark Harman and Laurence Tratt. Pareto optimal search
based refactoring at the design level. In Proceedings of the
9th annual Conference on Genetic and Evolutionary Com-
putation (GECCO '07), pages 1106-1113, London, England,
7-11 July 2007. ACM.

First International Conference on Software Testing, Verifi-
cation, and Validation, ICST 2008, Lillehammer, Norway,
April 9-11, 2008. IEEE Computer Society, 2008.

Third International Conference on Software Testing, Verifi-
cation and Validation, ICST 2010, Paris, France, April 7-9,
2010. IEEE Computer Society, 2010.

Tao Jiang, Nicolas Gold, Mark Harman, and Zheng Li.
Locating dependence structures using search-based slicing.

101

Bibliography

[JGr]
[JHHOS]

[jun]
[KGH*95]

|Kin75]

[Kin76]

[KKS98]

[Knu97]

[Kor90]

[LAO3]

[LBROY]

102

Information and Software Technology, 50(12):1189-1209,
November 2007.

Jgrapht. http://www.jgrapht.org/.

Tao Jiang, Mark Harman, and Youssef Hassoun. Analysis
of procedure splitability. In Proceedings of the 15th Work-
ing Conference on Reverse Engineering (WCRE '08), pages
247-256, Antwerp, Belgium, 15-18 October 2008. IEEE.

JUnit. http://www.junit.org/.

David Kung, Jerry Gao, Pei Hsia, Yasufumi Toyoshima,
Chris Chen, Young-Si Kim, and Young-Kee Song. Devel-
oping an object-oriented software testing and maintenance
environment. Commun. ACM, 38(10):75-87, 1995.

J. King. A new approach to program testing. Programming
Methodology, pages 278-290, 1975.

James C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385-394, 1976.

N.P. Kropp, P.J. Koopman, and D.P. Siewiorek. Automated
robustness testing of off-the-shelf software components. In
Fault-Tolerant Computing, 1998. Digest of Papers. Twenty-
Eighth Annual International Symposium on, pages 230 —239,
Jun. 1998.

Donald Ervin Knuth. The Art of Computer Programming,
volume 2: Seminumerical Algorithms, chapter 3.2.1: The
Linear Congruential Method, pages 10-26. Addison-Wesley,
1997.

Bogdan Korel. Automated software test data generation.
IEEE TSE, 16(8):870-879, 1990.

Eric Larson and Todd Austin. High coverage detection of
input-related security facults. In SSYM’03: Proceedings of
the 12th conference on USENIX Security Symposium, pages
9-9, Berkeley, CA, USA, 2003. USENIX Association.

G. Leavens, A. Baker, and C. Ruby. JML: A notation for
detailed design. KLUWER INTERNATIONAL SERIES IN
ENGINEERING AND COMPUTER SCIENCE, pages 175—
188, 1999.

[LCCH03]

ILCO*07]

[1107]

[L108]

[Lip07]

[LLRO7]

[LOZ*07]

[LP97]

[MBH09)

Bibliography

G.T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D.R.
Cok. How the design of JML accommodates both runtime
assertion checking and formal verification. In Formal Meth-
ods for Components and Objects, pages 262—284. Springer,
2003.

Andreas Leitner, Ilinca Ciupa, Manuel Oriol, Bertrand
Meyer, and Arno Fiva. Contract Driven Development =
Test Driven Development - Writing Test Cases. In Pro-
ceedings of the 6th joint meeting of the European Software
Engineering Conference (ESEC) and the ACM SIGSOFT
International Symposium on Foundations of Software Engi-
neering (FSE), pages 425-434, 2007.

R. Lefticaru and F. Ipate. Automatic state-based test gen-
eration using genetic algorithms. In Symbolic and Numeric
Algorithms for Scientific Computing, 2007. SYNASC. In-
ternational Symposium on, pages 188 —195, sept. 2007.

R. Lefticaru and F. Ipate. Search-based testing using state-
based fitness. In Software Testing Verification and Vali-
dation Workshop, 2008. ICSTW ’08. IEEE International
Conference on, page 210, april 2008.

Hod Lipson, editor. Genetic and FEvolutionary Computation
Conference, GECCO 2007, Proceedings, London, England,
UK, July 7-11, 2007. ACM, 2007.

Konstantinos Liaskos, Konstantinos Liaskos, and Marc
Roper. Automatic test-data generation: An immunological
approach. In Marc Roper, editor, Testing: Academic and
Industrial Conference Practice and Research Techniques -
MUTATION, 2007. TAICPART-MUTATION 2007, pages
77-81, 2007.

Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca
Ciupa, and Bertrand Meyer. Efficient unit test case min-
imization. In Stirewalt et al. [SEF07|, pages 417-420.

W. B. Langdon and R. Poli. Fitness causes bloat. In Second
On-Line World Conference on Soft Computing in Engineer-
ing Design and Manufacturin, pages 13-22, June 1997.

Phil McMinn, David Binkley, and Mark Harman. Empirical
evaluation of a nesting testability transformation for evolu-

103

Bibliography

[MBL10]

[MBLD10]

[MCLL07]

[McMo4]

[McMO9]

[Mey92]

[MFHO1]

[MFS90]

[MHO3|

[MH04]

104

tionary testing. ACM Trans. Softw. Eng. Methodol., 18(3),
2009.

Matteo Miraz, Luciano Baresi, and Pier Luca Lanzi. Test-
Ful: an Evolutionary Test Approach for Java. In Proceed-
ings of the 3rd International Conference on Software Test-
ing, Verification and Validation (ICST), 2010.

Samar Mouchawrab, Lionel C. Briand, Yvan Labiche, and
Magsimiliano Di Penta. Assessing, Comparing, and Com-
bining State Machine-Based Testing and Structural Testing:
A Series of Experiments. IEEE Transactions on Software
Engineering, 99(PrePrints), 2010.

Bertrand Meyer, Ilinca Ciupa, Andreas Leitner, and Lisa
Liu. Automatic Testing of Object-Oriented Software. In
Proceedings of SOFSEM 2007: 33rd Conference on Current
Trends in Theory and Practice of Computer Science, pages
114-129. Springer, 2007.

Phil McMinn. Search-based software test data generation:
a survey. Softw. Test., Verif. Reliab., 14(2):105-156, 2004.

Phil McMinn. Search-based failure discovery using testabil-
ity transformations to generate pseudo-oracles. In Rothlauf
[Rot09], pages 1689-1696.

B. Meyer. Applying ‘design by contract’. Computer,
25(10):40-51, Oct 1992.

Melanie Mitchell, Stephanie Forrest, and John H. Holland.
The royal road for genetic algorithms: Fitness landscapes
and ga performance. 1991.

Barton P. Miller, Louis Fredriksen, and Bryan So. An em-
pirical study of the reliability of unix utilities. Commun.
ACM, 33(12):32-44, 1990.

Phil McMinn and Mike Holcombe. The state problem for
evolutionary testing. In Canti-Paz et al. [CPFDT 03], pages
2488-2498.

Phil McMinn and Mike Holcombe. Hybridizing evolution-
ary testing with the chaining approach. In Kalyanmoy Deb,
Riccardo Poli, Wolfgang Banzhaf, Hans-Georg Beyer, Ed-
mund K. Burke, Paul J. Darwen, Dipankar Dasgupta, Dario

[MHO5]

[MH06]

[MHBTO6]

IMLB09)

[MLB10]

[MMO6]

[MMS01]

[MMT03]

[MNOg]|

Bibliography

Floreano, James A. Foster, Mark Harman, Owen Holland,
Pier Luca Lanzi, Lee Spector, Andrea Tettamanzi, Dirk
Thierens, and Andrew M. Tyrrell, editors, GECCO (2),
volume 3103 of Lecture Notes in Computer Science, pages
1363-1374. Springer, 2004.

Phil McMinn and Mike Holcombe. Evolutionary testing of
state-based programs. In Beyer and O’Reilly [BO05|, pages
1013-1020.

Phil McMinn and Mike Holcombe. Evolutionary testing
using an extended chaining approach. FEvolutionary Com-
putation, 14(1):41-64, 2006.

Phil McMinn, Mark Harman, David Binkley, and Paolo
Tonella. The species per path approach to searchbased test
data generation. In Pollock and Pezzé [PP06], pages 13-24.

Matteo Miraz, Pier Luca Lanzi, and Luciano Baresi. Test-
Ful: Using a Hybrid Evolutionary Algorithm for Testing
Stateful Systems. In Proceedings of the Genetic and Fvo-
lutionary Computation Conference (GECCO), pages 1947—
1948, 2009.

Matteo Miraz, Pier Luca Lanzi, and Luciano Baresi. Im-
proving Evolutionary Testing by Means of Efficiency En-
hancement Techniques. In in Proceedings of the IEEE
Congress on Evolutionary Computation, 2010.

Johannes Mayer and Robert G. Merkel, editors. Proceedings
of the 1st International Workshop on Random Testing, RT
2006, Portlond, Maine, July 20, 2006. ACM, 2006.

Christoph C. Michael, Gary McGraw, and Michael Schatz.
Generating software test data by evolution. IEEE TSE,
27(12):1085-1110, 2001.

Peter May, Keith Mander, and Jon Timmis. Software vac-
cination: An artificial immune system approach to muta-
tion testing. In Artificial Immune Systems, volume 2787 of
Lecture Notes in Computer Science, pages 81-92. Springer
Berlin / Heidelberg, 2003.

Makoto Matsumoto and Takuji Nishimura. Mersenne
twister: A 623-dimensionally equidistributed uniform

105

Bibliography

[MOP02]

[MS07]

[MTROS]

[NBY09]

[OLR*96]

[PEO5]

[PEBCO7]

[PHAQO7|

106

pseudo-random number generator. ACM Trans. Model.
Comput. Simul., 8(1):3-30, 1998.

V. Martena, A. Orso, and M. Pezze. Interclass testing of
object oriented software. In Engineering of Complex Com-
puter Systems, 2002. Proceedings. FEighth IEEE Interna-
tional Conference on, pages 135-144, 2002.

Rupak Majumdar and Koushik Sen. Hybrid Concolic Test-
ing. In Proceedings of the International Conference on Soft-
ware Engineering (ICSE), pages 416-426, 2007.

Alessandro Marchetto, Paolo Tonella, and Filippo Ricca.
State-based testing of ajax web applications. In ICST2008
[ICS08], pages 121-130.

Vivek Nallur, Rami Bahsoon, and Xin Yao. Self-optimizing
architecture for ensuring quality attributes in the cloud. In
Proceedings of the 7th Working IEEE/IFIP Conference on
Software Architecture (WICSA ’09), Cambridge, UK, 14-17
September 2009.

A. Jefferson Offutt, Ammei Lee, Gregg Rothermel,
Roland H. Untch, and Christian Zapf. An experimental de-
termination of sufficient mutant operators. ACM TOSEM,
5(2):99-118, 1996.

Carlos Pacheco and Michael D. Ernst. Eclat: Automatic
generation and classification of test inputs. In Andrew P.
Black, editor, ECOOP, volume 3586 of Lecture Notes in
Computer Science, pages 504-527. Springer, 2005.

Simon Poulding, Paul Emberson, lain Bate, and John A.
Clark. An efficient experimental methodology for config-
uring search-based design algorithms. In Proceedings of
the 10th IEEE High Assurance Systems Engineering Sympo-
sium (HASE '07), pages 53-62, Dallas, Texas, USA, 14-16
November 2007. IEEE.

Massimiliano Di Penta, Mark Harman, Giuliano Antoniol,
and Fahim Qureshi. The effect of communication overhead
on software maintenance project staffing: a search-based ap-
proach. In Proceedings of the 23rd IEEFE International Con-
ference on Software Maintenance (ICSM ’07), pages 315—
324, Paris, France, 2-5 October 2007. IEEE.

[PHP99)

[PHY10]

[PLBOS]

[PLEB07

[PMB*08]

[PPO6)

[PY99)

[PY04]

[PY08]

[RHCT76]

[roo]

Bibliography

Roy P. Pargas, Mary Jean Harrold, and Robert Peck. Test-
data generation using genetic algorithms. Softw. Test.,
Verif. Reliab., 9(4):263—-282, 1999.

Kata Praditwong, Mark Harman, and Xin Yao. Soft-
ware module clustering as a multi-objective search problem.
IEEE Transactions on Software Engineering, 2010.

Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball.
Finding Errors in .NET with Feedback-Directed Random
Testing. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pages 87-96, 2008.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and
Thomas Ball. Feedback-Directed Random Test Generation.

In Proceedings of the International Conference on Software
Engineering (ICSE), pages 7584, 2007.

Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell,
Karen Gundy-Burlet, Michael R. Lowry, Suzette Person,
and Mark Pape. Combining Unit-Level Symbolic Execution
and System-Level Concrete Execution for Testing NASA
Software. In Proceedings of the International Symposium on
Software Testing and Analysis (ISSTA), pages 15-26, 2008.

Lori L. Pollock and Mauro Pezzé, editors. Proceedings of
the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2006, Portland, Maine, USA,
July 17-20, 2006. ACM, 2006.

Christina Pavlopoulou and Michal Young. Residual test
coverage monitoring. In ICSE, pages 277-284, 1999.

Mauro Pezzé and Michal Young. Testing object oriented
software. In ICSFE, pages 739-740, 2004.

Mauro Pezzé and Michal Young. Software testing and anal-
ysis. Wiley, 2008.

C.V. Ramamoorthy, S.-B.F. Ho, and W.T. Chen. On the
automated generation of program test data. IEEE Trans-
actions on Software Engineering, 2:293-300, 1976.

Roops: Benchmarks for reachability in object-oriented pro-
grams. http://code.google.com/p/roops/.

107

Bibliography

[Rot09]

[RW85]

[SA06]

[Sas02]

[Sas07]

[SEF07]

[SFW10)

[SMAO5]

[SSAY07]

108

Franz Rothlauf, editor. Genetic and Evolutionary Com-
putation Conference, GECCO 2009, Proceedings, Montreal,
Québec, Canada, July 8-12, 2009. ACM, 2009.

Sandra Rapps and Elaine J. Weyuker. Selecting soft-
ware test data using data flow information. [IEEFE TSE,
11(4):367-375, 1985.

K. Sen and G. Agha. CUTE and jCUTE: Concolic unit
testing and explicit path model-checking tools. In Computer
Aided Verification, pages 419-423. Springer, 2006.

Kumara Sastry. Evaluation-Relaxation Schemes for Genetic
and Evolutionary Algorithms. Technical Report 2002004,
University of Illinois at Urbana-Champaign, Urbana, IL,
February 2002.

Kumara Sastry. Genetic algorithms and genetic program-
ming for multiscale modeling: Applications in materials sci-
ence and chemistry and advances in scalability. PhD thesis,
University of Illinois at Urbana-Champaign, Urbana, IL,
2007.

R. E. Kurt Stirewalt, Alexander Egyed, and Bernd Fischer,
editors. 22nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE 2007), November 5-9,
2007, Atlanta, Georgia, USA. ACM, 2007.

Eric Schulte, Stephanie Forrest, and Westley Weimer. Au-
tomated program repair through the evolution of assembly
code. In Charles Pecheur, Jamie Andrews, and Elisabetta Di
Nitto, editors, ASE, pages 313-316. ACM, 2010.

K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In Proceedings of the 10th European
software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of soft-
ware engineering, pages 263-272. ACM, 2005.

Ramon Sagarna, Ramon Sagarna, Andrea Arcuri, and Xin
Yao. Estimation of distribution algorithms for testing object
oriented software. In Andrea Arcuri, editor, Evolutionary
Computation, 2007. CEC 2007. IEEE Congress on, pages
438-444, 2007.

[Tas02]

[TDHOS]

[Ton04]

[TWS06]

[UOH93]

[vim|

[VPPO6]

|Wat95]

[WBS01]

[WCJPOS]

Bibliography

G. Tassey. The Economic Impacts of Inadequate Infras-
tructure for Software Testing. Technical report, National
Institute of Standards and Technology RTI Project, 2002.

N. Tillmann and J. De Halleux. Pex: white box test gen-
eration for. NET. In Proceedings of the 2nd international
conference on Tests and proofs, pages 134-153. Springer-
Verlag, 2008.

Paolo Tonella. Evolutionary Testing of classes. In Proceed-
ings of the International Symposium on Software Testing
and Analysis (ISSTA), pages 119-128, 2004.

Marouane Tlili, Stefan Wappler, and Harmen Sthamer. Im-
proving evolutionary real-time testing. In Cattolico [Cat06],
pages 1917-1924.

Roland H. Untch, A. Jefferson Offutt, and Mary Jean Har-
rold. Mutation analysis using mutant schemata. In Proceed-
ings of the 19983 ACM SIGSOFT international symposium
on Software testing and analysis, ISSTA 93, pages 139-148,
New York, NY, USA, 1993. ACM.

Vim. http://www.vim.org.

Willem Visser, Corina S. Pasareanu, and Radek Pelének.
Test input generation for java containers using state match-
ing. In Pollock and Pezzé [PP06|, pages 37-48.

A. Watkins. The automatic generation of test data using
genetic algorithms. In In Proceedings of the Fourth Software
Quality Converence, pages 300-309, 1995.

Joachim Wegener, André Baresel, and Harmen Sthamer.
Evolutionary test environment for automatic structural
testing. Information & Software Technology, 43(14):841—
854, 2001.

David R. White, John A. Clark, Jeremy Jacob, and Si-
mon M. Poulding. Searching for resource-efficient programs:
Low-power pseudorandom number generators. In Proceed-
ings of the 10th Annual Conference on Genetic and Fvolu-
tionary Computation (GECCO 08), pages 1775-1782, At-
lanta, GA, USA, 12-16 July 2008. ACM.

109

Bibliography

[WCTY09]

[WFGN10]

[WNGF09)

[WRH*00]

[WS07]

[WWO06a]

[WWO06b]

[WWW07]

[Xie05]

[Xie06]

110

Zai Wang, Tianshi Chen, Ke Tang, and Xin Yao. A multi-
objective approach to redundancy allocation problem in
parallel-series systems. In Proceedings of the 10th [EEE
Congress on Evolutionary Computation (CEC ’09), pages
582-589, Trondheim, Norway, 18-21 May 2009. IEEE.

Westley Weimer, Stephanie Forrest, Claire Le Goues, and
ThanhVu Nguyen. Automatic program repair with evolu-
tionary computation. Commun. ACM, 53(5):109-116, 2010.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and
Stephanie Forrest. Automatically finding patches using ge-
netic programming. In ICSE, pages 364-374. IEEE, 2009.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohls-
son, Bjborn Regnell, and Anders Wesslén. Fzperimentation

in software engineering: an introduction. Kluwer Academic
Publishers, Norwell, MA, USA, 2000.

Stefan Wappler and Ina Schieferdecker. Improving evolu-
tionary class testing in the presence of non-public methods.
In Stirewalt et al. [SEF07]|, pages 381-384.

S. Wappler and J. Wegener. Evolutionary unit testing of
object-oriented software using a hybrid evolutionary algo-
rithm. In Fwvolutionary Computation, 2006. CEC 2006.
IEEE Congress on, pages 851 —858, 2006.

Stefan Wappler and Joachim Wegener. Evolutionary unit
testing of object-oriented software using strongly-typed ge-
netic programming. In Cattolico [Cat06], pages 1925-1932.

Andreas Windisch, Stefan Wappler, and Joachim Wegener.
Applying particle swarm optimization to software testing.
In Lipson [Lip07], pages 1121-1128.

Tao Xie. Improving Effectiveness of Automated Software
Testing in the Absence of Specifications. PhD thesis, Uni-
versity of Washington, 2005.

Tao Xie. Improving Effectiveness of Automated Software
Testing in the Absence of Specifications. In Proceedings of
the 22nd IEEE International Conference on Software Main-
tenance (ICSM), pages 355-359, 2006.

[XMSN05|

[XN05]

[XN06]

[ZADT10]

[ZFHO8]

[ZH10]

|Zhal0|

[ZHMO07]

Bibliography

Tao Xie, Darko Marinov, Wolfram Schulte, and David
Notkin. Symstra: A framework for generating object-
oriented unit tests using symbolic execution. In Nicolas
Halbwachs and Lenore D. Zuck, editors, TACAS, volume
3440 of Lecture Notes in Computer Science, pages 365-381.
Springer, 2005.

T. Xie and D. Notkin. Automatically identifying special
and common unit tests for object-oriented programs. In
16th IEEFE International Symposium on Software Reliability
Engineering, 2005. ISSRE 2005, page 11, 2005.

T. Xie and D. Notkin. Tool-assisted unit-test generation
and selection based on operational abstractions. Automated
Software Engineering, 13(3):345-371, 2006.

Yuanyuan Zhang, Enrique Alba, Juan J. Durillo, Sigrid
Eldh, and Mark Harman. Today/future importance analy-
sis. In Proceedings of the 12th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO ’10), pages
1357-1364, Portland, USA, 7-11 July 2010. ACM.

Yuanyuan Zhang, Anthony Finkelstein, and Mark Harman.
Search based requirements optimisation: Existing work &
challenges. In Proceedings of the 14th International Work-
ing Conference, Requirements Engineering: Foundation for
Software Quality (Refs@ ’08), volume 5025, pages 88-94,
Montpellier, France, 16-17 June 2008. Springer.

Yuanyuan Zhang and Mark Harman. Search based opti-
mization of requirements interaction management. In Pro-
ceedings of the Znd International Symposium on Search
Based Software Engineering (SSBSE ’10), pages 47-56,
Benevento, Italy, 7-9 September 2010. IEEE.

Yuanyuan Zhang. Multi-Objective Search-based Require-
ments Selection and Optimisation. PhD thesis, King’s Col-
lege London, UK, 2010.

Yuanyuan Zhang, Mark Harman, and S. Afshin Mansouri.
The multi-objective next release problem. In Proceedings
of the 9th annual Conference on Genetic and Evolutionary
Computation (GECCO '07), pages 1129-1137 (Best Paper
Award), London, UK, 7-11 July 2007. ACM.

111

Bibliography

[ZLT01] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm. Technical re-
port, Swiss Federal Institute of Technology (ETH) Zurich,
May 2001.

112

