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Abstract—Soil moisture is critical to agriculture, ecology, and
certain natural disasters. Existing soil moisture models often fail
to predict soil moisture accurately for time periods greater than a
few hours. To tackle this problem, we introduce in this paper two
novel models, the Naive Accumulative Representation (NAR) and
the Additive Exponential Accumulative Representation (AEAR).
The parameters in these models reflect hydrological redistribu-
tion processes of gravity and suction. We validate our models
using soil moisture and rainfall time series data collected from
a steep gradient post-wildfire site in Southern California. Data
analysis is challenging, since rapid landscape change in steep,
burned hillslopes is typically observed in response to even small
to moderate rain events. We found that the AEAR model fits the
data well for three distinct soil textures at different depths below
the ground surface (at 5cm, 15cm, and 30cm). Similar strong
results are demonstrated in controlled soil moisture experiments.
Our recommended AEAR model has been validated as effective
and useful by earth scientists, giving better forecasts than existing
models for time horizons of 10 to 24 hours.

Index Terms—soil moisture; earth science; time series; fore-
casting; exponential models; stochastic optimization; evolution-
ary algorithms.

I. INTRODUCTION

Soil moisture1 plays an essential role in agriculture, ecology,

and natural disasters such as drought and flooding [15], [28].

Soil moisture may change rapidly over time and can show

substantial variation with depth within a soil column as well

as laterally through space.
Agricultural soils need to be sufficiently drained to min-

imize saturation and control high salinity. While managed

irrigation is typically used to control soil moisture, root

water uptake below the wilting point of a plant results in

decreased crop yields. Improved prediction of soil moisture

response to rainfall, as studied in this paper, would enable

water managers of agricultural applications to further optimize

irrigation schedules, plant-water uptake, and cost.
Soil moisture also has a key role in certain natural disas-

ters. The National Oceanic and Atmospheric Administration

(NOAA) and the United States Geological Survey (USGS)

established a demonstration flash-flood and debris-flow early-

warning system2 for recently burned areas in Southern Cal-

ifornia. This system covers eight counties within southern

1Three different terms are often used to describe the same characteristic:
“soil moisture,” “volumetric water content (VWC),” and “volumetric soil
moisture.” We prefer the first term in this paper.

2NOAA/USGS Demonstration Flash-Flood and Debris-Flow Early-Warning
System http://landslides.usgs.gov/hazards/warningsys.php

California, and utilizes the National Weather Service’s (NWS)

Flash Flood Monitoring and Prediction (FFMP) system. FFMP

identifies when both flash floods and debris flows are likely

to occur based on comparisons between radar precipitation

estimates and rainfall intensity-duration threshold values.

At a terrestrial level, soil moisture is measured by using

probes inserted into the soil column. These probes measure

dielectric properties of the soil to estimate volumetric water

content (VWC) and are controlled by local data loggers or via

telemetering to a server. In the resulting soil moisture time

series data sets, the wetting and drying cycles can be clearly

observed, but remain challenging to predict. Such data sets

form the basis for our analysis in this paper.

Fig. 1: Left: Photograph of burned hillslope with rainfall,

overland flow, and soil moisture monitoring instrumentation

after the Canyon fire on the Pepperdine University campus.

Right: Photograph from December 19, 2007 of a small post-

fire debris flow and flood on the Pepperdine University campus

following minor rainfall.

While theoretical models exist to quantify rainfall and runoff

(e.g., Richards’ equation [27]), site-specific field conditions

and hysteresis preclude their simple use. Taking a more data-

driven approach, attempts have been made to predict soil mois-

ture using time-series forecasting models (e.g., autoregressive

integrated moving average or ARIMA [2]). Unfortunately,

these statistical models do not result in models that reflect the

hydrological processes in soil. The Antecedent Water Index

(AWI) model [9], [38], though, strikes the delicate balance of

fitting soil moisture time-series data while providing mean-

ingful information to geophysicists by expressing hydrologic

parameters estimated from data. However, we establish in this

paper that the AWI model is limited when predicting soil

moisture for time horizons exceeding a few hours.

Inspired by the AWI model, we study in this paper two
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novel soil moisture models, the Naive Accumulative Repre-

sentation (NAR) and the Additive Exponential Accumulative

Representation (AEAR). The NAR model is a stepping stone

for the AEAR model. These models accumulate rainfall over a

time interval and can fit a diverse range of wetting and drying

curves. Model parameters are estimated from data, but at the

same time the models are designed to resemble hydrological

models of soil processes. The NAR and AEAR models have

been validated by earth scientists at USGS. Consequently, they

promise to be more meaningful to the earth science community

than traditional time series models (ARIMA and ARMAX).

Moreover, these models can be used recursively to forecast

soil moisture only using initial soil moisture measurement.

We validate our NAR and AEAR models on a challenging

post-fire soil moisture time series data set from Southern

California [30], where rapid sediment erosion and deposition

was observed following a wildfire (see Figure 1). We find that

our models can fit moisture data from different soil depths

with distinct soil types. The models can be used for prediction

and can also explain various soil properties including drying

and wetting rates. Further, we evaluate our models’ predictions

using another soil moisture data set obtained from controlled

experiments. Overall, the best predictions were obtained with

the novel AEAR model, which is also data-driven and under-

standable to earth scientists.3

Even though we focus on soil moisture prediction in this

paper, our methods may apply to other complex time-series

modeling and forecasting problems. As an example, con-

sider workload bursts for network and computing resources.

Workload prediction is important in workload rebalancing and

autoscaling for the cloud [35]. In extreme cases, such workload

bursts can be considered flash events (notice the similar

language to “flash flooding”), and include major breaking news

and sporting events of global interest, such as the soccer World

Cup [3], [5]. Web site traffic can also change dramatically over

time due to the varying habits of social network users [23].

The rest of this paper is structured as follows. First, we

describe the modeling goals and requirements in Section II.

Next, we discuss related work in time series modeling and

prediction in Section III. We discuss the soil moisture data

sets in Section IV. In Section V, we introduce our two

novel soil moisture models. The data analysis process and

results for our data sets are presented in Section VI. A more

qualitative evaluation, or model validation, by earth scientists

is performed in Section VII.

II. GOAL AND REQUIREMENTS

Our goal is to develop mathematical soil moisture models.

After first introducing notation and terminology, we discuss in

this section three model requirements.

We consider a time series or sequence of records,

(r0,r1, . . . ,ri , . . .), where each record consists of a time stamp t
and a measurement value v : r = (t , v) or for simplicity vt . For

a particular data set, we consider the following sequences:

3This paper has a Web presence here: https://github.com/olemengshoel/
wetting-and-drying-of-soil, with the source code of our novel models.

• A sequence (or time series) of soil moisture measure-

ments: M = (M0, . . . , Mi , . . .).
• A sequence of soil moisture predictions: M̂ =(

M̂0, . . . , M̂i , . . .
)
.

• A sequence of rainfall measurements: I = (I0, . . . , Ii , . . .).
• A sequence of rainfall predictions: Î = (

Î t∗ , . . . , Î t∗+i , . . .
)
.

When predicting, we are at a particular time point t∗,

and make soil moisture predictions for (future) times up to

a time horizon of τ, thus: M̂t∗+1:t∗+τ = (
M̂t∗+1, . . . , M̂t∗+τ

)
,

where t∗ > 0. We assume future rainfall values are available

by rainfall forecasting models. Our focus is not on rainfall

forecasting, as several well-established methods exist [29].

A. Three Model Requirements

A model needs to meet all of the following requirements:

• Understandability: The model needs to make sense to

earth scientists, by having parameters readily tied to

measurable physical processes. A model with parameters

that can be easily interpreted from the earth science

perspective, and clearly relate to or directly map to soil

or hydrological properties, is much to be preferred.

• Data-driven: It must be easy to compute model param-

eters from soil moisture data that is being collected by

current sensor technology. A model with parameters that

cannot be easily estimated from data is less useful.

• Accurate predictions: The model must provide predic-

tions that are accurate in the medium term, which we

here define to be predictions with a prediction horizon 5

≤ τ ≤ 24 hours, aligned with the timeframe of accurate

weather forecasts. Humans can act on this time scale. For

example, if an area is threatened by mud slides, due to

high soil moisture, people can be warned, leave the area,

and avoid the danger.

All of the above three requirements need to be met; it is

not sufficient to meet just two of them.4

B. Prediction Approaches

Suppose we are at time t∗. A model should predict soil

moisture M̂t∗+τ, given a prediction horizon τ. In our case, τ

is on the order of hours. Predictions can be performed using

at least two approaches, and it is a requirement that both are

supported. There is at time t∗ either (i) an actual soil moisture

measurement Mt∗ or (ii) a predicted soil moisture value M̂t∗ .

In addition, there are rainfall measurements in I or forecasts

in Î up to time t∗ +τ. The following two definitions reflect

(i) and (ii) respectively.

Definition If regular (or frequent) soil moisture measure-

ments are available, the soil moisture observation Mt∗ can

be used to predict M̂t∗+τ via a model f :

M̂t∗+τ = f (Mt∗ , It∗ , Î t∗+1, . . . , Î t∗+τ), ∀t∗ > 0. (1)

4As an example, machine learning models are obviously data-driven and
may provide accurate medium-term predictions. However, some of them are
not easily understandable to scientists. For example, it may be possible to
train a deep neural network from soil moisture data and use it to compute
accurate medium-term predictions. Due to the large number of parameters,
deep neural networks are not easily understood by (earth) scientists.
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If measurements are regularly or “continuously” stored in a

data-logger or telemetered, (1) can be used.

In the case of irregular measurements, the measurement Mt∗

of (1) is missing (else we have the regular case). Thus, we

estimate Mt∗ using M̂t∗ in the prediction model:

Definition For irregular (infrequent or single point observa-

tion M0) soil moisture measurements, predicted soil moisture

value M̂t∗ is used for predicting M̂t∗+τ:

M̂τ = g (M0, I0, . . . , Iτ),

M̂t∗+τ = g (M̂t∗ , It∗ , Î t∗+1, . . . , Î t∗+τ), ∀t∗ > 0. (2)

The irregular situation in (2) arises, for example, when mea-

surements can only be performed during occasional field visits

or by over-passing satellites or aircraft.

III. RELATED WORK

Considering the requirements identified in Section II as well

as the soil moisture data presented in Section IV, we now

examine related work. The focus is on models that potentially

meet the three model requirements from Section II.

A. Simple Exponential Model (SEM)

The Antecedent Water Index (AWI) is considered to be

proportional to soil moisture, and AWI is widely used to

model soil moisture response [9], [38]. In 1995, Wilson and

Wieczorek [38] developed the AWI model based on an analogy

of water flow through a leaky bucket:

M S
t = M S

t−1e−kdΔt + It

kd
(1−e−kdΔt ), (3)

where the superscript S indicates a simple exponential model

(SEM). It is a simple sum of two exponentials where the first

term in (3) represents recession of AWI after rain ceases and

the second term represents increase in AWI due to rainfall. An

instantaneous rainfall measurement at time t is denoted by It .

There is a drainage coefficient, kd , as a single exponential

parameter present in both terms of the equation. This model

is inspired by a water balance equation (4), where ΔM S
t is

the change in soil water content at time t ; It is the mean

precipitation; Et is the mean evapotranspiration; Rt is the net

streamflow divergence; and Gt is the net groundwater loss.

ΔM S
t = It −Et −Rt −Gt . (4)

Essentially, (4) relates precipitation, evapotranspiration, and

water loss to the rate of change of soil moisture. It has been

shown that an approximation of this equation leads to an

exponential decay model (under no precipitation) [12], which

is very similar to the AWI model (3).

NOAA prediction of soil moisture uses surface hydrology as

defined by (4) [37]. Hence, the AWI model is closely related

to a state-of-the-art hydrology-inspired soil moisture model.

The AWI model was also used to predict shallow landslides

in Seattle, Washington, based on rainfall data [9].

However, the SEM model (3) has just one parameter, kd .

Thus it has the same drainage coefficient kd for both increase

and decrease in soil moisture. This is a quite strong assump-

tion, which is not necessarily consistent with the science.

Further, when fitting models to soil moisture data, we

found that the SEM model (3) predicts near-surface soil

moisture with reasonable accuracy, but fails to explain the

more complex behavior of soil moisture in deeper layers.

Typically, the soil moisture variations in deeper soil (≥ 15 cm)

do not resemble an exponential curve as used in (3).5

B. Soil Moisture Indicators

The Variable Infiltration Capacity model with 3 layers (VIC-

3L) is widely used to simulate soil moisture data across the

world [36]. The VIC-3L model was developed as a general-

ization of the single layer VIC hydrological model [20]. It is a

complicated model involving many parameters accounting for

sub-grid variability in soil moisture, land surface vegetation,

precipitation, and topography. The Palmer Drought Severity

Index (PDSI) and Standardized Precipitation Index (SPI) have

also been used to estimate soil moisture [33].

These indicators are not appropriate for either the space-

or time-scales of interest to us. A primary limitation of the

PDSI is that it cannot be correlated with site-specific water

resources such as soil moisture or runoff. Rather, it is a unitless

generalized index applicable at the spatial scales of states or

counties. Both the PDSI and the SPI rely on data at monthly

intervals for long-term (monthly to yearly) assessments of

available moisture, whereas we are interested in timescales of

hours to asses local runoff and heightened soil moisture and

pore-water pressure in the context of landslide susceptibility.

C. Time Series Prediction Models

Aljoumani et al. [2] investigated the impact of irrigation

on soil water content in silty loam soil using an autoregres-

sive integrated moving average (ARIMA) model. Under the

normality assumption, however, the ARIMA model could not

properly explain the effect of variable interval irrigation. To

remedy this, outlier detection and intervention analysis were

used. Unfortunately, their model does not explain physical soil

processes in great detail.

Khaertidova and Longobardi [16] analyzed soil moisture

dynamics in inter-storm periods. Given their focus on inter-

storm periods, there is no analysis of soil moisture increases

and a simple exponential decay model is sufficient.

1) Baseline Time Series Model with ARMAX: We use an

autoregressive model as a baseline time series prediction

method [2]. In particular, we use autoregressive moving aver-

age model with exogenous inputs (ARMAX) model, account-

ing for precipitation as exogenous input terms. In hydrology,

ARMAX models have been used for data-driven rainfall-runoff

modeling [26].

5Experimental results are in Section VI.
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Location Depth (cm) Dataset Id

Field: Canyon Fire
5 Canyon-5

15 Canyon-15
30 Canyon-30

Controlled Experiment:
Bucket

10 Bucket-10
20 Bucket-20
28 Bucket-28

TABLE I: Summary of six soil moisture data sets used in our

data analysis; see Section IV for additional information.

An ARMAX(p, q,b) model expresses the dependence of

past soil moisture values {Mt−i } and rainfall {It−l } on present

soil moisture Mt according to the following equation:

Mt =
p∑

i=1
φi Mt−i +

q∑
j=1

θ j εt− j +
b∑

l=1
ηl It−l (5)

where (p, q,b) represents the time-delay in autoregressive,

moving average, and exogenous input terms respectively. And

{φi }, {θ j }, and {ηl } are their corresponding weights.

IV. DATA COLLECTION AND DATA SETS

Recent technology improvements have increased the avail-

ability of affordable sensors and data loggers that aid in

measurement and recording of soil moisture. We now present

the soil moisture data sets summarized in Table I.

A. Data Set from the Field

The field experiment data set is composed of soil moisture

(M ) and rainfall (I ) measurements from the Santa Monica

mountains near the town of Malibu and Pepperdine University

in Southern California [11], [31]. This area was the site of the

2007 Canyon fire. Prior to the fire, the area was covered by

chaparral vegetation. However, the fire disturbance removed

almost all of the vegetation and changed the soil infiltration

properties. Hillslopes within the site are steep with gradients

up to 0.9. The colluvial soils are generally less than 0.5m

thick, overlying sedimentary rock. These soils have much

higher infiltration rates than the underlying bedrock which is

composed of Miocene sediments. The sediments produced a

range of soil types with a median grain size of 40% to 60%

sand. Due to the steep landscape, rapid response from fast

hydrologic redistribution is observed following rain events.

These factors promote rapid wetting and drying of soil.

Moisture measurements were collected using probes (from

Decagon Devices Inc.6) measuring volumetric water content

(VWC) by estimating the dielectric constant of the media using

capacitance/frequency domain technology [17]. These probes

were placed at three different soil depths (5cm, 15cm, and

30cm), to represent different soil horizons. Soil moisture mea-

surements were logged every 2 minutes. Tipping-bucket rain

gauges provided precipitation data on an irregular schedule

in response to rainfall. Soil moisture and rainfall data from

December 2007 to April 2008 are shown in Figure 2.

It should be noted, that we only focus on post-fire soil in this

paper and do not attempt to model the soil moisture variations

6http://www.decagon.com/products/soils/volumetric-water-content-sensors/
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Fig. 2: Rainfall and soil moisture measurements from the

Canyon fire data set.

in other types of soil. Although, we only discuss one location

due to limited space, we tested our methods on soil moisture

data collected from a different pit is a nearby location.

B. Data Set from Controlled Experiment
To study soil moisture dynamics within a controlled exper-

iment, we filled a bucket with sand and gravel. To imitate the

post-fire scenario, we also started with very dry material in

this experiment.
We performed the experiments in an open space exposed to

normal weather conditions. We filled a 5 gallon plastic bucket

with sand (grain size < 1mm). To record soil moisture M , we

placed three VWC sensors (identical to the Decagon probes

used in the field experiment, see Section IV-A), at 10cm, 20cm,

and 28cm depths. Two types of data records make up the

“rainfall” sequence I . First, we manually added measured

amounts of water to the bucket in intervals to bring the soil to a

near-saturated condition. Second, some natural rainfall events

during the time of the experiment also added water to the

bucket. We found the natural rainfall intensities from Weather

Underground7 historical data. For this experiment, there was

no vegetation in the soil and the rainfall events were moderate.

Overall, the changes in soil moisture are less abrupt compared

to the Canyon fire dataset.

V. SOIL MOISTURE MODELS

The NAR and AEAR models were developed by a multi-

disciplinary team consisting of earth scientist and data sci-

entists. The goals of these models are to be physics-based,

data-driven, and produce accurate predictions (see the three

requirements in Section II). The parameters of these models

are estimated from data as reported in the Section VI.

A. Existing Model: Simple Exponential Model (SEM)
We fit the SEM model in (3) to the training data by solving

a mean squared error minimization problem:

k̂d = min
kd

T∑
t=1

(Mt −M S
t (kd ; Mt−1, It ))2. (6)

7https://www.wunderground.com/history/
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Here, the M- and I -values are in the data, and we optimize to

find k̂d corresponding to kd in (3). We solve this optimization

problem via stochastic methods, see Section VI-B.

The SEM model has certain limitations as discussed in

Section V-A. To address these limitations, we now introduce

our novel models in Section V-B and Section V-C.

B. Novel Model: Naive Accumulative Representation (NAR)

Tipping bucket rain gauges are commonly used for mea-

suring rainfall. A time series created based on consecutive

measurements by this tool is typically discrete and can have

multiple values (including 0s) during a continuous rainfall

event. Thus, using instantaneous rainfall values as in (3)

can create artificial “bumps” in the soil moisture sequence.

To remedy this issue, we introduce a novel model which

accumulates rainfall values over the prediction horizon τ.

Definition The Naive Accumulative-Representation (NAR)

model is:

M N
t = M N

t−τe−kdτ+
τ∑

j=0

[ It− j

η
(1−e−kw j )e−kd j ], (7)

where kd is the drying rate and kw the wetting rate. Thus,

we have two constants kd and kw in contrast to just one

constant in the SEM model. Since rainfall and soil moisture

are at different scales, we introduce η as an unknown propor-

tionality constant. Although all rainfall measurements in the

prediction horizon τ contribute to an increase in soil moisture,

simultaneous evapotranspiration and hydraulic redistribution

mechanisms in soil reduce the effect of the rain water. Thus,

we add a drying factor e−kd j in the second term of the equation

as well.

To fit the novel NAR model to data according to (2), we

used the following optimization formulation.

(k̂d , k̂w , η̂) = min
kd ,kw ,η

T∑
t=1

(Mt− (8)

M N
t (kd ,kw ,η; M N

t−τ, It , · · · , It−τ))2.

Again, the M- and I -values are in the data, and we optimize to

find k̂d , k̂w , and η̂. In the absence of convexity guarantees, we

employ stochastic optimization methods (see Section VI-B).

However, this model has some limitations of (discussed

in Section VI). Although the NAR model can fit moisture

variations of a shallow soil layer (5cm depth), it performs

poorly for the deeper layers (15cm and 30cm depths), which

are shielded from evaporation and have finer grained soil types.

C. Novel Model: Additive Exponential Accumulative Repre-
sentation (AEAR)

We now introduce a sum of exponential functions model,

AEAR, which can model a wider range of soil moisture mea-

surements. To obtain the AEAR model in (9), we substitute

the single exponential in the first term of the NAR model by

a weighted sum of two exponentials:8

8Using more than two exponentials in the weighted sum was also investi-
gated, but that did not give better results in our case.

Definition The Additive Exponential Accumulative Rainfall

(AEAR) model is:

M A
t =M A

t−τ
[
αe−ksτ+ (1−α)e−kg τ

]

+
τ∑

j=0

[ It− j

η
(1−e−kw j )e−ks j ]. (9)

The first exponential in (9), with drainage coefficient ks ,

represents the steep redistribution decay from the combination

of strong suction gradients between wet and dry soil and

gravity. The second exponential in (9), with kg , accounts

for the gradual (lower) redistribution decay from low suction

gradients dominated by gravity. The relative weighting of these

two terms is controlled by a time-varying weight α defined by:

α=
τ∑

j=0

[ It− j

η
(1−e−kw j )e−kg j ]. (10)

After rainfall, the soil suction gradients are strong. But they

tend to weaken during a long absence of rain. Thus α needs to

be proportional to the rainfall amount. To make the variation

of α smooth over time, we use the accumulative rainfall term

in (10) instead of instantaneous rainfall values.
The following results illustrates an interesting relationship

between the AEAR and ARMAX models.
Theorem 5.1: The AEAR model (Equation 9) reduces to an

ARMAX model if α is time-invariant.

Proof Equation 9 can be written as

M A
t =

τ∑
i=1

φi M A
t−i +

τ∑
j=0

γ j It− j , (11)

where φ1 = φ2 = ·· · = φt−τ+1 = 0, and φt−τ = [αe−ksτ + (1−
α)e−kg τ] are the parameters of the ARMAX autoregressive

terms. Here rainfall corresponds to the exogenous input, and

the parameters are γ j = (1 − e−kw j )e−ks j /η. If α is time-

invariant, φt−τ reduces to an unknown constant. In this case,

Equation 11 is identical to the ARMAX model.

However, the reformulation of the AEAR model as an AR-

MAX model results in absorption of the AEAR parameters

ks and kg into one time-invariant ARMAX term. Once these

parameters are aggregated, the model will lose resemblance

to the hydrological processes, where ks and kg have distinct

meanings as discussed above.
The novel AEAR model was also fitted to the data using a

mean squared error minimization:

(k̂s , k̂g , k̂w , η̂) = min
kd ,kw ,η

T∑
t=1

(Mt− (12)

M A
t (ks ,kg ,kw ,η; M N

t−τ, It , · · · , It−τ))2,

subject to ks > kg .

The M- and I -values are in the data as before, and we estimate

k̂s , k̂g , k̂w , and η̂. We impose the constraint ks > kg to

reflect the hydrological phenomenon that a suction gradient

ks is stronger than the gradual redistribution kg . With no

convexity guarantees, we use stochastic optimization methods

(see Section VI-B) to solve this problem.
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Fig. 3: Steps and outcomes of our soil moisture data analysis;

see Section VI-A for further explanations.

VI. ANALYSIS AND PREDICTION RESULTS FOR MODELS

In our data analysis, parameters of the mathematical models

discussed in Section V were estimated, using the process from

Section VI-A and the data discussed in Section IV. Unless

otherwise noted, our results are for the Canyon data set.

A. Data Analysis Process

In a wide range of geomorphic, hydrologic, and ecosystem

projects, there is a need to derive analytical methods and tools

to characterize soil moisture response. Figure 3 shows the

steps and data flows of our data analysis process, from the

soil moisture measurements, via soil moisture models, to the

models’ outputs. We now briefly discuss these steps.

The pre-processing step, namely sub-sampling followed by

smoothing, serves multiple purposes. First, it allows us to

lower the analysis computational cost via sub-sampling to

20 minutes, since the data collection sampling rate of 2

minutes is higher than needed for our analysis. (This rate

was sufficient for fast completion of all analysis and did

not lose significant information content in the soil moisture

signal.) Second, smoothing reduces the diurnal and other

variations while retaining important signals, i.e., the peaks

(local maxima) and valleys (local minima).9 For predicting

landslides and runoff-driven erosion, the peaks carry critical

information. Third, smooth data obviates the need to prevent

fitting of high-frequency diurnal variations as well as other

sensor noise and variation. We applied the HyperSTL extrema-

preserving smoothing technique [18], [4] to smooth the soil

moisture time series without distorting or diminishing the

extreme values (peaks and valleys) in the time series.10

Next we perform training of soil moisture models, using

the sub-sampled smooth data. A detailed description of the

different models, including our NAR and AEAR models, is

9Unfortunately, using dielectric sensors for determining near-surface VWC
results in temperature-induced fluctuations for probes inserted into shallow
soils. These diurnal variations, along with other disturbances, add a layer of
complexity in estimating moisture response functions.

10The HyperSTL smoothing technique is based on STL, a seasonal-trend
decomposition method using local regression [7]. STL decomposes a time
series into trend, seasonal, and remainder components. STL has been used in
several areas of science, for example to analyze seasonal patterns in suicides
[25] as well as for earth science time series data analysis [4].

presented in Section V. For model fitting, we split a sub-

sampled and smoothed soil moisture sequence M into a

training sequence MT and a prediction (or test) sequence

MP as follows: MT = (M0, . . . , Mi ) and MP = (Mi+1, . . . , Mk ).
The wetting and drying of soil is driven by rainfall events.

We therefore split the data into MT and MP as per major

rainfall events. We keep the first two wetting and drying cycles

in MT , and the rest in MP . We assume that accurate rainfall

information I is available throughout.

We train the model of interest by first optimizing and then

doing predictions. For example, to estimate the parameters

of the AEAR model (9) for a particular data set, AEAR

optimization (12) based on the training sequences MT and

IT is first done. Then, we use the trained AEAR model to

predict a sequence M̂P and evaluate the predictions using

the sequence MP . Our empirical results below show strong

prediction results under varying settings.

As the AEAR model is inspired by hydrologic processes

in soil, the trained model parameters are explaining soil
properties like reduction of soil water content by suction

gradients and gravity. Section VII discusses such connections

between AEAR parameters and soil properties.

B. Optimization Study

In general, there are no convexity guarantees in nonlinear

regression. Hence we use stochastic optimization algorithms to

fit the models in (3), (7), and (9) to the training data. We study

three general optimization algorithms: Real Coded Genetic

Algorithm (RGA) [10], Simulated Annealing (SA) [6], and

Differential Evolution (DE) [34]. We also study the statistical

parameter tuning method IRACE [22].

Evolutionary algorithms including DE and RGA have been

successfully employed in hard optimization problems without

introducing strong assumptions such as convexity. For exam-

ple, DE is used for parameter estimation of non-linear models

[39]. SA is a probabilistic search technique, and in contrast

to DE and RGA it is not population-based. To prevent getting

stuck at local optima, SA accepts random neighbors with a

small probability. It has been successfully used to solve many

difficult data mining problems, such as influence maximization

in social networks [13]. IRACE performs iterated racing to

automatically tune parameter configurations of an algorithm.

IRACE has been successfully used in multiple time-series

analysis applications [1].

We use R implementations of the algorithms, present in

the packages GA [32] (RGA), GenSA [40] (Generalized SA),

DEOptim [24] (DE), and irace [22] (IRACE) respectively.

With random initialization and parameters shown in Table II,

we ran each of the four optimization algorithms 30 times inde-

pendently to find the AEAR parameters for the Canyon 30cm

soil moisture data set. These parameter settings are a result of

tuning experiments designed for efficient optimization. We set

the prediction horizon to τ = 24 hours for (6), (8), and (12). We

recorded the prediction errors (standard error and maximum

absolute error) of the trained models on the test data along
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Parameter RGA GenSA DE IRACE

Population size (nP ) 50 1 50 1
Num. generations (nG ) 100 5000 100 5000
Crossover prob. (pC R ) 0.8 N/A 0.5 N/A
Mutation prob. (pM ) 0.1 N/A 0.8 N/A

TABLE II: Parameter settings for the optimization algorithms.

with the training time. We used a 64 bit Linux computer with

an Intel Xeon CPU 3.2GHz processor.

Figure 4 shows the comparative results, in the form of

means and standard deviations, for three performance metrics:

standard error, maximum absolute error, and training time. We

observe that the trained models obtained by DE have minimum

prediction errors. Also, the training time is consistently low

for DE runs. We conclude that DE performs comparatively

better than the other optimization algorithms for this problem,

and thus we use DE in the later experiments.
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Fig. 4: Results using 30cm soil moisture test data for AEAR

models trained by four different optimization algorithms. The

comparison are of prediction error (in (4a) and (4b)) and

runtime of training (in (4c)), The mean and variance of all

performance metrics are computed over 30 independent runs.

C. Irregular Measurements: NAR and AEAR

Two NAR models were fit separately to 5cm and 15cm soil

moisture data. The model predictions are shown in Figure 5.

Although the NAR model fits the shallow moisture data (5cm)

quite well, it fails for the deeper levels (15cm and 30cm).11

Apparently, soil moisture variation at deeper levels does not

resemble a simple exponential curve. This suggests that the

approach is inconsistent with soil moisture response at deeper

levels, which respond to additional water transported through

the soil column above and possibly from the bedrock below.

11We present only the 15cm results here, and leave out the 30cm results
for space reasons.

0 50 100 150 200 250 300 350 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Subsampled time indices

S
oi

l m
oi

st
ur

e 
(m

m
3 /m

m
3 )

 

 

Observed
Predicted

(a) Predictions at 5cm depth.

0 50 100 150 200 250 300 350 400

0.16

0.18

0.2

0.22

0.24

0.26

Subsampled time indices

S
oi

l m
oi

st
ur

e 
(m

m
3 /m

m
3 )

 

 

Observed
Predicted

(b) Predictions at 15cm depth.

Fig. 5: Soil moisture predictions using the NAR model. The

points to the left of the blue dashed vertical line are in the

training set, and the points to the right are in the test set.

When estimating the AEAR parameters according to (12),

the constraint ks < kg was implemented by introducing a

ratio kg /ks and setting kg /ks > 1,ks > 0 during optimization.

Predicted soil moisture values for the 5cm and 15cm levels

using trained AEAR models are shown in Figure 6. The AEAR

model fits the 5cm data equally well as the NAR model, but

gives much better predictions in the 15cm case.
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Fig. 6: Soil moisture predictions using the AEAR model, based

on a one-point measurement at t = 0.

D. Regular and Irregular Measurements: Prediction Results

The goal here is to compare the SEM, NAR, and AEAR

models for both regular (1) and irregular (2) measurements.

We also study three ARMAX models of increasing complexity.
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Fig. 7: Comparison of different model predictions (SEM or

AWI, NAR, AEAR) at 30cm depth. The standard error in these

predictions are 0.037,0.022, and 0.020 respectively.
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Fig. 8: Prediction errors as a function of varying prediction

horizon (τ) in regular measurements.

1) Regular Measurements: The prediction horizon τ is

a critical parameter in time-series predictions with regular

measurements. We trained the previous three models and three

new ARMAX models with increasing prediction horizons τ=
1, 5, 10, 15, 20, and 24 hours.

Assuming equal availability of historical soil moisture and

rainfall data, we keep the orders of the autoregressive and

exogenous input polynomials (as in Equation 5) the same,

i.e., p = b. Hence we suppress the third order parameter of

ARMAX(p, q, p) model and denote it as ARMAX(p, q). We

use standard system identification methods [21] to learn the

parameters from our training data.12

We present the error on the test data of trained models for

different prediction horizons (τ) in Figure 8, which contains

a key message of this paper. Clearly, the standard error of

existing SEM model is smallest for τ = 1, however for this

short time horizon, all the models perform quite well. The

more complicated task is predicting for longer time horizons

τ, and SEM’s standard error increases with τ at a much

higher rate compared to AEAR’s error. The ARMAX models

show similar error-growth as the SEM model. For grater time

horizons, τ≥ 10, our AEAR model shows minimum standard

error among all models.

A clear divergence between the maximum absolute-errors

(with increasing τ) of the existing SEM model and the novel

accumulative rainfall models (NAR and AEAR) is observed

12Our experiments use the functions implemented in the tsa R package.

in Figure 8b. The maximum error of the SEM model exceeds

0.12 at τ = 15. As the variations of soil moisture in our

dataset lies within 0.3 mm3 mm−3, more than 0.1 mm3 mm−3

off predictions imply higher than 33% error. Moreover, a

0.3 mm3 mm−3 difference in soil suggests very different soil

conditions [8]. In contrast, AEAR’s error curve is much more

flat and it remains within 0.06 mm3 mm−3 while predicting

moisture values a day ahead (τ= 24). This experiment suggests

a strong capability of the AEAR model to forecast soil

moisture at time horizons τ= 5 to τ= 24 hours, another major

modeling improvement.

Although the ARMAX models perform better than the

SEM and NAR models in terms of maximum absolute error,

the error growth-rates are higher than for AEAR. Hence the

AEAR model, with parameters directly related to hydrological

processes, shows superiority over more complicated ARMAX

models with a higher number of parameters.

2) Irregular Measurements: A comparison of all three

trained models with 30cm soil moisture data is shown in Fig-

ure 7.13 Although the existing SEM model fits the training data

MT fairly well, it does not adequately represent the moisture

variation in the test data MP . The NAR model attempts to find

an average exponential model around the observed variations.

In contrast, the AEAR model neither overfits the training set,

nor deviates from the observed moisture substantially in the

test data. The prediction error of the AEAR at the moisture

peaks is bounded by 0.04 mm3 mm−3, which falls within the

range of typical accuracy of various volumetric water content

sensors using a factory calibration [14], [17].

E. Bucket Data: Prediction Results

We now consider data resulting from the controlled ex-

periment, and compare models using regular measurements.

Among the ARMAX models we choose ARMAX(10, 10),

which performed best for the Canyon data set.

Similar to Section VI-D1, we use the trained SEM, NAR,

AEAR, and ARMAX models to predict the soil moisture at

10cm depth. Figure 9 shows the standard error and maximum

absolute error of all four models on the test dataset. We

observe that the growth rates of NAR and AEAR models’

errors are lower than SEM and ARMAX models. Although

ARMAX shows low (maximum) error for τ = 1,5 hours, in

case of larger prediction horizons τ ≥ 10 hours NAR and

AEAR models achieve lower error. Although the performance

of these two accumulative representations are similar, AEAR

predicts slightly more accurately for τ≥ 15 hours.

VII. VALIDATION OF MODELS BY EARTH SCIENTISTS

Both the AEAR and NAR models are intended to represent

hydrologic processes in soil and fit well to the soil moisture

data. The experimental results in Section VI suggest that

the AEAR better models the data sets across multiple layers

of soil and also gives better predictions. Consequently, we

13The irregular setting is not appropriate for ARMAX models, due to high
computational complexity of model fitting. Therefore, we do not compare
with ARMAX here, unlike what was done for the regular measurements.
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Fig. 9: Prediction errors as a function of varying τ (in regular

measurements) for experimental data.

recommend the AEAR model, and study in this section the

variation of the estimated AEAR parameters with season and

soil depth for Canyon data. These variations reflect the varying

nature of wetting and drying cycles of soils, hysteresis of

additive cycles, and changing ground surface conditions.

A. Variation with Time

Right after the Canyon fire, the soil was extremely dry.

After two rain events in December, the soil properties changed

significantly. Thus the moisture response for the first two

rainfall events are hypothesized to be too different to be

captured by one average model. We therefore split the data

into four time periods, see Figure 10, bracketing rainfall from

storms and related increases and subsequent soil moisture

decreases. Each period covers about one month. However,

Period 3 (“February”) ends early, in order not to interfere with

a storm event near February 23.

We trained separate models for each period, see Figure 10

and Figure 11. A large variation in the wetting rate kw is

observed in the four periods following the wildfire (Figure

11a). At the beginning of Period 1, extremely dry soil absorbs

rain almost instantaneously, leading to a very high wetting

rate kw . As soil pores get filled with water and fine-grained

sediment, the wetting rate decreases and eventually goes below

1 in Period 3. Then kw increases in Period 4 when the soil

starts drying again, and post-fire vegetation regrowth decreases

soil moisture by evapotranspiration.

B. Variation with Soil Depth

Drying of soil at different depths varies due to various

environmental factors such as solar radiation penetration, air

temperature, and water absorption by vegetation. The AEAR

parameters ks and kg of trained models from three different

soil depths can potentially capture these effects. Figure 11b

shows the empirical variation of ks and kg with soil depth.

We observe that the drying rates at the shallowest layer (5cm)

are much higher compared to the deeper layers. This reflects

coarser textured soils, high solar radiation, and atmospheric

effects near the ground surface. Moreover, ks and kg differ

by at least two orders of magnitude consistently over all soil

depths. This suggests that our choice of two distinct drying

terms in the AEAR model (Equation 9) is well-justified.
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Fig. 11: Wetting and drying properties of soil.

We also attempted to use black box machine learning mod-

els, such as Gaussian Processes, for predicting soil moisture.

Based on initial experiments, we concluded that these models

tend to overfit quickly due to high model complexity and thus

perform poorly when forecasting τ = 12 hours or longer ahead.

VIII. CONCLUSION AND FUTURE WORK

We modeled soil moisture response with respect to rainfall

from natural storms and determined that the existing AWI

based approach cannot model moisture response for time

periods greater than 5–10 hours, depending on the data set.

Moreover, it does not perform well for deeper soil layers in a

post-fire setting, because soil moisture variations in the deeper

layers do not follow a simple exponential curve. We developed

a novel AEAR model which can fit moisture data from three

different soil layers with distinct soil textures. Our AEAR

model can be trained with both regular and irregular time

series measurements of soil moisture and predicts well in both

cases. Moreover, this model is consistent with hydrological

processes in soil, as validated by earth scientists, and provides

a means to estimate the rates of soil wetting during rain storms

and how fast soils may dry in-between storms.

We plan to extend our methods to better incorporate soil

moisture variations in different layers of soil, i.e., variation

with depth. We will attempt to build upon the model to predict

moisture in a broad area of soil, creating a moisture map.

Combined with field and remote sensing of landscapes, as

311



well as storm intensity and duration forecasts, this will enable

improvements in forecasts, including landslide forecasts. We

can also use grammar-based models to generate interpretations

of the predicted time-series and the model parameters [19].
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