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Our result advances the explainable theoretically supported state-of-the-
art method developed by experts in the transportation field

Learning Traffic Signal Control via Genetic Programming
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Advancing the expert-designed state-of-the-art and reinforcement learning method

« Max-Pressure method is a theoretically grounded and sota method designed by human experts in the transportation field

Varaiya, Pravin. "Max pressure control of a network of signalized intersections." Transportation Research Part C:
Emerging Technologies 36 (2013): 177-195.

«  MPLight combines the advantages of previous deep reinforcement learning (DRL)-based methods that utilizes only basic
lane features, and is capable of stable convergence and scalable to large-scale traffic networks

Chen, Chacha, et al. "Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal
control." Proceedings of the AAAI conference on artificial intelligence. Vol. 34. No. 04. 2020.

Our GP-evolved traffic signal control policy

» Further reduces the average vehicle travel time by 13.52% compared to the expert-designed method
« Has better generalizability and is human-understandable compared to DRL-based methods

« Can be deployed on low-cost and resource-limited edge devices while maintaining excellent performance

Learning Traffic Signal Control via Genetic Programming
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Our result solves problems of indisputable difficulty in its field

Learning Traffic Signal Control via Genetic Programming
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Explainable traffic signal control policy
« Experts in the traffic field are able to examine potential .
: : . . examination 3
shortcomings in the signal control policy — ¥
* Inthe field of traffic, which involves significant personal safety,

authoritative departments need to be responsible for the traffic
light control strategies adopted.

=
Experts

» Itis necessary to provide drivers with explanations of the
control policy, otherwise it may lead to traffic chaos. Without
such explanations, drivers might not be able to anticipate the
timing of a green light, causing them to forcefully switch to the
right-turn lane to cross the intersection.

GPLight can evolve explainable traffic signal control

strategies without performance compromise !

Drivers Traffic department
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O Rule-based methods
O GP-based methods
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* Neural network typically have large FLOPs and parameter size 100-5 O E; S
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* Most of controllers lack support for neural networks. Quantization 10 10Parameté?8ize (Melrgory ConsL?nption) 10 10
Is needed to deploy them, leading performance degradation
* Our concise solutions can be easily implemented on commonly
used!? chips in traffic signal controllers 7
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1. Social Benefits 2. Explainable Al
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Waig 3. Accessible to practitioner without expertise
ing ang

4. Low resource consumption

5. Reproducible results

Our implementation is freely
available and open source

Learning Traffic Signal Control via Genetic Programming
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Thank you

Xiao-Cheng Liao, Yi Mei, Mengjie Zhang
Victoria University of Wellington




