On the Automatic Design of a Representation for Grammar-based Genetic Programming [best paper at EuroGP 2018]

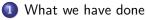
Eric Medvet and Alberto Bartoli

Department of Engineering and Architecture University of Trieste Italy

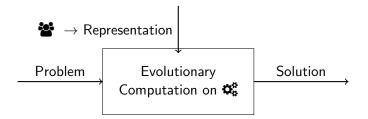
Humies@GECCO, 17/7/2018, Kyoto (Japan)

http://machinelearning.inginf.units.it

Table of Contents

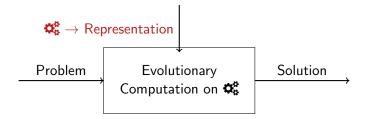


Individual representation



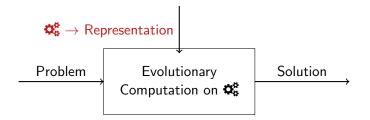
- Individual representation is a key component of every EA
- Humans (EC researchers) put effort in designing good representations

Individual representation



- Individual representation is a key component of every EA
- Humans (EC researchers) put effort in designing good representations
- Can they be designed automatically?

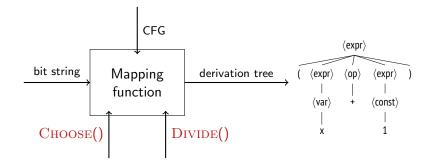
Individual representation



- Individual representation is a key component of every EA
- Humans (EC researchers) put effort in designing good representations
- Can they be designed automatically?

TL;DR: yes, with GP! and they are human-competitive!

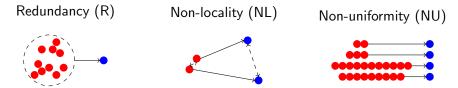
The representation of a representation



- Modular mapping function which always returns a derivation tree
- Search space of CHOOSE() and DIVIDE() defined by a CFG
- Can express existing representations: GE, HGE, WHGE

Fitness function

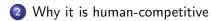
Goal: evolving a representation with good properties



• "Known" to be important: the lower, the better

• Three variants for reaching this goal: R, R+NL, R+NL+NU

Table of Contents



Experiments

- RQ1 Do the evolved representations exhibit better properties than the existing, human-designed ones?
- RQ2 Are the evolved representations also more effective when used inside an actual EA?

Experiments

- RQ1 Do the evolved representations exhibit better properties than the existing, human-designed ones?
- RQ2 Are the evolved representations also more effective when used inside an actual EA?

- Evolve many representations: fitness as the properties on a set of 3 on 4 problems (*learning*)
- Choose the most effective: best average final fitness when used in an EA applied to the 4 problems (validation)
- Assess chosen representation also on other 4 problems, not used in learning nor validation (*test*)
 - Comparison against human-designed baselines: GE, HGE, WHGE

RQ1: better in properties

		Learning	5	١	Validation			
	R	NL	NU	R	NL	NU		
R	0			0.242	0.719	0.311		
R+NL	0.03	0.495		0.225	0.606	0.451		
R+NL+NU	0.009	0.567	0.032	0.156	0.698	0.214		
GE				0.993	1	0.632		
GE_{opt}				0.911	0.561	2.036		
HGĖ				0.658	0.572	2.515		
WHGE				0.573	0.585	2.814		

 On average, lower redundancy and non-uniformity than human-designed!

RQ2: better in search effectiveness

Problem-wise and average percentile rank of the final fitness

	Keijzer6	KLand5	KLand7	MOPM-3	Nguyen7	Pagie1	Parity-3	Text	Avg.
R	0.077	0.111	0.045	0.066	0.179	0.085	0	0.022	0.075
R+NL	0.04	0.005	0.073	0.017	0.13	0.169	0	0.037	0.061
R+NL+NU	0.106	0.152	0.111	0.025	0.156	0.032	0	0.015	0.075
GE	0.441	0.997	0.997	0.294	0.705	0.637	0.987	0.123	0.647
GE_{opt}	0.07	0.89	0.895	0.015	0.099	0.194	0	0.037	0.282
HGĖ	0.095	0.147	0.031	0.09	0.29	0.31	0	0.006	0.131
WHGE	0.047	0.147	0.013	0.041	0.094	0.145	0.051	0.01	0.069

 Best evolved representation is better than all the human-designed ones!

Medvet, Bartoli (UniTs)

Table of Contents

3 Why our entry should win

Fundamental problem in EA design

We faced a fundamental, long-standing problem:

- "perhaps the most difficult and least understood area of EA design is that of adapting its internal representation."¹ (2007)
- "How should the representations that are used in evolutionary algorithms, on which variation and selection act, be chosen and justified?"² (2017)

¹De Jong, "Parameter setting in EAs: a 30 year perspective", 2007.

²Spector, "Introduction to the peer commentary special section on "On the Mapping of Genotype to Phenotype in

Evolutionary Algorithms" by Peter A. Whigham, Grant Dick, and James Maclaurin", Sept. 2017.

Fundamental problem in a broader sense

Our contribution broadens the scope of human-competitive:

- from "solving a specific problem"...
- ... to "designing the overall solution framework" (partially automating the modelling phase)

A challenging scenario as well

Grammatical Evolution:

- great practical interest: works on any CFG-based problem
- non-trivial indirect representation: attracted many studies for a long time
 - experimental studies on properties (R, NL, NU)
 - carefully designed representation variants: GE, $\pi \rm{GE}, \, \rm{HGE}/\rm{WHGE}$ (and SGE)

Thanks!