
LAYGEN II – Automatic Analog ICs Layout Generator 
based on a Template Approach

Ricardo Martins 

Instituto de Telecomunicações 
Instituto Superior Técnico 

IST–Torre Norte, AV. Rovisco Pais  
1049-001 Lisboa, Portugal 

ricmartins@lx.it.pt 

 

Nuno Lourenço  

Instituto de Telecomunicações 
Instituto Superior Técnico 

IST–Torre Norte, AV. Rovisco Pais  
1049-001 Lisboa, Portugal 

nlourenco@lx.it.pt 

 

Nuno Horta  

Instituto de Telecomunicações 
Instituto Superior Técnico 

IST–Torre Norte, AV. Rovisco Pais  
1049-001 Lisboa, Portugal 

nuno.horta@lx.it.pt 

ABSTRACT 

This paper describes an innovative analog IC layout generation 

tool, LAYGEN II, based on evolutionary computation techniques. 

The designer provides the high level layout guidelines through an 

abstract layout template. The template contains placement and 

routing constrains independently from technology, and can be 

used hierarchically in the definition of templates for complex 

circuits. LAYGEN II uses this expert knowledge to guide the 

evolutionary optimization kernels during the automatic layout 

generation in the target technology. The routing task of the 

proceeding can range from a template-based approach to a full 

automatic generation, if only connectivity is provided. The 

LAYGEN II tool is demonstrated for the layout generation of two 

typical analog circuit structures and the results validated by 

Calibre® design rule check tool.  

Categories and Subject Descriptors 

I.2.1 [Artificial Intelligence]: Applications and Expert Systems – 

industrial automation. 

General Terms 

Algorithms, Performance, Design, Reliability, Verification. 

Keywords 

Integrated Circuits, Evolutionary Computations, Electronic 

Design Automation, Computer Aided Design, Physical Design 

1. INTRODUCTION 
In the last few years, the world has observed the increasing 

complexity of integrated circuits (ICs), strongly triggered by the 

proliferation of consumer electronics. Thanks to the developments 

made in the last decades in the area of very large scale integration 

technologies, designers have the means to build multimillion 

transistor ICs, meeting the needs of an ever-increasing 

microelectronics market. The design of complex systems-on-a-

chip (SoCs) is emerging in telecommunications and multimedia 

applications, these systems merge on the same chip analog or 

mixed-signal blocks together with digital processors and memory 

blocks [10]. Moreover, it is known that most functions in today’s 

ICs are implemented using digital signal processing circuitry. 

Analog blocks only constitute a small fraction of the components 

on mixed-signal ICs and SoC designs, being, essentially, the link 

between digital circuitry and the continuous-valued external 

world, so are also integrated on the same die [9].  

However, the development time of analog blocks is much higher 

when compared to the development time of the digital blocks. 

Analog circuits are known for its difficult re-utilization, so 

designers have been replacing analog processing for digital 

computations, but there are some typical blocks in today’s ICs 

appointed as remaining analog forever. The two main reasons for 

the larger development cycle of analog blocks identified are the 

lack of effective computer-aided-design (CAD) tools for 

electronic design automation (EDA), since analog design is less 

systematic, more knowledge-intensive and more heuristic in 

nature than digital counterpart; and that analog circuits are being 

integrated using technologies optimized for digital circuits. For 

these reasons, given the rampant growth of analog and mixed-

signal (AMS) systems, the economic pressure for high-quality yet 

cheap electronic products and time-to-market constraints, there is 

an urgent need for CAD tools that increase the analog design 

productivity and improve the quality of resulting ICs [31]. 

The analog IC design requires designer knowledge and circuit 

design skills acquired through many years of experience, even at 

low-level, unlike the digital domain where EDA is well developed 

and establish an almost fully automated low-level design process. 

Today’s analog design is supported by circuit simulators, layout 

editing environments and verification tools, which maintain the 

design cycle for AMS ICs long and error-prone. These circuits 

suffer from diverse non-idealities and parasitic disturbances that, 

by not being weighted in the early stages of development, can be 

responsible for design errors and expensive re-design cycles, 

becoming the bottleneck of SoC and mixed-signal ICs design. 

Therefore, analog level of automation is far from the “push-

button” stage. 

This paper describes a methodology for automatic analog ICs 

layout generation, which is an evolution from the previous 

LAYGEN [23] approach. The template captures the designer 

knowledge independently of technology, through introduction of 

an abstraction level between technological details and guidelines. 

This design approach focus on improving design reusability and 

retargetability once the template is available. It introduces a new 

level of flexibility by supporting changes on device and modules 

specifications, and different levels of automation in the synthesis 

process. In addition, the designer may opt for some tasks of the 

proceeding which can range from a template-based approach to an 

automatic generation, allowing the tool to explore the design 

space. Design productivity is increased only if the target layout 

can be automatically generated in a process guided by the 

designer, and the result validated with a commercial tool, assuring 

the quality of the solution. 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA. 
Copyright 2012 ACM  978-1-4503-1177-9/12/07...$10.00. 
 

 



This paper is organized as follows: In section 2, a general 

overview on typical layout generation procedures is given. 

Afterwards, in section 3, the general architecture of LAYGEN II 

is described. In section 4, some case studies are presented. Finally, 

in section 5, the conclusions are addressed. 

2. PREVIOUS WORK 
Before presenting state of the art approaches in analog layout 

generation, a brief introduction on analog design flow is provided. 

2.1 Analog Design Flow 
Different analog design flows are available in literature, however 

the majority of the works developed in the last decade follow the 

design flow introduced by Gielen and Rutenbar [9]. This design 

flow for AMS ICs, illustrated in Figure 1, consists of a series of 

top-down design steps repeated from the system level to the 

device-level and bottom-up validation. The number of hierarchy 

levels depends on the complexity of the system being handled, 

and the steps between any two hierarchical levels are: 

 Top-down electrical synthesis path includes topology 

selection, specification translation (or circuit sizing at lowest 

level) and design verification; 

 Bottom-up physical synthesis path includes layout generation 

and detailed design verification (after extraction). 

Layout generation consists of generating the geometrical layers 

for a given technology of the circuit block under design at the 

lowest level in the design hierarchy, or place and routing the 

layouts of the sub-blocks at higher levels. The presence of a 

detailed verification step that acts over the extraction of the layout 

is required in order to ascend to higher hierarchy levels, only if 

the layout meets target requirements. When the top-most level 

verification is complete, the system is designed. LAYGEN II 

focuses on the layout generation of analog circuits, appointed as 

the critical part of the analog design flow [9][11]. Although it 

works as a standalone tool, it is being developed to be integrated 

in the bottom-up physical synthesis path of a design automation 

process. Namely, LAYGEN II receives an optimal sized circuit 

performed by an in-house automatic analog IC sizing tool, 

GENOM-POF [3, 5][24].  

2.2 State of the Art 
Having the devices for the selected topology sized, they must be 

laid out in the chip. A common approach is to split layout 

generation in two smaller problems, placement and routing. 

Placement refers to the assignment of the device locations in the 

chip, and routing to the interconnections between those 

devices.Each placement tool has its own strategy of representing 

the cells’ location. To reduce unwanted impact of process 

variations and improve the circuit performance, topological 

constraints like device matching, symmetry and proximity have to 

be considered into the placement task. Absolute approaches 

represent cells by means of absolute coordinates. Topological 

representations encode the positioning relations between any pair 

of cells. The optimizer does not move cells explicitly, instead, it 

alters the relative positions of cells by modifying the structure 

encoding the layout [11]. There are two classes of topological 

representations: slicing and non-slicing. Since not all the layout 

topologies have a slicing structure, the first representation can 

degrade the density of the placement solutions, which is 

aggravated because cells in analog circuits are usually very 

different in aspect ratio.Several non-slicing structures have been 

presented in the past. Sequence pair (SP) encodes the “left-right” 

and “up-down” positioning relations between cells [1], while the 

bounded-sliceline grid (BSG) [28] uses a meta-grid structure 

without physical dimensions, introducing orthogonal relations of 

“right-of” and “above”. The ordered tree [12]  extended the binary 

tree to the representation of non-slicing structures, and an efficient 

upgraded representation of binary trees (B*-tree) [7] is also 

available. More recently, the concept of Symmetry Island [20] 

was introduced, which keeps modules of the same symmetry 

group connected to each other. A transitive closure graph-based 

(TCG) [14] and similar approaches were proposed to combine the 

advantages of SP, BSG and B*-tree representations. 

Circuit 

Level

Level i

Verification

Extraction

Verification

Topology

Selection

Specification

Translation

Layout 

Generation

R
e

d
e

s
ig

n

Specification (level i+1) Layout (level i+1)

Specification (level i) Layout (level i)

System 

Level

Device

Level

More

Abstract

More

Concrete

Backtracking

Redesign

Validation

Backtracking

Level i+1

...

...

Top-Down Electrical 

Synthesis

Bottom-Up Physical 

Synthesis

Validation

Redesign

 
Figure 1. Hierarchical level and design tasks of analog design 

flow architecture. 

Over the years different placement tools have explored the 

advantages of several chip floorplan representations and new 

ways of treating layout constraints, these approaches had been 

integrated with more or less success in analog synthesis tools. A 

method of symmetric placement by linear programming can be 

found in [18], while an algorithm based on hierarchical module 

clustering was presented by Lin et al. [21]. A full deterministic 

approach can be found in Plantage [32], which is based on a 

hierarchically bounded enumeration of basic building blocks. In a 

different direction a thermal-driven analog placement solution 

was proposed [22]. 

The earliest approaches for analog layout generation, procedural 

module generation techniques coded the entire layout of circuit in 

a software tool, which would generate the target layout for the 

parameters attained during sizing. ALSYN [27] employs fast 

procedural algorithms that are controlled through a database 

structures and attributes. A high-functionality pCell library 

independent of technologies can be found in [16]. Due to the fast 

processing of basic cells, procedural-based layout generation was 

used during sizing task by Vancorenland et al. [34] and Ranjan et 

al. [29]. Castro-Lopez et al. [6] also uses parametric layout 

generators during automatic sizing, enabling the awareness of 

parasitic and geometric variables, such as area or aspect ratio. 

Although fast processing, these methods may lack of flexibility, 

since the cost for introducing a new design task is relative high 

and technology migrations may force complete cells redesign. 

A template-based generation is used by IPRAIL (Intellectual 

Property Reuse-based Analog IC Layout) [15] to automatically 

extract the knowledge embedded in an already made layout, and 

use it for retargeting. Layout retargeting is the process of 

generating a layout from an existing one, the main target is to 

conserve most of the design choices and knowledge of the source 

design, while migrating it another given technology, update 

specifications or attempt to optimize the old design [11]. In order 



to retain the knowledge of the designer, but without forcing an 

implicit definition of the layout, LAYGEN [23] uses a template to 

guide the layout generation. ALADIN [36] also allow designers to 

integrate their knowledge into the synthesis process, while in 

ALG [35] the designer can interact with the tool in different 

phases. Zhang et al. [37] developed a tool that that automatically 

conducts performance-constrained parasitic-aware retargeting and 

optimization of analog layouts. 

The fully automatic place-and-route layout generation approaches 

consist of synthesizing the layout solution using optimization 

techniques with a higher level of abstraction. In ILAC [30] a 

slicing structure representation is used to limit the search space. 

However, representing the cells by means of absolute coordinates 

proved to be the most practical solution to implement layout 

constraints, even though it allows for an infinitely large solution 

space. This is the approach found in KOAN/ANALGRAM II [8], 

LAYLA [19], Malavasi et al. [25] and ALDAC [17]. Recently, 

Habal et al. [13] ruled out the use of procedural generators during 

sizing task, investigating every possible layout for each device 

using Plantage [32] algorithm. These methods are usually slow 

and not always produce optimal solutions in terms of area and 

performance. 

Figure 2 establishes a chronological representation of the tools 

presented in this section, organized by the placement generation 

technique used.  

P
ro

c
e

d
u

ra
l

ILAC [30]

IPRAIL [15]

1990 1995 2000 2005 2010Years

T
e

m
p

la
te

A
u

to
m

a
ti

c

Ranjan [29]

ALDAC [17]

KOAN/ANAGRAM [8]

ALADIN [36]

LAYLA [19]

Castro-Lopez [6]

Zhang [37]

Malavasi [25]
Koda [18]

Lin [21]

ALG [35]

Habal [13]

Jingnan [16]

Vancorenland [34]

ALSYN [27]

Legend: 

Sizing Tool

Layout Tool

Placement Tool

Lin [22]

LAYGEN [23]

 
Figure 2. Chronological representation of analog layout design 

tools. 

3. ARCHITECTURE 
It is acknowledged that each designer/company has its own layout 

style but often this style is very regular. For a large number of 

applications, even with some specifications or technological 

changes, the design guidelines for most common cells are kept the 

same. For simple cells, parametric generators are a valid solution 

to implement these guidelines. However, though technological 

detail may also be included as parameters, these module 

generators are highly dependent of technology making them 

difficult to reuse. In addition, for complex cells the development 

of effective parametric generators has proven ineffective, either 

on design-time or design-reusability. 

In order to cope with these limitations, our approach stores these 

design regularities in a layout meta-description that is independent 

of technology. The template, together with LAYGEN II and a set 

module generators at device-level, provide the designer with a 

technological and specification independent way of defining some 

of the most commonly used cells. 

Figure 3 depicts principal tasks performed by LAYGEN II, with 

emphasis on the two optimization kernels used. The output 

provided is a GDSII stream format, a file standard in the 

microelectronics industry. The physical validation of the result is 

performed in Mentor Graphics’ Calibre® [26] Design Rule Check 

(DRC) tool, a main reference in the ICs design when the 

development is intended for fabrication. 

Design Rules
Module Generator

Technology
Design Kit

Template 
Selection 

LAYGEN II

Global Routing

Placement

Calibre DRC 
Validation

GDSII File

Instantiation of the 
modules, topological 
relations are extracted 
to a B-Tree

Minimum area 
placement solution

Design Rule Check 
clean routing solution

Template routing is 
adjusted, non-template 
wires are generated

Simulated-Annealing 
Optimization Kernel

Genetic-Algorithm 
Optimization Kernel

Instantiation

Detailed Routing

 

Figure 3. LAYGEN II Architecture. 

In the next sub-sections some detail will be provided for the 

principal tasks performed by LAYGEN II. 

3.1 Hierarchical High Level Cell Description 
As mentioned, to reduce unwanted impact of parasitic and process 

variations, many knowledge-intensive constraints have been 

considered in analog design. Device matching, symmetry and 

proximity, current density in interconnects and thermal effects are 

just some of the factors that analog designers have to consider 

while planning an analog layout project. While designer’s 

expertise is essential in this phase, this type of knowledge does 

not require being aware of the particular details of a given 

technology, e.g., minimum distances and enclosures allowed 

between layers. 

The designer expertise is caught into the technology independent 

template and used to guide the automatic layout generation. These 

guidelines will increase the layout quality, reducing the solution 

space and thus the computational efforts required to achieve the 

pretended solution.  

The template information used for placement is device sizes, 

expected relative placement of the devices, symmetry and 

matching requirements. Also, each device is attached with a set of 

different, but electrically equivalent, layout representations, 

henceforward addressed as modules. Templates can also be used 

as modules in a hierarchically manner, allowing the designer to 

use templates for simplier cells in the definition of more complex 

ones, splitting the complexity of the space search into different 

executions of the optimization kernels. 

For routing, the designer may define relative position and 

geometry of each net, ensuring that the pretended shape for a 

given wire is present in the final layout. If only connectivity is 

provided, henceforward addressed as non-template wires, the tool 

is free to explore different valid solutions. Each template may be 

defined for any range of non-template wires, being at the 

discretion of the designer the automation level of routing. 

Figure 4 presents a cascode current mirror and a possible template 

for his layout generation. A routing space is defined between each 



pair of transistors to avoid routing considerations during 

placement. Only wires shapes connecting transistor gates were 

defined by the designer, being the remainder automatically 

generated in a process detailed in following section 3.3. 

M3

M1

M4

M2

Iref I

        
 

Figure 4. (a) Cascode current mirror. (b) Template view. 

With this template description, designer has a way to control the 

process at a higher level, being the LAYGEN II responsible for 

dealing with the exact placement and routing, while attending the 

specific design rules to the target technology and the device sizes 

specific to the target application. The layout generation proceeds 

in the traditional way, first placement and then routing. 

3.2 Placer 
The topological relations present in the template are mapped to a 

non-slicing B-Tree layout representation, on which the O(n log n) 

packing algorithm presented in [2] is used to obtain a compact 

placement. The correspondence between an admissible placement 

and its B*-tree is one-to-one, so no redundancy. 

To decide the optimal combination of modules an evolutionary 

Simulated-Annealing-based (SA) [33] optimization kernel is used. 

The placer explores the alternative placements by selecting one of 

the alternative modules for each to device and packing the layout. 

Since this process is a macro cell placer without overlap, the 

optimizer objective is the minimization of the effective area 

occupied, restrained to the topological relations present in the 

template. If desired, designer can restrict the obtained placement 

to a certain aspect ratio, which can be useful for the sub-templates 

in a bottom-up hierarchical template description approach. 

When the final B*-tree packing is obtained, the modules are 

placed in the floorplan at the minimum distances allowed by 

target technology. 

3.3 Router 
The router uses the placement solution and the template’s 

information to produce the desired routing. The major challenge 

in the router is the design rules verifications; they make the 

routing algorithm extremely complex and computationally more 

expensive than the placement algorithm. 

Each net is divided into a set of wires, each one connecting two 

and only two contact points (pins). Each wire is formed by any 

number of linked line-segments. For its part, a line-segment refers 

to the connection of two different points in the solution space, 

whose values in the x axis or in the y axis are the same.  

The routing algorithm used is a two-step procedure. First global 

routing, which coincides with the generation of the initial 

population of the genetic optimizer, and then the optimization 

kernel attempts to improve the detailed routing quality. 

3.3.1 Global Routing 
First, the template routing is adjusted (re-scaled) to the newly 

created placement. This operation is required because the wires 

geometries were defined pre-placement, abstractly from the real 

pins locations in the target layout. The adjustment procedure 

encompass the following: the template wires are scaled, then, 

moved to set the wire start point on the new start-pin’s position, 

and finally, the wire end position is set to the new end-pin’s 

position to ensure connectivity. 

Moreover, the non-template wires are randomly generated through 

a set of heuristics; the possible geometries are presented in Figure 

5. It is important to notice that in heuristics (d)-(g), the line-

segments inside the wire structure, that is, those not connected to 

source pin neither sink pin, can take any position in the range of x 

axis or y axis allowed by the distance between terminal pins, 

sharply increasing the solution space. Since the only restriction is 

the effective pins location, the optimizer has to ensure 

connectivity and technology design rules validation, without 

preserving a designer’s desired shape. 

 

     

     

     

Figure 5. Different heuristics for generation of wires with (a) 

one, (b)(c) two, (d)(e) three and (f)(g) four line-segments. 

3.3.2 Genetic Optimizer 
Global routing is used as the start point for the evolutionary 

optimizer. Each element in the population, chromosome, encodes 

the information of a different routing solution, corresponding each 

gene to one single wire. So, each chromosome has a number of 

genes equal to the number of wires required to accomplish the 

routing. For its part, each gene has a variable size dependable on 

number of line-segments used to define a wire; still, every line-

segment has its own associated layer. 

In Figure 6 (a), an example layout for the cascade current mirror 

circuit of Figure 4 is presented, and also, two different 

representations of the chromosome for the current routing, Figure 

6 (b) and (c). For this abstract technology two different levels of 

conductor layers for routing, pin ‘X’ denote a channel (via) 

between different conductors, were considered. 

(a) 

(b) (c) 

(d) (e) 

(f) (g) 

(a) (b) 



  

 

 

 

 

 

 

 

 

 

 

 

y

xz
 

 

 
Figure 6. (a) Layout for the cascade current mirror. (b) 

Physical representation of the chromosome. (c) Abstract 

representation of the chromosome. 

For the provided example although only 8 wires are necessary, 

they represent the complexity of problem for optimization. For 

each different layer, one shape of a given wire can’t intersect 

another shape from a different wire, and still has to respect a 

minimum distance imposed by technology. Due to the countless 

interactions between shapes, layout solution is very restricted. 

This solution space grows rampantly not only with the number of 

wires necessary for a given routing, but also with number of 

possible different heuristics considered for their structure. 

The evaluation of routing at each generation is performed by 

powerful internal DRC functions, which verify if each geometry 

layer in the layout meets the technology designs rules. 

Verifications must be made not only between wires, but also 

considering device’s layers. This methodology follows a correct-

by-construction generation, this is, LAYGEN II has the methods 

required to predict if a layout will be successfully validated. 

The results of this internal DRC are the constraints of the 

optimizer. Namely, short circuits, when a wire crosses another 

different wire or device in the same layer; and minimum distances 

violations. Design rules of enclosure and extension between layers 

were previously considered in the module generator. The elements 

of population are ranked at each generation, benefiting those who 

present fewer errors. When those constraints are fulfilled, the 

optimizer minimizes a designer defined fitness function, that can 

incorporate different objectives like total wire length, minimum 

distance between nets to separate them as far as possible reducing 

crosstalk, number of conductor levels used, etc. 

While non-template wires cause a great diversity within the genes 

of a population, one template wire is basically a common gene to 

each chromosome of the population. This common gene although 

it may have different physical representations, it has the same 

number of line-segments and structure, subsisting this way 

through the genetic operators to the final layout.  

3.3.2.1 Crossover 
At each new generation, each pair of parents is selected by 

tournament to generate two offspring that present a combination 

of their wires. A multi-point crossover is used as presented in 

Figure 7. 

P1                         

P2                         
 

O1                         

O2                         

Figure 7. Example of crossover, parents and offspring. 

When a gene of both parents present the same number of line-

segments and structure, the crossover operator goes further than 

just select the wire of one parent to form the offspring, as for 

example marked in Figure 7, in the wire   . To increase the 

solution search, the offspring wire can be a combination of the 

two parents’ wires, as depicted in Figure 8. The parents’ 

contribution refers not only to wire shape, but also the 

combination of layers used. The same analogy can be established 

for wires with higher number of line-segments, always defining 

offspring solution space in the area equal and between the 

structures of equivalent line-segments of the parents.  

     

    

Figure 8. Crossover of two equivalent parents: (a) Parents. (b) 

Solution space for the offspring. (c) Possible offspring. 

3.3.2.2 Mutation 
A mutation ratio is applied to each of the chromosomes of the 

offspring population. There is a set of operators to be applied to 

the wires; those will introduce diversity for the further 

evaluations. The geometric operations applied are the following: 

 Slide one line-segment inside the wire structure (Figure 9 (a)); 

 Slide two line-segments inside the wire structure (Figure 9 (b)); 

 Remove one line-segment from the wire structure (as extreme 

sliding consequence); 

 Recover a line-segment previously removed from the wire; 

 Randomize wire shape (affects only non-template wires). 

    

    

Figure 9. Slide (a) one and (b) two line-segments operator. 

(a) 

(b) (c) 

(a) 
(b) 

(c) 

(a) 

(b) 



Since template wires have a pre-defined shape, the slide operators 

are essential to introduce some diversity. With these operators the 

lowest levels of conductor layers are used more effectively, which 

otherwise, most of the routing problems could easily be 

unfeasible. The layer shifting operations applied are: 

 Move one line-segment in the wire structure to the conductor 

layer immediately above; 

 Move one line-segment in the wire structure to the conductor 

layer immediately bellow; 

 Move one line-segment in the wire structure to a randomly 

selected layer. 

The presented operators were implemented in the evolutionary 

kernel and the results obtained are remitted to the next section. 

4. IMPLEMENTATION AND RESULTS 
The proposed design methodology has been coded in JAVA and is 

running, for the presented examples, on an Intel® Core™ 2 Quad 

CPU 2.4 GHz with 6 GB of RAM. The code automatically 

generates the GDSII file required by Calibre® DRC tool. Results 

are presented in LAYGEN II graphic user interface (GUI) for the 

two addressed examples. Layouts were generated for a 0.35µm 

CMOS design process and 4 different levels of conductor layers 

were used for routing. 

4.1 Two Stage Single Ended Amplifier 
The layout of Figure 12 was automatically generated for the 

amplifier of Figure 10, using the hierarchical template of Figure 

11 and the device sizes presented in Table 1, which were obtained 

by a prior sizing task.   

Table 1. Parameters attained during sizing task. 

Device 
Size 

Partition 
Width Length 

M0/M1/M5/M7/M10/M11 1,5 µm 10,0 µm 1 

M6/M8 20,0 µm  1,0 µm 1 

M2/M3 50,0 µm  0,75 µm 2 

M4 100,0 µm 0,75 µm 2 

M9 80,0 µm 0,75 µm 2 

C1/C2 40,0 µm  32,0 µm Top 

 

Vdd

M6 M8

Vin-Vin+

Gnd

Vout

M3

M7M5

M4

M9
C1a

C1b

M2

M1

M0

M10 M11

 
Figure 10. Circuit schematic. 

 
Figure 11. Hierarchical template description. (GUI) 

Results were generated for a population of 64 elements, 300 

generations and a mutation rate of 30%. Cell hierarchy was 

generated in 174 seconds, where routing optimization dominated 

more than 99% of the computational time, and the results were 

successfully validated by Calibre® DRC tool.  

 

Figure 12. Automatically generated layout. (GUI) 

In order to test the performance of the genetic evolutionary kernel, 

devoted to routing, all template wires from sub-partitions were 

moved to the top cell, increasing the complexity of the problem. 

In this case the placement was performed at sub-partitions. Next, 

the convergence of the algorithm, measured in terms of DRC 

violations, is tested using different optimization parameters. In 

Figure 13, although only 64 and 128 element populations have 

converged to zero DRC violations in the timeline of 300 

generations, the computation times are far higher when compared 

to small populations. It is legit to use small populations with 

higher generation periods, to obtain equally DRC clean solutions. 

For a template-based routing, higher mutation rates proved to 

disperse the offspring population as depicted in Figure 14. 

 
Figure 13. Evolution of DRC violations with the number of 

generations, with a 30% mutation ratio. 

 
Figure 14. Evolution of DRC violations with the number of 

generations, with 64 elements in population. 



4.2 Two Stage Cascode OTA 
The layout of Figure 16 was automatically generated for the 

operational transcondutance amplifier (OTA) of Figure 15, to 

exploit the potential of the automatic routing, since only 

connectivity was provided in the hierarchical template description. 

The above results were generated for a population of 64 elements, 

500 generations and a mutation ratio of 20%. The computational 

time for this problem was about 202 seconds. The generation of a 

full automatic routing is accomplished in reasonable 

computational times. Although, the automatic generation depends 

on the circuit complexity, this problem is here mitigated by using 

hierarchical and modular descriptions. 

Table 2. Parameters attained during sizing task. 

Device 
Size 

Partition 
Width Length 

M21/M22 60,0 µm  0,35 µm 1 

M3/M4 160,0 µm 0,9 µm 1 

M5A/M5B 20,0 µm  0,6 µm 1 

M11/M12 60,0 µm  4,0 µm 2 

M23/M24 54,0 µm  3,0 µm 2 

M3A/M4A 60,0 µm  0,45 µm 2 

M1/M2 120,0 µm  0,9 µm 3 

M1A/M2A 100,0 µm  0,35 µm 3 

C1/C2 50,65 µm 25,8 µm Top 
 

Vdd

Vin-Vin+

Gnd

Vout+

M11 M12

M1a M2a

M3a M4a

M3 M4M5

M1 M2

M21 M22

Cc
Cc

M23 M24

Vout-

 
Figure 15. Circuit schematic. 

 
Figure 16. (a) Hierarchical Template Description. (b) 

Automatically generated layout. (GUI) 

5. CONCLUSIONS 
The proposed methodology for the automatic generation of analog 

IC layouts was proved by the implementation of a tool, LAYGEN 

II, which is able to generate robust layout solutions validated by a 

commercial tool widely accepted by the industry, Calibre® DRC. 

The proposed approach is template-based allowing the designer to 

provide layout guidelines, which is used as a first cut solution 

allowing an intelligent pruning of the design space and, therefore, 

reducing the overall computational effort required by the 

evolutionary optimization kernel. Moreover, the use of a 

technology independent template easies the migration of designs 

to different IC technologies. The hierarchical and modular nature 

of the developed approach allows the generation of large circuits 

layout by scaling the problem into different sub-templates. 

Additionally, the introduction of automatic generation options 

during routing, allows the designer to explore different layout 

topologies without the effort of defining new templates. Finally, 

the tool was validated for a wide range of real IC design cases 

from which two were presented. 

6. ACKNOWLEDGMENTS 
This work was partially supported by the Fundação para a Ciência 

e Tecnologia (Grant FCT-DFRH-SFRH/BD/72698/2010) and by 

the Instituto de Telecomunicações (Research project AIDA - 

IT/LA/1112/2011). 

7. REFERENCES 
[1] Balasa, F., and Lampaert, K. 2000. Symmetry within the 

sequence-pair representation in the context of placement for 

analog design. IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems.19, 7 (Jul. 2000), 

721-731. 

[2] Balasa, F., Maruvada, S.C., and Krishnamoorthy, K. 2003. 

Using Red-Black Interval Trees in Device-Level Analog 

Placement with Symmetry Constraints. In Proceedings of the 

Asia and South Pacific Design Automation Conference (Jan. 

2003), 777-782. 

[3] Barros, M., Guilherme, J., and Horta, N. 2007. GA-SVM 

feasibility model and optimization kernel applied to analog 

IC design automation. In Proceedings of the 17th ACM Great 

Lakes symposium on VLSI (Mar. 2007), 469-472.  

[4] Barros, M., Guilherme, J., and Horta, N. 2010. Analog 

circuits optimization based on evolutionary computation 

techniques. Integration, the VLSI Journal. 43, 1 (Jan. 2010), 

136-155. 

[5] Barros, M., Guilherme, J., and Horta, N. 2010. Analog 

circuits and systems optimization based on evolutionary 

computation techniques. Studies in computational 

intelligence 294, Springer. 

[6] Castro-Lopez, R., Guerra, O., Roca, E., and Fernandez, F. 

2008. An integrated layout-synthesis approach for analog 

ICs. In IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems. 27, 7 (Jul. 2008), 1179–

1189. 

[7] Chang, Y. C., Chang, Y. W, Wu, G. M., and Wu, S. W. 

2000. B-trees: A new representation for nonslicing 

floorplans. In Proc. 37th ACM/IEEE Design Automation 

Conf. (2000), 458–463. 

[8] Cohn, J. M., Garrod, D. J., Rutenbar, R. A., and Carley, L. R. 

1991. KOAN/ANAGRAM II: New Tools for Device-Level 

(b) 

(a) 



Analog Placement and Routing. IEEE Journal of Solid-State 

Circuits.  26, 3 (Mar. 1991) 330 - 342. 

[9] Gielen, G. G. E., and Rutenbar, R. A. 2000. Computer-aided 

design of analog and mixed-signal integrated circuits. 

Proceedings of the IEEE. 88, 12 ( Dec. 2000), 1825-1852. 

[10] Gielen, G. G. E.  2005. CAD tools for embedded analogue 

circuits in mixed-signal integrated systems on chip. IEE 

Proceeding on Computers and Digital Techniques. 152, 3 

(May 2005), 317–332. 

[11] Graeb, H. E. 2010. Analog Layout Synthesis: A Survey of 

Topological Approaches. Springer. 

[12] Guo, P. N., Cheng, C.-K., and Yoshimura, T. 1999. An O-

tree representation of nonslicing floorplan and its 

applications. In Proc. 36th ACM/IEEE Design Automation 

Conf. (1999), 268–273. 

[13] Habal, H., and Graeb, H. 2011. Constraint-Based Layout-

Driven Sizing of Analog Circuits. IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems. 

30, 8 (Aug. 2011), 1089-1102. 

[14] Jai-Ming, L., and Yao-Wen, C. 2001. TCG: a transitive 

closure graph-based for non-slicing floorplans. In Proc. 38th 

ACM/IEEE Design Automation Conf. (2001), 764-769. 

[15] Jangkrajarng, N., Bhattacharya, S., Hartono, R., and Shi, C. 

2003. IPRAIL-Intellectual property reuse-based analog IC 

layout automation. Integration, VLSI Journal. 36, 4 (Nov. 

2003), 237–262. 

[16] Jingnan, X., Vital, J., and Horta, N. 2001. A SKILLTM - 

based Library for Retargetable Embedded Analog Cores. 

Proceedings Design, Automation and Test in Europe (Mar. 

2001), 768-769. 

[17] Khademsameni, P., and Syrzycki, M. 2002. A tool for 

automated analog CMOS layout module generation and 

placement. In IEEE Canadian Conference on Electrical and 

Computer Engineering. 1 (May 2002), 416 - 421. 

[18] Koda, S., Kodama, C., and Fujiyoshi, K. 2007. Linear 

programming-based cell placement with symmetry 

constraints for analog IC layout. IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems. 

26, 4 (Apr. 2007), 659–668. 

[19] Lampaert, K., Gielen, G., and Sansen, W. 1995. A 

performance-driven placement tool for analog integrated 

circuits. IEEE Journal of Solid-State Circuits. 30, 7 (Jul. 

1995), 773–780. 

[20] Lin, P. H., and Lin, S. C. 2007. Analog placement based on 

novel symmetry-island formulation. In Proc. 44th 

ACM/IEEE Design Automation Conf. (2007), 465–470. 

[21] Lin, P. H., and Lin, S. C. 2008. Analog placement based on 

hierarchical module clustering. In Proc. 45th ACM/IEEE 

Design Automation Conference (Jun. 2008), 50–55. 

[22] Lin, P. H., Zhang, H., Wong, M., and Chang, Y. W. 2009. 

Thermal-driven analog placement considering device 

matching. In Proc. 46th ACM/IEEE Design Automation 

Conf. (Jul. 2009), 593-598. 

[23] Lourenço, N., Vianello, M., Guilherme, J., and Horta, N. 

2006. LAYGEN - Automatic Layout Generation of Analog 

ICs from Hierarchical Template Descriptions. In Conference 

on Ph.D. Research in Microelectronics and Electronics. 

(Jun. 2006), 213-216. 

[24] Lourenço, N., and Horta, N. 2012. GENOM-POF: Multi-

Objective Evolutionary Synthesis of Analog ICs with 

Corners Validation. In Genetic and Evolutionary 

Computation Conference (Jul. 2012) Philadelphia, USA. 

[25] Malavasi, E., Charbon, E., Felt, E., and Sangiovanni-

Vincentelli, A. 1996. Automation of IC layout with analog 

constraints. IEEE Transactions on Computer-Aided Design 

of Integrated Circuits and Systems. 15, 8 (Aug. 1996), 923–

942.  

[26] Mentor Graphics, http://www.mentor.com/. 

[27] Meyer, V. 1993. ALSYN: Flexible rule-based layout 

synthesis for analog ICs. IEEE J. Solid-State Circuits. 28, 3 

(Mar. 1993), 261–268. 

[28] Nakatake, S., Fujiyoshi, K., Murata, H., and Kajitani, Y. 

1998. Module packing based on the BSG-structure and IC 

layout applications. IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems. 17, 6 (Jun. 1998), 

519–530.  

[29] Ranjan, M., Verhaegen, W., Agarwal, A., Sampath, H., 

Vemuri, R., and Gielen, G. 2004. Fast, layout inclusive 

analog circuit synthesis using pre-compiled parasitic-aware 

symbolic performance models. In Design Automation 

Conference and Test in Europe Conference. 1 (Feb. 2004), 

604–609. 

[30] Rijmenants, J., Litsios, J., Schwarz, T., and Degrauwe, M. 

1989. Ilac: An automated layout tool for analog cmos 

circuits. IEEE Journal of Solid-State Circuits. 24, 2 (Apr. 

1989), 417–425. 

[31] Rutenbar, R. A. (2010) Analog layout synthesis: What’s 

missing?. In Proceedings of the 19th international 

symposium on Physical design. (Jan. 2010), 43. 

[32] Strasser, M., Eick, M., Gräb, H., Schlichtmann, U., and 

Johannes, F. M. 2008. Deterministic analog circuit placement 

using hierarchically bounded enumeration and enhanced 

shape functions. In IEEE/ACM International Conference on 

Computer-Aided Design (Nov. 2008), 306-313. 

[33] Suman, B., and Kumar, P. 2006. A survey of simulated 

annealing as a tool for single and multiobjective 

optimization. Journal of the Operational Research Society. 

57 (2006), 1143-60.  

[34] Vancorenland, P., der Plas, G. V., Steyaert, M., Gielen, G., 

and Sansen, W. 2001. A layout-aware synthesis methodology 

for RF circuits. In IEEE/ACM International Conference on 

Computer-Aided Design (Nov. 2001), 358 – 362. 

[35] Yilmaz, E., and Dundar, G. 2009. Analog Layout Generator 

for CMOS Circuits. IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems. 28, 1 (Jan. 2009), 

32–45. 

[36] Zhang, L., Kleine, U., and Jiang, Y. 2006. An Automated 

Design Tool for Analog Layouts. IEEE Transactions on Very 

Large Scale Integration (VLSI) Systems. 14, 8 (Aug. 2006), 

881–894. 

[37] Zhang, L., and Liu, Z. 2010. A Performance-Constrained 

Template-Based Layout Retargeting Algorithm for Analog 

Integrated Circuits. In Proc. 47th ACM/IEEE Design 

Automation Conference (Jan. 2010), 293 - 298.  

 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=2192
http://www.mentor.com/

