
Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

J. Parallel Distrib. Comput. () –

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

GPU based parallel genetic algorithm for solving an energy efficient
dynamic flexible flow shop scheduling problem
Jia Luo a,⇤, Shigeru Fujimura b, Didier El Baz a, Bastien Plazolles c

a LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
b Graduate School of Information, Production, and Systems, Waseda University, Kitakyushu, Japan
c Géosciences Environnement Toulouse (CNRS UMR5563), Université de Toulouse, Toulouse, France

h i g h l i g h t s

• An energy efficient dynamic flexible flow shop scheduling (EDFFS) model is studied.
• A parallel Genetic Algorithm (GA) with a predictive reactive complete rescheduling approach is developed.
• The parallel GA is highly consistent with the hierarchy of threads and memory of CUDA.
• The parallel GA obtains competitive results and reduces time requirements dramatically.
• The proposed method is flexible to solve the EDFFS problem and overcomes the traditional static approach.

a r t i c l e i n f o

Article history:
Received 29 September 2017
Received in revised form 29 June 2018
Accepted 30 July 2018
Available online xxxx

Keywords:
Flexible flow shop
Energy efficiency
Dynamic scheduling
Hybrid parallel genetic algorithm
GPU Computing

a b s t r a c t

Due to new government legislation, customers’ environmental concerns and continuously rising cost
of energy, energy efficiency is becoming an essential parameter of industrial manufacturing processes
in recent years. Most efforts considering energy issues in scheduling problems have focused on static
scheduling. But in fact, scheduling problems are dynamic in the real world with uncertain new arrival
jobs after the execution time. This paper proposes an energy efficient dynamic flexible flow shop
scheduling model using the peak power value with consideration of new arrival jobs. As the problem is
strongly NP-hard, a priority based hybrid parallel Genetic Algorithm with a predictive reactive complete
rescheduling strategy is developed. In order to achieve a speedup to meet the short response in the
dynamic environment, the proposed method is designed to be highly consistent with the NVIDIA CUDA
software model. Finally, numerical experiments are conducted and show that our approach can not only
solve the problem flexibly, but also gain competitive results and reduce time requirements dramatically.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

About one half of the world’s total energy is currently con-
sumed by the industrial sector [10] and its energy consumption
has nearly doubled over the last 60 years [11]. Thus energy ef-
ficiency is becoming an essential parameter of industrial manu-
facturing processes, mostly due to new government legislation,
customers’ environmental concerns and continuously rising cost
of energy. Because of a growing economical competitive landscape
and higher environmental norms, it is now vital for manufacturing

⇤ Corresponding author.
E-mail address: jluo@laas.fr (J. Luo).

companies to reduce their energy consumption and to become
more environment-friendly.

The adjustment of scheduling strategies only requires modest
time and cost investment, comparedwith the redesignmethods for
machines or processes [12]. Therefore, a lot of traditional schedul-
ing strategies considering minimizing the total energy consump-
tion have been studied [22,26,27]. Meanwhile, some efforts have
been made on taking the peak power into account, because elec-
tricity consumption and operating costs of manufacturing plants
are usually charged based on the peak power demand from elec-
tricity providers [39]. Most of the researches only concentrate on
establishing a mathematical model for solving this optimization
problem in a static environment. But in fact, scheduling problems
are dynamic in the real world with uncertain new arrival jobs after

https://doi.org/10.1016/j.jpdc.2018.07.022
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.07.022
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:jluo@laas.fr
https://doi.org/10.1016/j.jpdc.2018.07.022

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

2 J. Luo et al. / J. Parallel Distrib. Comput. () –

the start time. Few works [36,42] have taken reactive approaches
into consideration for supporting energy efficient dynamic sys-
tems. However, they care only about the improvement of algo-
rithms to gain better quality solutions, while ignoring the time
consumption to implement such approaches. Without a doubt,
a method proposing an adequate rescheduling plan in a short
response time is greatly desired in this case.

In the last decade, Graphics ProcessingUnits (GPUs) have gained
widespread popularity as computing accelerators for High Per-
formance Computing (HPC) applications [2]. Researches on GPU-
based approaches for solving scheduling problems [4,8,25,31] have
won favor in recent years with the development of Compute
Unified Device Architecture (CUDA) in 2006 [16]. Despite all those
advances, a complex problem such as energy efficient dynamic
flexible flow shop scheduling has not been considered as far our
knowledge is concerned. Additionally, many parallel Genetic Al-
gorithm (GA) implementations for solving optimization problems
have shown their success [21,33,37] as seen in the literature.
Therefore, the GPU based parallel GA for solving an energy efficient
dynamic flexible flow shop scheduling problem remains an open
research challenge based on the previous works, and the one that
we seek to address in this paper.

The total tardiness and themakespanwith a peak power limita-
tion are analyzed in this paper while considering the flexible flow
shop in a dynamic environment. A predictive reactive complete
rescheduling approach is adopted to represent the optimization
problem. Furthermore, due to the fact that an adequate renewed
scheduling plan needs to be obtained in a short response time
in the dynamic environment, a priority based hybrid parallel GA
on GPUs is implemented. The efficiency and the effectiveness of
the proposed approach are validated through computational tests.
Specially, the contributions of our work are summarized as fol-
lowed:

1. We propose an energy efficient dynamic flexible flow shop
scheduling (EDFFS) model using the peak power value with
consideration of new arrival jobs.

2. A priority based hybrid parallel GA mapping to the NVIDIA
CUDA software model is developed with a predictive reac-
tive complete rescheduling approach.

3. Computational tests show that our method can not only
solve the EDFFS problem flexibly, but also gain competitive
results and reduce time requirements dramatically.

The remaining sections of this paper are organized as follows.
Section 2 introduces related works. Section 3 describes the re-
search problem and the mathematical model. Section 4 presents
the priority based hybrid parallel GA for solving the energy ef-
ficient dynamic flexible flow shop scheduling problem. Section
5 illustrates numerical experiments and results analysis. Finally,
Section 6 states conclusions.

2. Related works

Recently, there has been a growing interest in reducing energy
consumption in manufacturing processes. Several works tried to
limit the peak power in parallel multi-machine contexts. Fang
et al. [12] presented a multi-objectives mixed-integer program-
ming model of the flow shop scheduling problem that considered
the peak power load, the energy consumption, and the associated
carbon footprint in addition to the cycle time. Bruzzone et al. [3]
proposed the integration of an energy aware scheduling mod-
ule with an advanced planning and scheduling system in order
to control the peak consumption, while accepting a possible in-
crease in the total tardiness. Xu et al. built two mixed-integer

programming models in [39] to achieve a global optimal solu-
tion between the peak power and the traditional production effi-
ciency without compromise on computing efficiency. As delaying
production activities may not be acceptable in manufacturing,
minimizing the total energy consumption within the traditional
scheduling problem is an alternative solution. Liu et al. [22] devel-
oped a model for the bi-objectives problem that minimized the to-
tal electricity consumption and the totalweighted tardiness,where
a non-dominant sorting genetic algorithm is used to obtain the
Pareto front. Similarly, an emission-awaremulti-machine job shop
scheduling model was addressed in [40] and was solved through a
modifiedmulti-objectives genetic algorithm. Dai et al. [9] reported
an energy efficient model for the flexible flow shop scheduling
problem and utilized a genetic-simulated annealing algorithm to
make a significant tradeoff between makespan and total energy
consumption. To sumup, numerousworks have focused on various
energy efficient shop scheduling problems in a static perspective.
But, due to frequently inevitable new arrival jobs in the production
environment, a fixed preset scheduling plan could not meet the
requirement.

Dynamic scheduling problems are more complex than static
scheduling problems. A lot of methods have been taken to solve
this kind of problems [28]. Most of them only considered the
efficiency of the traditional scheduling problem without including
energy efficient demand. Tang et al. [36] adopted a predictive
reactive approach with an improved particle swarm optimization
to search for the Pareto optimal solution of dynamic flexible flow
shop scheduling problems that minimized the energy consump-
tion and the makespan. Pach et al. [29] set up a potential fields
based reactive scheduling approach for flexiblemanufacturing sys-
tems in which resources were able to switch to the standby mode
to avoid useless energy consumption and to emit fields to attract
products. Zhang et al. studied the dynamic rescheduling in flexible
manufacturing systems considering the energy consumption and
the schedule efficiency in [42] with a new goal programming
math model, a rescheduling method based genetic algorithm and
a period policy. In a word, some efforts to solve energy efficient
dynamic scheduling problems have been carried out. However,
limitations still remain and must be tackled. A typical one is to
obtain the renewed adequate scheduling plan in a reasonable re-
sponse time, particularly for large-scale manufacturing problems.

In recent years, various algorithms, like the branch and bound,
the genetic algorithm, the Tabu search, using GPUs have been
successfully applied to generate optimized results for scheduling
problems with impressive time decrease. Melab et al. [25] indi-
cated a parallel branch and bound algorithm based on a GPU-
accelerated bounding model on flow shop scheduling benchmarks
to improve the performance by optimizing data access manage-
ment. Czapinski et al. [7] implemented a Tabu search method
with GPUs for the solutions of permutation flow shop scheduling
problems, which is 89 times faster than the CPU version. Zajicek
et al. [41] studied a parallel island-based genetic algorithm for
solving the flow shop scheduling problem by carrying out all com-
putations on GPUs in order to reduce data communication costs.
Pinel et al. [31] presented GPU implementations on the Min–Min
heuristic and the GraphCell, an advanced parallel cellular genetic
algorithm, for solving very large instances of the scheduling of
independent tasks problem. An improved genetic algorithm and
its implementation on GPUs to search for the optimal solution to
flow shop scheduling problems with fuzzy processing times and
fuzzy due dateswere discussed in [19]. These cases have confirmed
that the parallel GAs on GPUs have good performance in solving
scheduling problems. However, it is also revealed that few studies
have been conducted to integrate GPUs computing in dynamic
energy efficient scheduling problems, because of the complexity
that is caused.

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

J. Luo et al. / J. Parallel Distrib. Comput. () – 3

Fig. 1. A flexible flow shop layout.

Although many research works on scheduling problems have
been studied in GPUs literature, none of them have so far, and to
the best of our knowledge, considered the energy saving strategies
and the dynamic environment completely. The above-mentioned
efforts provide a starting point for exploring the GPU based hybrid
parallel GA for solving an energy efficient dynamic flexible flow
shop scheduling problem with competitive results and dramatical
time reduction.

3. Problem statement

3.1. EDFFS problem description

The flexible flow shop scheduling problem (FFS) is a multistage
production process that consists of two or more stages in series as
illustrated in Fig. 1. There is at least onemachine in each stage, and
at least one stage has more than one machine. All jobs need to go
through all stages in the same order before they are completed.
On each stage, one machine is selected for processing a given
operation.

An energy efficient dynamic flexible flow shop scheduling
(EDFFS) is a further development of the FFS. A set of new jobs may
arrive after the start of the original plan. They should be processed
sequentially and non-preemptively from the beginning of the
rescheduling point with the remaining uncompleted operations of
original jobs. One instance of the EDFFS problem consists of a set
J of jobs, a set S of stages and a set Ms of machines at each stage.
Each job j 2 J on machine m 2 Ms has its corresponding processing
time and power consumption. Furthermore, there is a power’s
peak limitation when the system operates. As an FFS problem is
considered to be NP-hard in essence and difficult to solve [13], the
EDFFS problem is a NP-hard combinatorial optimization problem
and more complex than the FFS problem. Additionally, required
conditions for the EDFFS are shown in Table 1.

3.2. Mathematical model of the EDFFS

For an easy presentation, we summarize the notations used
along the rest of the paper in Table 2.

To achieve the power’s peak limitation and to minimize the
traditional makespan and the total tardiness objectives, the formal
mathematical model for the EDFFS is an extension of the math-
ematical models presented in [3,39] to cover rescheduling. The
formulation is given in the following.

Objective function:

min: WT ⇤
X

j2J[J0
Tj + Cmax (1)

Constraints:

Tj = max(Sj(g�1) + Pj(g�1)Mj(g�1) � Dj, 0) j 2 J [J0 (2)

Cmax = max
j

(Sj(g�1) + Pj(g�1)Mj(g�1)) j 2 J [J0 (3)

Sj0 � Rj j 2 J [J0 (4)

Sjs � Sj(s�1) + Pj(s�1)Mj(s�1) j 2 J [J0, s 2 S, s > 0 (5)
Sjs + PjsMjs Sis j 2 J [J0, i 2 J [J0, s 2 S, j 6= i,

Mjs = Mis, Sjs Sis (6)

Qmax � Qt t 2 T (7)

Qt =
X

j2J[J0

X

s2S
QjsMjs ⇤ ujst t 2 T (8)

ujst =
⇢
1 j 2 J [J0, s 2 S, Sjs t < Sjs + PjsMjs

0 otherwise
(9)

RS Sjs j 2 J [J0, s 2 S (10)

The decision variables in this mathematical model are Mjs and
Sjs. As two scheduling objectives are considered, it is formulated
as a single additive objective function (1) by aggregating the total
tardiness and the makespan with the weight WT. As tardy jobs
typically cause penalty costs [30] and have a great influence on
customers’ satisfaction, the weightWT indicates the priority of the
first objective. Constraints (2) and (3) define the tardiness of jobs
and the makespan separately. The precedence among operations
due to the jobs’ processing cycles is presented by constraints (4)
and (5), while constraint (6) establishes the precedence caused
by the sequencing on machines. In addition, constraint (7) intro-
duces the power’s peak by an upper bound whereas the power
consumption during a certain period is expressed by constraint (8).
Constraint (9) gives the definition of a Boolean variable ujst. It is
equal to 1 if job j at stage s is being processed at time period t.
Finally, constraint (10) imposes the definition of rescheduling.

4. Solving approach

4.1. Predictive reactive complete rescheduling strategy

The predictive reactive method is the most common dynamic
scheduling approach used in manufacturing systems [28]. To solve
the EDFFS, operations are assigned to machines in order, follow-
ing the original schedule until the reschedule point. New arrival
jobs and uncompleted operations of original jobs are processed
in terms of the updated schedule executed by the optimization
algorithm within a short response. An hybrid parallel GA on GPUs
is proposed for solving the problem with a complete rescheduling
strategy which is better in maintaining optimal solutions, but is
rarely achievable in practice due to the prohibitive computation
time [28]. Fig. 2 summarizes the flow of the predictive reactive
complete rescheduling process.

4.2. Hybrid parallel GA model

The Genetic Algorithm (GA) is a stochastic search algorithm
based on the principle of natural selection and recombination [15].
However, there is an increase in the required time to find ade-
quate solutions when GAs are applied to more complex and larger
problems. Parallel implementation is considered as one of themost
promising choices tomake it faster. The CUDA framework is chosen
to parallelize the GA onGPUs in this paper. It is a Single Instruction,
Multiple Threads (SIMT) parallel programmingmodel. The parallel
threads are grouped into blocks which are organized in a grid [32]
as shown in Fig. 3 using the local memory, the sharedmemory and
the global memory respectively.

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

4 J. Luo et al. / J. Parallel Distrib. Comput. () –

Table 1

Additional required conditions for the EDFFS.
Number Description
1 Each operation of a job must be processed by one and only one machine.
2 Each machine can process no more than one operation at a time.
3 There is no precedence between operations of different jobs, but there is precedence among

operations due to the jobs’ processing cycles.
4 Preemptive operations are not allowed.
5 Each job is available for processing after the release time.
6 Machines may suffer new arrival jobs at any time after the rescheduling point.
7 Processing times and average power consumption for any operation of all jobs on any machine are

known.
8 Setup times for job processing and machine assignment times between stages are not taken into

consideration.
9 There is infinite intermediate storage between machines.

Table 2

A description of notations used in all formulae.
Notation Description
j, i, i0 Job indices
s, s0, s00 Stage indices
m Machine index
t Time period index
n Number of original jobs
n0 Number of new arrival jobs
r Number of original operations assigned to machines before the

rescheduling point
g Number of stages
o Number of machines at the stage s. Each stage has the same

amount of machines
H Time horizon
J Set of original jobs, J = {0, 1, 2, . . . , n � 1}
J0 Set of new arrival jobs, J0 = {0, 1, 2, . . . , n0 � 1}
S Set of stages, S = {0, 1, 2, . . . , g � 1}
Ms Set of machines at the stage s, s 2 S,Ms = {0, 1, 2, . . . , o � 1}
T Set of time periods, T = {1, 2, 3, . . . ,H}
RS Rescheduling point
Rj Release time of job j, j 2 J [J0

Dj Due time of job j, j 2 J [J0

Pjsm Processing time when job j at stage s is to be processed on
machine m, j 2 J [J0, s 2 S,m 2 Ms

Qjsm Average power consumption when job j at stage s is to be
processed on machine m, j 2 J [J0, s 2 S,m 2 Ms

Qmax Power’s peak
WT Weight for the total tardiness in the objective function

ujst Boolean variable, j 2 J [J0 , s 2 S, t 2 T
Sjs Start time of job j at stage s, j 2 J [J0, s 2 S
Mjs Target machine handling job j at stage s, j 2 J [J0, s 2 S
Qt Total power consumption at time period t, t 2 T
Tj Total tardiness, j 2 J [J0

Cmax Completion time of the last job, i.e., the makespan
k Current generation number of the GA
X(k) Target machine matrix at generation k
Y(k) Priority matrix at generation k
Z(k) Order matrix at generation k
C A very large constant, C 2 R+

There are different ways of exploiting parallelism in GAs:
master–slave models, fine-grained models, island models, and hy-
brid models [6]. Fine-grained models can perform well due to the
larger genetic diversity obtained by dividing the population into a
number of subpopulations [20]. Islandmodels are themost famous

for the research on parallel GAs. Populations on islands are free to
converge toward different sub-optima with a faster improvement
of the average fitness [6] and a migration operator can help mix
good features that emerge from different local islands. To obtain
a good speedup from the CUDA framework and to combine the

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

J. Luo et al. / J. Parallel Distrib. Comput. () – 5

Fig. 2. The flow of predictive reactive complete rescheduling process for the EDFFS.

Table 3

The correspondence between the hybrid parallel GA components and the hierarchy
of CUDA threads.
Hybrid GA components CUDA underlying architecture
Individual Thread
Island Block
Population Grid

advantages of fine-grainedmodels and islandmodels, we establish
the hybrid model presented in Fig. 4 with a fine-grained GA at the
lower level and an island GA at the upper level. A correspondence
between the hybrid parallel GA components and the hierarchy of
CUDA threads is displayed in Table 3. It turns out that the proposed
GA is highly consistent with the hierarchy of CUDA threads and
could utilize different types of memory effectively.

At the lower level, each CUDA thread processes one GA individ-
ual. Because of the 2D grid, GA individuals can get connected com-
pletely with this topology. A tournament based selection is exe-
cuted with the cooperation of global memory and texture memory

Fig. 4. The structure of hybrid parallel GA.

as the texturememory has a fast response to read information from
neighbors. The crossover, the mutation and the fitness function
calculation are generated using the global memory. On the other
hand, one block on the CUDA framework represents one island
in the GA at the upper level. An elitism based replacement after
every generation inside the island and a migration among islands
every 10 generations are carried. The shared memory is chosen to
complete these work primarily while the overwriting is processed
via the global memory synchronously. The procedure of the hybrid
parallel GA with memory management is expressed in Fig. 5. More
details are discussed in Section 4.4.

4.3. Priority based encoding representation

According to the problem description in Section 3, a target
machinematrix X(k), stored on the GPU global memorywith n+n0

Fig. 3. The hierarchy of threads and different types of memory of CUDA framework.

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

6 J. Luo et al. / J. Parallel Distrib. Comput. () –

rows and g columns, is presented in (11).

X(k) =

2

664

x00(k) x01(k) · · · x0(g�1)(k)
x10(k) x11(k) · · · x1(g�1)(k)

...
... xjs(k)

...
x(n+n0�1)0(k) x(n+n0�1)1(k) · · · x(n+n0�1)(g�1)(k)

3

775

(11)

where xjs (k) 2 [0, o � 1] [{�1}, j 2 J [J0, s 2 S.
Moreover, (12) shows a (n + n0)⇥g matrix placed on the GPU

global memory that expresses the priority relation among opera-
tions.

Y(k) =

2

664

y00(k) y01(k) · · · y0(g�1)(k)
y10(k) y11(k) · · · y1(g�1)(k)

...
... yjs(k)

...
y(n+n0�1)0(k) y(n+n0�1)1(k) · · · y(n+n0�1)(g�1)(k)

3

775

(12)

where yjs (k) 2 [1, g ⇥ (n + n0) � r] [{�1}, j 2 J [J0, s 2 S.
Each element ofmatrix X(k) indicates themachine number that

deals with job j at stage s at generation k while each element of
matrix Y(k) is used to sequence operations assigned to machines.
The values for the EDFFS are defined as:

• if job j at stage s is started or completed before the start time
of the rescheduling point, both element xjs(k) and element
yjs(k) are equal to �1. This includes:

Case 1: job j at stage s of the original job is accomplished.
Case 2: job j at stage s of the original job is being executed.

• if job j at stage s is assigned to a machine after the start time
of the rescheduling point, element xjs(k) is equal to a random
integer representing the target machine handling job j at
stage s. Similarly, elements yjs(k) is also generated randomly
from the range starting from 1 to the amount of unassigned
operations. Moreover the value of element yjs(k) is unique,
where the larger the value of the random integer represents
the higher priority. This includes:

Case 1: job j at stage s of the original job remains to be
processed.
Case 2: job j at stage s of the new arrival job must be pro-
cessed.

In this representation, each chromosomeof the parallel GA consists
of one targetmachinematrix and one prioritymatrix, representing
a feasible schedule. In the decoding step, elements of a matrix
Z(k) (13) generated from the matrix X(k) and the matrix Y(k) are
designed to address the assignment order of uncompleted opera-
tions. Element zjs(k) is equal to 0 if job j at stage s of the original
job is being executed at the start time of the rescheduling point,
while element zjs(k) is equal to C if the operation is accomplished
before it. The procedure to determine elements’ value of matrix
Z(k) is displayed in Algorithm1 and all these values are reserved on
the GPU global memory. When the power’s peak is met, the later
assigned operation needs to be delayed as shown by the decoding
rule in Algorithm 2.

Z(k) =

2

664

z00(k) z01(k) · · · z0(g�1)(k)
z10(k) z11(k) · · · z1(g�1)(k)

...
... zjs(k)

...
z(n+n0�1)0(k) z(n+n0�1)1(k) · · · z(n+n0�1)(g�1)(k)

3

775

(13)

where zjs (k) 2 [1, g ⇥ (n + n0) � r] [{0, C}, j 2 J [J0, s 2 S .

An example of EDFFS is presented in Table 4. There are 6 original
jobs. Each job consists of 3 stages and there are two machines at
each stage. Jobs are available to be assigned to machines after the
release time (Rj). Each operation is processed on the targetmachine
(Mjs) after the start time (Sjs). To make it simple, the processing
time is set as 1, 2 and 3 for the three stages respectively. The
average power consumption Qjsm is defined as 1 for any operation
on any machine while the value of the power’s peak Qmax is equal
to 3. Finally, we assign a priority to the total tardiness over the
makespan in the objective function by setting theWT as 100. Fig. 6
shows the Gantt chart of this scheduling. Regarding new arrival
jobs, job 6 and job 7 need to be considered after starting the plan.
In the traditional static environment, they could only be scheduled
after completing operations of the original schedule at each stage
as illustrated in Fig. 7. However, the predictive reactive complete
rescheduling approach in a dynamic environment reschedules new
arrival jobs at the beginning of the rescheduling point (RS = 7)
with remaining operations of original jobs simultaneously as in
Fig. 8.

The following matrices show the EDFFS decoding result for
the example. Each row of these matrices represents a job and

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

J. Luo et al. / J. Parallel Distrib. Comput. () – 7

Fig. 5. The procedure of parallel hybrid GA with memory management.

Table 4

An example of the EDFFS.
Original jobs New arrival jobs
job 0 job 1 job 2 job 3 job 4 job 5 job 6 job 7

Rj 0.80 1.42 3.54 3.77 4.91 2.45 7.77 7.49
Mj0, Mj1, Mj2 1, 1, 0 0, 0, 1 0, 1, 1 0, 1, 0 1, 1, 1 0, 0, 0

Sj0, Sj1, Sj2 0.80, 1.80,3.80 1.42, 2.42, 4.42 6.80, 9.91, 11.91 3.77, 7.91, 12.42 4.91, 5.91,7.91 2.45, 7.42, 9.42

each column represents a stage. A chromosome consists of the
target machine matrix X(k) and the priority matrix Y(k) generated
randomly to obtain the order matrix Z(k).

X(k) =

2

666666664

�1 �1 �1
�1 �1 �1
�1 1 0
�1 1 1
�1 �1 0
�1 0 0
1 1 1
0 0 0

3

777777775

, Y (k) =

2

666666664

�1 �1 �1
�1 �1 �1
�1 4 2
�1 10 8
�1 �1 12
�1 9 3
6 13 11
1 5 7

3

777777775

! Z(k) =

2

666666664

C C C
C C 0
0 8 10
C 2 4
C 0 1
C 3 9
5 6 7
11 12 13

3

777777775

Following the description, the later assigned operation needs
to be delayed when the power’s peak is met. For instance, job 7 at
stage 0 was supposed to be processed after the completion of job 2
at stage 0 onmachine 0 as in Fig. 8. Moreover, at the samemoment
machine 2, 3 and 4 are busy with job 5 at stage 1, job 3 at stage 1
and job 4 at stage 2 respectively. But due to the power limitation,
this scenario is not possible. As z70(k) is equal to 11, z51(k) to 3,
z31(k) to 2, z42(k) to 1, job 7 at stage 0 is the newest allocated one
among all of them. Thus, it is delayed until the completion of job 5
at stage 2 on machine 4.

4.4. Priority based GA operations on GPUs

• The fitness function: The hybrid parallel GA assesses the solu-
tions based on the fitness function. In general, it is generated
by the objective function to evaluate the solution domain.
Sincemost shop scheduling problems areminimization prob-
lems [38] and the EDFFS is not an exception, the above-
mentioned objective function Eq. (1) is transformed into the
fitness function as

Fitness function = max(Emax�(WT⇤
X

j2J[J0
Tj+Cmax), 0), (14)

where Emax is the estimated maximum value of the objective
function.

• The selection operation: On the basis of the value of fitness
function, the larger fitness an individual has, the higher the
chance it has to be chosen in the next generation. Because the
2D grid is adopted as the spatial population structure where
each grid point contains one individual, the local asteroid
selection is taken to make the selection operation. Moreover,
since GPU texture caches are designed to gain an increase in
performance accelerating access patterns with a great deal
of spatial locality [34], we define the neighborhood on the
grid always contains 5 individuals: the considered one and
neighboring individuals as displayed in Fig. 9. Among these
individuals, the neighbors’ information are stored on the
texture memory and a tournament selection is implemented
via the global memory. Finally, the individual with the largest
fitness value is thewinner of each tournament and is selected
to replace the considered individual.

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

8 J. Luo et al. / J. Parallel Distrib. Comput. () –

Fig. 6. The original schedule of an optimized solution.

Fig. 7. The updated schedule of an optimized solution in a static environment (
P

j2J[J0 Tj = 1.64, Cmax = 19.91, Value of the Objective Function = 183.91).

Fig. 8. The updated schedule of an optimized solution obtained by the proposed approach in a dynamic environment (
P

j2J[J0 Tj = 0.96, Cmax = 20.42, Value of the
Objective Function = 116.42).

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

J. Luo et al. / J. Parallel Distrib. Comput. () – 9

Fig. 9. The local asteroid selection.

Fig. 10. The neighboring paired crossover.

• The crossover operation: We pair individuals with neighbors
(See Fig. 10.) rather than selecting two from the population
randomly. This strategy does not require global information
sharing and is appreciated to work on the 2D grid architec-
ture.Meanwhile, a risk that converges to the localminima can
be eliminated by its cooperationwith the local asteroid selec-
tion. In details, a 2D single point crossover is executed for the
target machine matrix and the priority matrix respectively if
a specified probability is satisfied. As the randomly generated
values in the priority matrix are unique, a correction step is
required to replace the duplicate values by themissing values
in ascending order. All steps are executed through the global
memory and an example shows the procedure in Fig. 11.

• The mutation operation: Any individual in the population
gets a random number generated on the interval 0–1. If it is
smaller than the default mutation rate, the mutation oper-
ation is executed using the global memory in order to yield
solutions with new information. The non-negative elements
of the target machine matrix of this individual are replaced
by random values in the range, apart from the original ones.

Fig. 12. An example of the mutation.

Regarding the prioritymatrix, twonon-negative elements are
chosen randomly to exchange the values. An example is given
in Fig. 12.

• The replacement operation: The individual whose fitness
value is the largest in history within one island is kept. Then
it is used to replace the individual whose fitness value is the
smallest in this island. As one island is presented as one CUDA
block, this operation is carried through the shared memory.

• The migration operation: Islands are interconnected as a sin-
gle ring as shown in Fig. 13. An island can only accept an
individual with the largest fitness value from one neighbor to
overwrite the individual with the smallest fitness value. The
shared memory is utilized to search the best individual and
the worst individual within one island while the overwriting
is processed via the global memory synchronously.

5. Numerical experiments

To analyze the performance of the proposed approach, test 1
and test 2 are conducted in terms of an energy efficient FFSwithout
considering new arrival jobs. Test 1 configures the parameters of
the proposed hybrid parallel GA, while test 2 shows its efficiency
and effectiveness compared to the classical GA [15], the cellular
GA [1] and the master–slave GA. New arrival jobs are included
in test 3 to evaluate the performance of the EDFFS. A small size
instance is considered in these 3 tests. There are 10 original jobs
with 3 production stages. Each stage includes 2 parallel machines.
The power’s peak is imposed through a bound equal to 4. Test 4
examines the convergence trend of EDFFS with 3 different size
problems. The instances are characterized by different numbers
of jobs (n = 10, 50, 80) with different numbers of stages (g = 3,
4, 4), different numbers of machines (o = 2, 2, 3) in each stage
and different numbers of power’s peak (Qmax = 4, 5, 10). The
rescheduling point is randomly generated in test 3 and test 4.
The number of new arrival jobs is decided by the ratio of the
rescheduling point to the makespan in the original schedule times
the amount of original jobs. This is designed to keep the total
amount of jobs waiting to be scheduled roughly consistent. The

Fig. 11. An example of the neighboring paired crossover.

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

10 J. Luo et al. / J. Parallel Distrib. Comput. () –

Table 5

The experimental relative data.
WT 100
Pjsm U[1, 5], where P0sm= P1sm= · · · = P(n+n0�1)sm

Rj U[0, P], where P = P
s
�P

m Pjsm/o
�

Dj Rj+P(1 + �), where � = U[0, 2]
Qjsm 1

Fig. 13. The single ring migration among islands.

estimated maximum value of objective function Emax is set as 10a,
where a 2 N+. The value of a is kept increasing from 1 until
all individuals’ initial objective function values are smaller than
the Emax. Other experimental relative data are defined in Table 5.
The experimental platform is based on Intel Xeon E5640 CPU with
2.67 GHz clock speed. The GPU code implementation is carried
out using CUDA 8.0 on the NVIDIA Tesla K40, with 2880 cores at
0.745 GHz and 12 GB GDDR5 of global memory. All programs are
written in C, except for the GPU kernels in CUDA C.

5.1. Parameters configuration test of the hybrid parallel GA

As the maximum thread amount per block on the CUDA frame-
work is 1024 and they are organized in a grid, the maximum
island size for the hybrid GA is 1024 (32⇥32). In order to have
more than one island in all cases, the population size is kept as
6048 (64⇥64). Since small size islands with the migration lead to
premature convergencewhile the algorithmwith large size islands
converges slower [6], we set there are 64 (8⇥8) individuals in one
island. Considering the existing experiences, the most appropriate
crossover rate ranges between 0.75 and 0.9 [35] and the mutation
rate should be much lower than the crossover rate [5]. Therefore,
the values of crossover rate and mutation rate are given as 0.9 and
0.1 respectively.

In order to ensure the performance of our GA parameters, we
applied the parallel hybrid GA on the tested instance with three
groups of crossover rates and three groups of mutation rates as
in Table 6. According to the average results of 100 iterations,
we could find the crossover rate and the mutation rate do have
some influence on the algorithm performance. Moreover, when
crossover rate= 0.9 andmutation rate= 0.1, the parallel hybridGA
could obtain satisfying results for solutions’ quality and execution
time. To achieve the fairness of comparison, we set the crossover
rate and themutation rate as 0.9 and 0.1 for all GAs in the following
tests.

Due to the influence from the island size, the trend of the
probability obtaining adequate solutions and the execution time
with different island sizes are illustrated in Fig. 14 and Table 7
respectively. Each value denotes an average result over 100 runs.
Regarding the values of objective function got by different settings

Table 6

Results of the parallel hybrid GA on GPUs with different settings of crossover rate
and mutation rate (Generations = 100).
Crossover rate Mutation rate Solution quality Execution time (s)
0.75 0.05 216.39 8.21
0.75 0.1 219.98 8.34
0.75 0.15 211.70 8.47
0.825 0.05 220.39 8.30
0.825 0.1 214.03 8.43
0.825 0.15 210.90 8.53
0.9 0.05 216.56 8.36
0.9 0.1 209.81 8.50
0.9 0.15 215.09 8.58

Fig. 14. The trend of the probability obtaining adequate solutions with different
island sizes (block sizes) on GPUs.

of crossover rate and mutation rate are approaching 200, we set
the adequate solution level as 200 for the tested instance. When a
value of the objective function is less than 200 after the specified
generations, it is considered as an adequate solution. From Fig. 14
and Table 7, we could observe a great influence on the solutions’
quality by varying the island size of the hybrid parallel GA on
GPUs but a few difference on the execution time. The islands with
64 individuals (8⇥8 threads) perform best. In terms of the 2D
population size 4096 (64⇥64), there are 64 islands (8⇥8 blocks).

5.2. Performance evaluation test of the hybrid parallel GA

Firstly, we try to compare the solutions obtained from the hy-
brid parallel GA, the classical GA and the cellular GA. As the roulette
wheel selection is themost frequently used selection strategy [43],
we take it for the classical GA while the single point crossover
is executed with randomly paired individuals. Meanwhile, the
mutation operation is kept the same as the hybrid parallel GA.
The cellular GA is a popular way to apply the conventional GA
in a grid environment and has been implemented a lot to solve
combinatorial optimization problems [14,24,31]. In this case, two
individuals are selected froma similar neighborhood area as the lo-
cal asteroid selection in Section 4.4. Then the single point crossover
recombines the chromosomes from them to generate a new indi-
vidual. Finally, this new individual executes the same mutation as
other twoGAs and replaces the considered individual if its solution
is better. For fair comparison, a master–slave GA on multi-core
CPU with or without vectorization is also taken into consideration.
The master–slave model exploits parallelism in the classical GA
by distributing the most time consuming part, fitness function
evaluation, to slaves. As it does not affect the behavior of the
algorithm, the master–slave GA is only included for the execution
time comparison. Furthermore, we run the hybrid parallel GA and
the cellular GA on GPUs, the classical GA on single core CPU, the
master–slave GA on four cores CPU. Each of them is generated 100
times respectively.

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

J. Luo et al. / J. Parallel Distrib. Comput. () – 11

Table 7

Execution time with different island sizes (block sizes) on GPUs (s).
Generations Island size

4 (2 ⇥ 2) 16 (4 ⇥ 4) 64 (8 ⇥ 8) 256 (16 ⇥ 16) 1024 (32 ⇥ 32)
100 7.65 7.71 9.11 9.14 12.30

Table 8

Solutions’ quality comparison.
Generations Hybrid Parallel GA Classical GA Cellular GA

Avg. Best Variance Avg. Best Variance Avg. Best Variance
100 209.81 153.45 152.22 410.72 236.55 5208.84 258.39 158.86 1635.95
200 183.16 151.67 149.47 354.64 214.31 3834.04 228.65 155.26 1549.97
300 181.80 151.67 150.01 339.09 198.69 3565.65 221.51 154.51 1073.24
400 178.32 149.83 151.67 331.57 170.60 4010.57 217.42 153.24 1322.16
500 177.93 149.47 150.63 327.46 156.41 4779.69 216.99 151.74 1073.99

Table 9

Execution time comparison (Generations = 100).
Populationsize Hybrid Parallel GA on GPUs Cellular GA on GPUs Classical GA on single core CPU Master–Slave GA on 4 cores CPU

Without vectorization With vectorization
64 ⇥ 64 8.77 s 8.14 s 129.16 s 39.50 s 5.60 s
128 ⇥ 128 30.71 s 31.13 s 554.01 s 182.27 s 33.07 s
256 ⇥ 256 105.73 s 108.07 s 2651.61 s 1127.78 s 298.96 s

From the results in Table 8, we discover that the proposed hy-
brid parallel GA always gains a better performance with the aver-
age value, the best value and the variance of the objective function
than the classical GA and the cellular GA. Since fine-grainedmodels
at the lower level could obtain good population diversity when
dealing with high-dimensional variable spaces [20,21] and island
models at the upper level converge faster by subpopulations [6],
the hybrid parallel GA combines the merits from both. Moreover,
the cellular GA overcomes the classical GA as it allows a better
exploration of the search space with respect to the decentralized
population [31].

Since the hybrid parallel GA and the cellular GA are designed
specially for 2D grid architectures, they could maximize the bene-
fits from the CUDA framework and almost take the same execution
time when dealing with different population sizes as illustrated
in Table 9. On the opposite, the classical GA on single core CPU
takes from 14.73 to 25.08 times the execution time of the hybrid
parallel GA when the population size is increased from 64⇥64 to
256⇥256. As far as the available experiment platform, we firstly
parallelized the master–slave GA using OpenMP [17] on 4 cores
CPU. Afterwards, the SIMD vectorization was executed simultane-
ously via SSE2 [18]. The code was compiled by the command as
follows and the vectorization report showed that all loops for the
fitness function evaluation were well vectorized.

gcc -fopenmp -O3 -ftree-vectorize -msse2 mycode.c -ftree-
vectorizer-verbose=1 -o mycode.o

With the development of multi-cores CPU and SIMD vector-
ization, the performance of master–slave GA has been improved
a lot by distributing the fitness function evaluation to slaves and
executing them concurrently. It even overcomes the GAs on GPUs
with small population size. However, the GAs working on GPUs al-
wayswinwith less execution timewhen the amount of individuals
is increased, due to the limited amount of cores and the limited
SIMDwidth in our case. Therefore,we expect the hybrid parallel GA
can achieve further acceleration for more complicated or larger-
scale problems by its fully implemented parallelism on the CUDA
framework.

5.3. Sensitive analysis test of the EDFFS

As the number of new arrival jobs is decided by the ratio of the
RS to the makespan in the original schedule times the amount of

original jobs, we change the amount of new arrival jobs by varying
the ratio of the RS to the makespan in the original schedule. The
influence with different ratios to the predictive reactive complete
rescheduling approach and the traditional static approach are dis-
played in Table 10. The iteration number is kept as 100 like the
last two tests. The predictive reactive complete rescheduling ap-
proach ismore flexible in a dynamic environment as it reschedules
the new arrival jobs at the beginning of the rescheduling point.
However, these jobs could only be scheduled after completing
operations of the original schedule at each stage by the traditional
static approach. This impact is even more evident when the ratio
of the RS to themakespan in the original schedule is small. And it is
decreasing and almost disappearswhen the RS takes place near the
end of the original schedule. Therefore, we strongly suggest using
the predictive reactive complete rescheduling approach with the
assistance of GPUs when the RS is arranged at the first half part of
the original schedule. Meanwhile, the traditional static approach
may have similar performance if the RS is considered at the later
half part.

As tardy jobs typically cause penalty costs [30] and have a great
influence on customers’ satisfaction, the weight WT indicates the
priority of the total tardiness in the objective function. However,
we consider the relationship between twoobjectiveswith different
WT settings due to the importance of makespan in manufacturing
practice and Table 11 shows the average results of 100 iterations.
According to the values of total tardiness and makespan, we could
find the makespan is less sensitive to the weight WT than the total
tardiness as the variance of makespan is 0.61 while the variance of
total tardiness is 78.17.Moreover, once the value ofWT is increased
to reach a very large constant, the total tardiness is approaching
its minimum value. Thus, manufacturers should take the chance to
optimize the value of total tardiness while limiting the makespan
in a reasonable range.

5.4. Convergence trend test of the EDFFS

As a GA converges when most of the population is identical
or the diversity is minimal [23], there is no need to execute the
algorithm for more generations after the convergence point. For
the EDFFS, it is important to identify the convergence point and
its corresponding execution time for different size problems. Three
different size problems are considered in this test. The convergence

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

12 J. Luo et al. / J. Parallel Distrib. Comput. () –

Table 10

Comparison between the predictive reactive complete rescheduling approach and the traditional static approach with different ratios of the RS to the makespan in the
original schedule (Generations = 100).
Ratio of the RS to the makespan in the original schedule Traditional static approach Predictive reactive completerescheduling approach Improvement Ratio
20% 4108.41 2142.90 1.9172
40% 11131.51 9209.40 1.2087
60% 17892.24 16941.56 1.0561
80% 26595.63 26520.96 1.0028

Table 11

Relationship between two objectives with different WT settings (Generations =
100).
WT Total Tardiness Makespan Objective Function Value
0.0001 39.48 40.55 40.56
0.001 39.95 40.55 40.59
0.01 35.23 40.54 40.89
0.1 23.43 40.78 43.12
0.4 19.04 41.14 48.76
0.7 18.61 41.23 54.26
1 18.29 41.44 59.73
4 17.83 42.15 113.46
7 17.69 42.18 166.00
10 17.57 42.12 217.86
100 17.58 42.39 1800.43
1000 17.60 42.51 17645.71
10000 17.58 42.41 175831.12
Variance 78.17 0.61

Fig. 15. The convergence trend of small size problem.

Fig. 16. The convergence trend of medium size problem.

trends of small size, medium size and large size problem instances
are described in Figs. 15–17 separately. Each point in these figures
displays a value of 30 runs.

With regard to the small size problem, it converges approx-
imately at the level of 50 generations, while the values for the
medium size and the large size problems are around 400 and
600. As the complexity increases when we raise the size of the
problem, the execution time per 10 generations for these problems
is about 1.24 s, 223.37 s and 4256.14 s respectively. Therefore,

Fig. 17. The convergence trend of large size problem.

to get solutions after the convergence for the small size prob-
lem, it takes 6.2 s whereas the medium size and the large size
problems need much longer time as 8934.8 s and 255368.4 s.
Due to the dramatically increasing execution time for large-scale
problems, the hybrid parallel GAmay get a feasible solution before
achieving the convergence based on decision-makers’ considera-
tion, namely a trade-off between the solutions’ quality and the time
consumption.

6. Conclusions

In this paper, we have first studied an energy efficient dynamic
flexible flow shop scheduling model using the peak power value
with consideration of new arrival jobs. To solve this NP-hard prob-
lem in a short response time, a priority based hybrid parallel GA
with a predictive reactive complete rescheduling approach was
developed. The proposed GA consisted of a fine-grained GA at the
lower level and an island GA at the upper level, which was highly
consistent with the hierarchy of threads and different types of
memory of CUDA framework. In the first test, we configured the
parameters of the hybrid parallel GA and obtained a reasonable
island size for the tested instance to inhibit the premature conver-
gence with a faster convergence speed. Afterwards, the designed
GA in test 2 showed that it could gain better results than the
classical GA, the cellular GA through the combination of merits
from two levels. Meanwhile, it reduced the time requirements
dramatically by optimizing the benefits from the CUDA framework.
As seen in test 3, the predictive reactive complete rescheduling
approach was flexible to solve the EDFFS, particularly when the
rescheduling point was considered at the first half part of the
original schedule.Moreover, the total tardinesswasmore sensitive
in this two objectives optimization problem and its value was
approaching the minimum once the weight WT was increased to a
very large constant. Finally, test 4 demonstrated the response time
to achieve the convergence point for large-scale EDFFS problems.
We suggested as well in this case decision-makers to obtain a
feasible scheduling by making a trade-off between the solutions’
quality and the time consumption.

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

J. Luo et al. / J. Parallel Distrib. Comput. () – 13

Acknowledgments

Thisworkwas supported by a scholarship from the China Schol-
arship Council (CSC).Moreover, Didier El Baz is grateful for the help
of NVIDIA Corporation for the donation of the Tesla K40 GPUs used
in this work and the authors would like to express their gratitude
to the editors and the reviewers for their helpful comments.

References

[1] E. Alba, B. Dorronsoro, Cellular genetic algorithms, in: Operations Re-
search/Computer Science Interfaces, Springer-Verlag, Heidelberg, 2008.

[2] V. Boyer, D. El Baz, Recent advances onGPU computing in operations research,
in: Parallel and Distributed Processing SymposiumWorkshops & PhD Forum,
IPDPSW, 2013 IEEE 27th International, IEEE, 2013, pp. 1778–1787.

[3] A. Bruzzone, D. Anghinolfi, M. Paolucci, F. Tonelli, Energy-aware scheduling
for improving manufacturing process sustainability: a mathematical model
for flexible flow shops, CIRP Annals-Manuf. Technol. 61 (1) (2012) 459–462.

[4] L. Bukata, P. Sucha, A GPU algorithm design for resource constrained project
scheduling problem, in: Parallel, Distributed and Network-Based Processing,
PDP, 2013 21st Euromicro International Conference, IEEE, 2013, pp. 367–374.

[5] J.A. Cabrera, A. Simon, M. Prado, Optimal synthesis of mechanisms with
genetic algorithms, Mech. Mach. Theory 37 (10) (2002) 1165–1177.

[6] E. Cantu-Paz, A survey of parallel genetic algorithms, Calculateurs paralleles,
reseaux et systems repartis, 10 (2) (1998) 141–171.

[7] M. Czapinski, S. Barnes, Tabu search with two approaches to parallel flow-
shop evaluation on cuda platform, J. Parallel Distrib. Comput. 71 (6) (2011)
802–811.

[8] A. Dabah, A. Bendjoudi, D. El Baz, A. AitZai, GPU-based two level parallel B &
B for the blocking job shop scheduling problem, in: Parallel and Distributed
Processing Symposium Workshops, 2016 IEEE International, IEEE, 2016,
pp. 747–755.

[9] M. Dai, D. Tang, A. Giret, M.A. Salido,W.D. Li, Energy-efficient scheduling for a
flexible flow shop using an improved genetic-simulated annealing algorithm,
Robot. Comput.-Integr. Manuf. 29 (5) (2013) 418–429.

[10] EIA, International energy outlook, 2009. May 2009 2.
[11] EIA, Annual energy review 2009. Report no. DOE/EIA0384(2009), August

2010.
[12] K. Fang, N. Uhan, F. Zhao, J.W. Sutherland, A new shop scheduling approach in

support of sustainable manufacturing, Glocalized Solutions for Sustainability
in Manufacturing, Springer, 2011, pp. 305–310.

[13] J.N.D. Gupta, Two-stage, hybrid flow shop scheduling problem, J. Oper. Res.
Soc. 39 (4) (1988) 359–364.

[14] M. Guzek, J.E. Pecero, B. Dorronsoro, P. Bouvry, S.U. Khan, A cellular genetic
algorithm for scheduling applications and energy-aware communication op-
timization, in: High Performance Computing and Simulation, HPCS, 2010
International Conference, IEEE, 2010, pp. 241–248.

[15] J.H. Holland, Genetic algorithms, Sci. Am. 267 (1) (1992) 66–73.
[16] https://developer.nvidia.com/cuda-toolkit.
[17] http://www.openmp.org/.
[18] https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions.
[19] C.S. Huang, Y.C. Huang, P.J. Lai, Modified genetic algorithms for solving fuzzy

flow shop scheduling problems and their implementation with CUDA, Expert
Syst. Appl. 39 (5) (2012) 4999–5005.

[20] U. Kohlmorgen, H. Schmeck, K. Haase, Experiences with fine-grained parallel
genetic algorithms, Ann. Oper. Res. 90 (1999) 203–219.

[21] J.M. Li, X.J. Wang, R.S. He, Z.X. Chi, An efficient fine-grained parallel genetic
algorithm based on GPU-accelerated, in: Network and Parallel Computing
Workshops, 2007 NPC workshops. IFIP International Conference, IEEE, 2007,
pp. 855–862.

[22] Y. Liu, H. Dong, N. Lohse, S. Petrovic, N. Gindy, An investigation into minimis-
ing total energy consumption and total weighted tardiness in job shops, J.
Cleaner Prod. 65 (2014) 87–96.

[23] S.J. Louis, G.J. Rawlins, Predicting convergence time for genetic algorithms,
Found. Genetic Algorithms 2 (1993) 141–161.

[24] G. Luque, E. Alba, B. Dorronsoro, An asynchronous parallel implementation of
a cellular genetic algorithm for combinatorial optimization, in: Proceedings of
the International Genetic and Evolutionary Computation Conference, GECCO,
ACM, 2009, pp. 1395–1402.

[25] N. Melab, I. Chakroun, M. Mezmaz, D. Tuyttens, A gpu-accelerated branch-
and-bound algorithm for the flow-shop scheduling problem, in: 65 Clus-
ter Computing, CLUSTER, 2012 IEEE International Conference, IEEE, 2012,
pp. 10–17.

[26] G.Mouzon,M.B. Yildirim, A framework tominimise total energy consumption
and total tardiness on a single machine, Int. J. Sustain. Eng. 1 (2) (2008)
105–116.

[27] J.M. Nilakantan, G.Q. Huang, S. Ponnambalam, An investigation onminimizing
cycle time and total energy consumption in robotic assembly line systems, J.
Cleaner Prod. 90 (2015) 311–325.

[28] D. Ouelhadj, S. Petrovic, A survey of dynamic scheduling in manufacturing
systems, J. Sched. 12 (4) (2009) 417.

[29] C. Pach, T. Berger, Y. Sallez, T. Bonte, E. Adam, D. Trentesaux, Reactive and
energy-aware scheduling of flexible manufacturing systems using potential
fields, Comput. Ind. 65 (3) (2014) 434–448.

[30] I.C. Parmee, Adaptive computing in design and manufacture, Eng. Optim. 41
(9) (2009) 811–812.

[31] F. Pinel, B. Dorronsoro, P. Bouvry, Solving very large instances of the schedul-
ing of independent tasks problem on the GPU, J. Parallel Distrib. Comput. 73
(1) (2013) 101–110.

[32] B. Plazolles, D. El Baz, M. Spel, V. Rivola, P. Gegout, SMID Monte-Carlo nu-
merical simulations accelerated on GPU and Xeon Phi, Int. J. Parallel Program.
(2017) 1–23.

[33] P. Pospichal, J. Jaros, J. Schwarz, Parallel genetic algorithm on the CUDA
architecture, in: European Conference on the Applications of Evolutionary
Computation, Springer, 2010, pp. 442–451.

[34] J. Sanders, E. Kandrot, CUDA by Example: An Introduction to General-Purpose
GPU Programming, Addison-Wesley Professional, 2010.

[35] J.D. Schaffer, R.A. Caruana, L.J. Eshelman, R. Das, A study of control parameters
affecting online performance of genetic algorithms for function optimization,
in: Proceedings of the Third International Conference on Genetic Algorithms,
Morgan Kaufmann Publishers Inc., 1989, pp. 51–60.

[36] D. Tang, M. Dai, M.A. Salido, A. Giret, Energy-efficient dynamic scheduling for
a flexible flow shop using an improved particle swarm optimization, Comput.
Ind. 81 (2016) 82–95.

[37] S. Tsutsui, N. Fujimoto, Solving quadratic assignment problems by genetic
algorithms with gpu computation: a case study, in: Proceedings of the 11th
Annual Conference Companion on Genetic and Evolutionary Computation
Conference: Late Breaking Papers, ACM, 2009, pp. 2523–2530.

[38] F. Werner, Genetic algorithms for shop scheduling problems: a survey,
Preprint 11 (2011) 31.

[39] F. Xu, W. Weng, S. Fujimura, Energy-efficient scheduling for flexible flow
shops by using MIP, in: IIE Annual Conference. Proceedings, Institute of
Industrial and Systems Engineers, IISE, 2014, p. 1040.

[40] Q. Yi, C. Li, Y. Tang, Q. Wang, A new operational framework to job shop
scheduling for reducing carbon emissions, in: Automation Science and En-
gineering, CASE, 2012 IEEE International Conference, IEEE, 2012, pp. 58–63.

[41] T. Zajıcek, P. Sucha, Accelerating a flow shop scheduling algorithm on the
GPU in: Workshop on Models and Algorithms for Planning and Scheduling
Problems, MAPSP, 2011, pp. 143–144.

[42] L. Zhang, X. Li, L. Gao, G. Zhang, Dynamic rescheduling in FMS that is simulta-
neously considering energy consumption and schedule efficiency, Int. J. Adv.
Manuf. Technol. 87 (5–8) (2016) 1387–1399.

[43] J. Zhong, X. Hu, J. Zhang,M. Gu, Comparison of performance between different
selection strategies on simple genetic algorithms, in: Computational Intelli-
gence for Modeling, Control and Automation, 2005 International Conference
on Intelligent Agents, Web Technologies and Internet Commerce, vol. 2, IEEE,
2005, pp. 1115–1121.

Jia Luo received the bachelor’s degree from Shanghai
University, China, in 2011 and the master’s degree from
Waseda University, Japan, in 2015. She is presently pur-
suing a Ph.D. degree at the Laboratory of Analysis and
SystemsArchitecture (LAAS-CNRS), Toulouse, France. Her
Ph.D. topic is about scheduling, parallel algorithms and
GPU computing.

Shigeru Fujimura is a Professor at Graduate School of
Information, Production, and Systems, Waseda Univer-
sity, Japan, since April 2003. He received the B.E. and
the M.E. degrees from Waseda University in 1983 and
1985, respectively. He also received the Dr. Eng. from
Waseda University in 1995. He joined Yokogawa Electric
Corporation in 1985 and worked there until 2003. His re-
search interests are productionmanagement, production
scheduling, intelligent interface agent, object oriented
modeling, and software engineering.

http://refhub.elsevier.com/S0743-7315(18)30562-8/b1
http://refhub.elsevier.com/S0743-7315(18)30562-8/b1
http://refhub.elsevier.com/S0743-7315(18)30562-8/b1
http://refhub.elsevier.com/S0743-7315(18)30562-8/b2
http://refhub.elsevier.com/S0743-7315(18)30562-8/b2
http://refhub.elsevier.com/S0743-7315(18)30562-8/b2
http://refhub.elsevier.com/S0743-7315(18)30562-8/b2
http://refhub.elsevier.com/S0743-7315(18)30562-8/b2
http://refhub.elsevier.com/S0743-7315(18)30562-8/b3
http://refhub.elsevier.com/S0743-7315(18)30562-8/b3
http://refhub.elsevier.com/S0743-7315(18)30562-8/b3
http://refhub.elsevier.com/S0743-7315(18)30562-8/b3
http://refhub.elsevier.com/S0743-7315(18)30562-8/b3
http://refhub.elsevier.com/S0743-7315(18)30562-8/b4
http://refhub.elsevier.com/S0743-7315(18)30562-8/b4
http://refhub.elsevier.com/S0743-7315(18)30562-8/b4
http://refhub.elsevier.com/S0743-7315(18)30562-8/b4
http://refhub.elsevier.com/S0743-7315(18)30562-8/b4
http://refhub.elsevier.com/S0743-7315(18)30562-8/b5
http://refhub.elsevier.com/S0743-7315(18)30562-8/b5
http://refhub.elsevier.com/S0743-7315(18)30562-8/b5
http://refhub.elsevier.com/S0743-7315(18)30562-8/b7
http://refhub.elsevier.com/S0743-7315(18)30562-8/b7
http://refhub.elsevier.com/S0743-7315(18)30562-8/b7
http://refhub.elsevier.com/S0743-7315(18)30562-8/b7
http://refhub.elsevier.com/S0743-7315(18)30562-8/b7
http://refhub.elsevier.com/S0743-7315(18)30562-8/b8
http://refhub.elsevier.com/S0743-7315(18)30562-8/b8
http://refhub.elsevier.com/S0743-7315(18)30562-8/b8
http://refhub.elsevier.com/S0743-7315(18)30562-8/b8
http://refhub.elsevier.com/S0743-7315(18)30562-8/b8
http://refhub.elsevier.com/S0743-7315(18)30562-8/b8
http://refhub.elsevier.com/S0743-7315(18)30562-8/b8
http://refhub.elsevier.com/S0743-7315(18)30562-8/b9
http://refhub.elsevier.com/S0743-7315(18)30562-8/b9
http://refhub.elsevier.com/S0743-7315(18)30562-8/b9
http://refhub.elsevier.com/S0743-7315(18)30562-8/b9
http://refhub.elsevier.com/S0743-7315(18)30562-8/b9
http://refhub.elsevier.com/S0743-7315(18)30562-8/b12
http://refhub.elsevier.com/S0743-7315(18)30562-8/b12
http://refhub.elsevier.com/S0743-7315(18)30562-8/b12
http://refhub.elsevier.com/S0743-7315(18)30562-8/b12
http://refhub.elsevier.com/S0743-7315(18)30562-8/b12
http://refhub.elsevier.com/S0743-7315(18)30562-8/b13
http://refhub.elsevier.com/S0743-7315(18)30562-8/b13
http://refhub.elsevier.com/S0743-7315(18)30562-8/b13
http://refhub.elsevier.com/S0743-7315(18)30562-8/b14
http://refhub.elsevier.com/S0743-7315(18)30562-8/b14
http://refhub.elsevier.com/S0743-7315(18)30562-8/b14
http://refhub.elsevier.com/S0743-7315(18)30562-8/b14
http://refhub.elsevier.com/S0743-7315(18)30562-8/b14
http://refhub.elsevier.com/S0743-7315(18)30562-8/b14
http://refhub.elsevier.com/S0743-7315(18)30562-8/b14
http://refhub.elsevier.com/S0743-7315(18)30562-8/b15
https://developer.nvidia.com/cuda-toolkit
http://www.openmp.org/
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
http://refhub.elsevier.com/S0743-7315(18)30562-8/b19
http://refhub.elsevier.com/S0743-7315(18)30562-8/b19
http://refhub.elsevier.com/S0743-7315(18)30562-8/b19
http://refhub.elsevier.com/S0743-7315(18)30562-8/b19
http://refhub.elsevier.com/S0743-7315(18)30562-8/b19
http://refhub.elsevier.com/S0743-7315(18)30562-8/b20
http://refhub.elsevier.com/S0743-7315(18)30562-8/b20
http://refhub.elsevier.com/S0743-7315(18)30562-8/b20
http://refhub.elsevier.com/S0743-7315(18)30562-8/b21
http://refhub.elsevier.com/S0743-7315(18)30562-8/b21
http://refhub.elsevier.com/S0743-7315(18)30562-8/b21
http://refhub.elsevier.com/S0743-7315(18)30562-8/b21
http://refhub.elsevier.com/S0743-7315(18)30562-8/b21
http://refhub.elsevier.com/S0743-7315(18)30562-8/b21
http://refhub.elsevier.com/S0743-7315(18)30562-8/b21
http://refhub.elsevier.com/S0743-7315(18)30562-8/b22
http://refhub.elsevier.com/S0743-7315(18)30562-8/b22
http://refhub.elsevier.com/S0743-7315(18)30562-8/b22
http://refhub.elsevier.com/S0743-7315(18)30562-8/b22
http://refhub.elsevier.com/S0743-7315(18)30562-8/b22
http://refhub.elsevier.com/S0743-7315(18)30562-8/b23
http://refhub.elsevier.com/S0743-7315(18)30562-8/b23
http://refhub.elsevier.com/S0743-7315(18)30562-8/b23
http://refhub.elsevier.com/S0743-7315(18)30562-8/b24
http://refhub.elsevier.com/S0743-7315(18)30562-8/b24
http://refhub.elsevier.com/S0743-7315(18)30562-8/b24
http://refhub.elsevier.com/S0743-7315(18)30562-8/b24
http://refhub.elsevier.com/S0743-7315(18)30562-8/b24
http://refhub.elsevier.com/S0743-7315(18)30562-8/b24
http://refhub.elsevier.com/S0743-7315(18)30562-8/b24
http://refhub.elsevier.com/S0743-7315(18)30562-8/b25
http://refhub.elsevier.com/S0743-7315(18)30562-8/b25
http://refhub.elsevier.com/S0743-7315(18)30562-8/b25
http://refhub.elsevier.com/S0743-7315(18)30562-8/b25
http://refhub.elsevier.com/S0743-7315(18)30562-8/b25
http://refhub.elsevier.com/S0743-7315(18)30562-8/b25
http://refhub.elsevier.com/S0743-7315(18)30562-8/b25
http://refhub.elsevier.com/S0743-7315(18)30562-8/b26
http://refhub.elsevier.com/S0743-7315(18)30562-8/b26
http://refhub.elsevier.com/S0743-7315(18)30562-8/b26
http://refhub.elsevier.com/S0743-7315(18)30562-8/b26
http://refhub.elsevier.com/S0743-7315(18)30562-8/b26
http://refhub.elsevier.com/S0743-7315(18)30562-8/b27
http://refhub.elsevier.com/S0743-7315(18)30562-8/b27
http://refhub.elsevier.com/S0743-7315(18)30562-8/b27
http://refhub.elsevier.com/S0743-7315(18)30562-8/b27
http://refhub.elsevier.com/S0743-7315(18)30562-8/b27
http://refhub.elsevier.com/S0743-7315(18)30562-8/b28
http://refhub.elsevier.com/S0743-7315(18)30562-8/b28
http://refhub.elsevier.com/S0743-7315(18)30562-8/b28
http://refhub.elsevier.com/S0743-7315(18)30562-8/b29
http://refhub.elsevier.com/S0743-7315(18)30562-8/b29
http://refhub.elsevier.com/S0743-7315(18)30562-8/b29
http://refhub.elsevier.com/S0743-7315(18)30562-8/b29
http://refhub.elsevier.com/S0743-7315(18)30562-8/b29
http://refhub.elsevier.com/S0743-7315(18)30562-8/b30
http://refhub.elsevier.com/S0743-7315(18)30562-8/b30
http://refhub.elsevier.com/S0743-7315(18)30562-8/b30
http://refhub.elsevier.com/S0743-7315(18)30562-8/b31
http://refhub.elsevier.com/S0743-7315(18)30562-8/b31
http://refhub.elsevier.com/S0743-7315(18)30562-8/b31
http://refhub.elsevier.com/S0743-7315(18)30562-8/b31
http://refhub.elsevier.com/S0743-7315(18)30562-8/b31
http://refhub.elsevier.com/S0743-7315(18)30562-8/b32
http://refhub.elsevier.com/S0743-7315(18)30562-8/b32
http://refhub.elsevier.com/S0743-7315(18)30562-8/b32
http://refhub.elsevier.com/S0743-7315(18)30562-8/b32
http://refhub.elsevier.com/S0743-7315(18)30562-8/b32
http://refhub.elsevier.com/S0743-7315(18)30562-8/b33
http://refhub.elsevier.com/S0743-7315(18)30562-8/b33
http://refhub.elsevier.com/S0743-7315(18)30562-8/b33
http://refhub.elsevier.com/S0743-7315(18)30562-8/b33
http://refhub.elsevier.com/S0743-7315(18)30562-8/b33
http://refhub.elsevier.com/S0743-7315(18)30562-8/b34
http://refhub.elsevier.com/S0743-7315(18)30562-8/b34
http://refhub.elsevier.com/S0743-7315(18)30562-8/b34
http://refhub.elsevier.com/S0743-7315(18)30562-8/b35
http://refhub.elsevier.com/S0743-7315(18)30562-8/b35
http://refhub.elsevier.com/S0743-7315(18)30562-8/b35
http://refhub.elsevier.com/S0743-7315(18)30562-8/b35
http://refhub.elsevier.com/S0743-7315(18)30562-8/b35
http://refhub.elsevier.com/S0743-7315(18)30562-8/b35
http://refhub.elsevier.com/S0743-7315(18)30562-8/b35
http://refhub.elsevier.com/S0743-7315(18)30562-8/b36
http://refhub.elsevier.com/S0743-7315(18)30562-8/b36
http://refhub.elsevier.com/S0743-7315(18)30562-8/b36
http://refhub.elsevier.com/S0743-7315(18)30562-8/b36
http://refhub.elsevier.com/S0743-7315(18)30562-8/b36
http://refhub.elsevier.com/S0743-7315(18)30562-8/b37
http://refhub.elsevier.com/S0743-7315(18)30562-8/b37
http://refhub.elsevier.com/S0743-7315(18)30562-8/b37
http://refhub.elsevier.com/S0743-7315(18)30562-8/b37
http://refhub.elsevier.com/S0743-7315(18)30562-8/b37
http://refhub.elsevier.com/S0743-7315(18)30562-8/b37
http://refhub.elsevier.com/S0743-7315(18)30562-8/b37
http://refhub.elsevier.com/S0743-7315(18)30562-8/b38
http://refhub.elsevier.com/S0743-7315(18)30562-8/b38
http://refhub.elsevier.com/S0743-7315(18)30562-8/b38
http://refhub.elsevier.com/S0743-7315(18)30562-8/b40
http://refhub.elsevier.com/S0743-7315(18)30562-8/b40
http://refhub.elsevier.com/S0743-7315(18)30562-8/b40
http://refhub.elsevier.com/S0743-7315(18)30562-8/b40
http://refhub.elsevier.com/S0743-7315(18)30562-8/b40
http://refhub.elsevier.com/S0743-7315(18)30562-8/b42
http://refhub.elsevier.com/S0743-7315(18)30562-8/b42
http://refhub.elsevier.com/S0743-7315(18)30562-8/b42
http://refhub.elsevier.com/S0743-7315(18)30562-8/b42
http://refhub.elsevier.com/S0743-7315(18)30562-8/b42
http://refhub.elsevier.com/S0743-7315(18)30562-8/b43
http://refhub.elsevier.com/S0743-7315(18)30562-8/b43
http://refhub.elsevier.com/S0743-7315(18)30562-8/b43
http://refhub.elsevier.com/S0743-7315(18)30562-8/b43
http://refhub.elsevier.com/S0743-7315(18)30562-8/b43
http://refhub.elsevier.com/S0743-7315(18)30562-8/b43
http://refhub.elsevier.com/S0743-7315(18)30562-8/b43
http://refhub.elsevier.com/S0743-7315(18)30562-8/b43
http://refhub.elsevier.com/S0743-7315(18)30562-8/b43

Please cite this article in press as: J. Luo, et al., GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem, J.
Parallel Distrib. Comput. (2018), https://doi.org/10.1016/j.jpdc.2018.07.022.

14 J. Luo et al. / J. Parallel Distrib. Comput. () –

Didier El Baz received the Engineer degree in Electrical
Engineering and Computer Science from National Insti-
tute of Applied Sciences in Toulouse, France (Institut Na-
tional des Sciences Appliquées, INSA) in 1981 and the
Doctor Engineer degree in Control Theory from INSA
Toulouse in January 1984. Dr. El Baz was a visiting sci-
entist in the Laboratory for Information and Decision
Systems,MIT CambridgeMassachusetts, USA, in 1984. He
is the founder and head of the Distributed Computing
and Asynchronism team at the Laboratory of Analysis
and Systems Architecture (LAAS-CNRS). Dr. El Baz is the

author of 40 papers in referred international journals and 70 papers in referred
international conferences. His fields of interest are in optimization, parallel and
distributed computing.

Bastien Plazolles received the Ph.D. degree in High Per-
formance Computing from University Paul Sabatier in
2017. His Ph.D. researchwas focused on using computing
accelerators (GPUs, Intel Xeon Phi) to address real world
problems such as probabilistic determination of fallout
area of stratospheric balloon and satellite atmospheric
reentry analysis. Now he holds a postdoctoral position at
CNRS, in the Space Geodesy Team (GET/GRGS Toulouse
France) working on the development of parallel seismic
inversion tools.

	GPU based parallel genetic algorithm for solving an energy efficient dynamic flexible flow shop scheduling problem
	Introduction
	Related Works
	Problem statement
	EDFFS problem description
	Mathematical model of the EDFFS

	Solving approach
	Predictive reactive complete rescheduling strategy
	Hybrid parallel GA model
	Priority based encoding representation
	Priority based GA operations on GPUs

	Numerical experiments
	Parameters configuration test of the hybrid parallel GA
	Performance evaluation test of the hybrid parallel GA
	Sensitive analysis test of the EDFFS
	Convergence trend test of the EDFFS

	Conclusions
	Acknowledgments
	References

