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ABSTRACT
Cancer diagnosis is essentially a human task. Almost univer-
sally, the process requires the extraction of tissue (biopsy)
and examination of its microstructure by a human. To im-
prove diagnoses based on limited and inconsistent morpho-
logic knowledge, a new approach has recently been proposed
that uses molecular spectroscopic imaging to utilize micro-
scopic chemical composition for diagnoses. In contrast to
visible imaging, the approach results in very large data sets
as each pixel contains the entire molecular vibrational spec-
troscopy data from all chemical species. Here, we propose
data handling and analysis strategies to allow computer-
based diagnosis of human prostate cancer by applying a
novel genetics-based machine learning technique (NAX). We
apply this technique to demonstrate both fast learning and
accurate classification that, additionally, scales well with
parallelization. Preliminary results demonstrate that this
approach can improve current clinical practice in diagnos-
ing prostate cancer.

Categories & Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning–Concept Learning.
I.5.4 [Pattern Recognition]: Applications.
J.3 [Life & Medical Science]: Medical Information Systems.
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1. INTRODUCTION
Pathologist opinion of structures in stained tissue is the

definitive diagnosis for almost all cancers and provides criti-
cal input for therapy. In particular, prostate cancer accounts
for one-third of noncutaneous cancers diagnosed in US men,
and it is a leading cause of cancer-related death. Hence,
it is, appropriately, the subject of heightened public aware-
ness and widespread screening. If prostate-specific antigen
(PSA) or digital rectal screens are abnormal, a biopsy is
considered to detect or rule out cancer. Prostate tissue is
extracted, or biopsied, from the patient and examined for
structural alterations. The diagnosis procedure involves the
removal of cells or tissues, staining them with dyes to pro-
vide visual contrast and examination under a microscope by
a skilled person (pathologist).

Due to personnel, tarining, natural variability and bio-
logic differences, the challenge in prostate cancer research
and practice is to provide accurate, objective and repro-
ducible decisions. Conventional optical microscopy followed
by manual recognition has been demonstrated to be inad-
equate for this task. [18]. Hence, we have recently pro-
posed developing a practical approach to this problem us-
ing chemical, rather than morphologic, imaging. [19]. In
this approach, Fourier transform infrared imaging (FTIR)
is employed to provide the entire vibrational spectroscopic
information from every pixel of a sample’s microscopy im-
age. While the first steps of developing novel imaging and
sampling technologies is now reliable, [7] the computational
challenge of providing robust classification algorithms that
can rapidly provide decisions remains. Due to the above
advances in imaging and sampling, data from thousands of
patients is available to train and validate algorithms for dif-
ferent disease states. While the application and type of data
are unique, a further confounding factor required efficiently
processing large volumes of data generated by FTIR imag-
ing. The classification problem can be formulated as a super-
vised learning problem in which several million pixels (hun-
dred of gigabytes) of accurately labeled data are available
for model training and validation. The volume of tissue and
(future) need for intra-operative diagnoses imply that rapid
and accurate diagnoses are crucial to allow physicians to ex-
plore all possible courses of action. Under these conditions,
traditional supervised learning approaches and implementa-
tions do not scale to provide diagnoses in an appropriate



time frame. Hence, efficiently processing and learning mod-
els from gigabytes of FITR imaging data requires a careful
design of the supervised learning algorithm. Moreover, the
biological nature of the problem requires that such models
be interpretable to provide fundamental new insight into the
disease process. Genetics-based machine learning (GBML)
techniques take advantage of the “quasi embarrassing paral-
lelism” [17] to provide scaleable, fast, accurate, reliable, and
interpretable models. In this paper we present an approach
engineered to the desired solutiona and constraints of ad-
dressing this human task. A modified version of a sequential
genetics-based rule learner that exploits massive parallelisms
via the message passing interface (MPI) and efficient rule-
matching using hardware-oriented operations is developed.
We named this system NAX [24], and we have shown that its
performance is comparable to traditional and genetics-based
machine learning techniques on an array of publicly avail-
able data sets. We now show thatNAX—taking advantage of
both hardware and software parallelism—is able to provide
prostate cancer diagnoses that are human-competitive. In
this paper, we present preliminary results supporting this
outcome.

The paper is structured as follows. Section 2 provides
an overview of our approach towards computer-aided diag-
noses for prostate cancer. Procedure and form of the data
are summarized in section 3. NAX is introduced in section
4, where we describe the basic components and design deci-
sions in this approach. In section 5 we present preliminary
results indicating that the approach presented in this paper
is human-competitive. Finally, section 6 summarizes some
conclusions and further research.

2. PROBLEM DESCRIPTION
Prostate cancer is the most common non-skin malignancy

in the western world. The American Cancer Society
estimated 234,460 new cases of prostate cancer in 2006
[31]. Recognizing the public health implications of this
disease, men are actively screened through digital rectal
examinations and/or serum prostate specific antigen (PSA)
level testing. If these screening tests are suspicious, prostate
tissue is extracted, or biopsied, from the patient and exam-
ined for structural alterations. Due to imperfect screening
technologies and repeated examinations, it is estimated that
more than 1 million people undergo biopsies in the US alone.

2.1 Prostate Cancer Diagnosis
The removal of a small section of prostate is most of-

ten accomplished by core biopsy. A needle is inserted into
the tissue and several (6-23) samples are obtained from dif-
ferent positions. Biopsy, followed by manual examination
under a microscope is the primary means to definitively di-
agnose prostate cancer as well as most internal cancers in
the human body. Pathologists are trained to recognize pat-
terns of disease in the architecture of tissue, local structural
morphology and alterations in cell size and shape. Specific
patterns of specific cell types distinguish cancerous and non-
cancerous tissues. Hence, the primary task of the patholo-
gist examining tissue for cancer is to locate foci of the cell
of interest and examine them for alterations indicative of
disease.

The specific cells in which cancer arises in the prostate
are epithelial cells. While epithelial-origin cancers account

for over 85% of all human cancers, they account for more
than 95% of prostate cancers. In prostate tissue, epithe-
lial line secretory ducts within the structural cells (collec-
tively termed ‘stroma’) that allow the tissue to maintain its
structure and function. Hence, a pathologist will first locate
epithelial cells in a biopsy and, to examine for cancer, will
mentally segment them from stroma.

Biopsy samples are prepared in a specific manner to aid
in recognition of cells and disease. The sample is sliced thin
(∼ 5µm thickness), placed on a glass slide and stained with
a dye to provide contrast. The most common dye is a mix-
ture of hematoxylin and eosin (H&E), which stains protein-
rich regions pink and nucleic acid-rich regions blue. Empty
space, lipids and carbohydrates are typically not stained and
characterized by white color in images. Staining allows the
pathologist to identify cells based on their nucleus and extra-
nuclear regions. Patterns of the same cell type characterize
structures. For example, epithelial cells arranged in a circu-
lar manner around empty space are characteristic of a duct
and endothelial cells similarly arranged are characteristic of
blood vessels. The empty space enclosed within a duct in
pathology images is termed a lumen. The distortion of the
circular pattern of epithelial cells around a lumen is charac-
teristic of cancer.

In low severity cancers, lumens are only slightly distorted,
while higher grades of cancer display a lack of lumen and
simply consist of masses of epithelial cells supported by little
stroma. The relative distortion and change in lumen shape
is organized into a grading scheme to assess the severity of
the disease, Gleason Scoring system, which is the primary
measure of disease that defines diagnosis, helps direct ther-
apy and helps predict those at danger of dying from the
disease. Since prostate cancer is multi-focal and the disease
quite variable, two dominant patterns of epithelial distortion
are selected and each is independently graded on a scale of
1-5. The grades are then summed to provide a Gleason score
ranging from 2 (low grade cancer) to 10 (maximum danger
cancer). This scale has been widely used since its creation
in the 1960s and currently forms the clinical standard of
practice. Manual Gleason scoring, however, has severe lim-
itations.

2.2 Limitations of Current Practice
Widespread screening for prostate cancer has resulted in

a large workload of biopsied men [16], placing an increasing
demand on services. Operator fatigue is well-documented
and guidelines limit the workload and rate of examination
of samples by a single operator (examination speed and
throughput). Importantly, inter- and intra-pathologist vari-
ation complicates decision-making. The consistency in de-
termining Gleason scores is rather poor. Intra-observer mea-
surements show that a pathologist confirms their own score
less than 50% of the time and are ±1 score no more than
80% of cases [2]. Hence, the diagnoses for ∼ 50% of cases
may change and may be significantly altered for ∼ 20% of
cases ultimately leading to changes in therapy for a patient
subset [30]. The numbers are decidedly cause for concern.
For example, a recent study including 15 pathologists and
537 prostate cancer patients, 70.8% of Gleason scores were
shown to be inaccurate when compared with the patient’s
final outcome [18]. Second opinions [29] improve assessment
and are cost-effective [10], not to mention their utility in mit-
igating the effects of healthcare costs, lost wages, morbidity,



or potential litigation. In summary, the manual recognition
of spatial patterns leaves much to be desired from a process
perspective and has far-reaching social effects from a public
health perspective.

For the reasons underlined above, there is an urgent need
for high-throughput, automated and objective pathology
tools. We believe that this need is best met by employing
the power of computer algorithms and advanced processing
to address prostate cancer diagnosis and grading.

The information content of conventionally stained images
is limited, inherently non-specific and varies greatly within
patient populations and processing conditions. Hence, the
information derived from visible microscopy images is fun-
damentally limited and automated methods of analyzing
stained images have failed to provide a sufficiently robust al-
gorithm to diagnose disease. An alternative to morphology-
based microscopy are molecular microscopy techniques to
probe disease. Molecular technologies for disease diagnosis
are an exciting venue for investigations as they promise bet-
ter diagnostic capabilities through objective means and a
multitude of chemicals to provide insight into the changes
indicative of the disease process. In particular, spec-
troscopy tools allow for the measurement of many molecular
species simultaneously. Spectroscopic techniques in imaging
form, notably using optics, further enable the analysis to
be conducted without perturbing the tissue [11]. In this
manuscript, we present the analysis of prostate tissue with
one such technique, Fourier transform infrared (FTIR) spec-
troscopic imaging.

2.3 Molecular Imaging
Infrared spectroscopy is a classical technique for measur-

ing the chemical composition of specimens. At specific fre-
quencies, the vibrational modes of molecules are resonant
with the frequency of infrared light. By monitoring all fre-
quencies in the region, a pattern of absorption can be cre-
ated. This pattern, or spectrum, is characteristic of the
chemical composition and is hypothesized to contain infor-
mation that will help determine the cell type and disease
state of the tissue. Recently, FTIR spectroscopy has been
developed in an imaging sense. Hence, The data are similar
to optical microscopy. The first difference is that no external
dyes are needed and the contrast in images can be directly
obtained from the chemical composition of the tissue. The
second is that each pixel in the visible image contains RGB
values but in IR imaging contains several thousand values
across a bandwidth (2000 − 14000nm) that is ∼ 40 times
larger than the visible spectrum (400− 700nm) [7].

3. DATA AND METHODOLOGY

3.1 Experimental Details
Prostate tissues were obtained from Cooperative Hu-

man Tissue Network for the tissue array research program
(TARP) laboratory. Using these tissues, tissue microarrays
were prepared using a Beecher automated tissue arrayer con-
taining a video overlap system and 0.6mm needles. Appro-
priate institutional review board and National Institutes of
Health (USA) guidelines for the protection of human sub-
jects were followed. 5µm sections of tissue were floated on an
infrared transmissive optical window for FTIR spectroscopic
imaging. Another 5µm section obtained from the same point
on the tissue specimen was observed using traditional mi-

Figure 1: Conventional Staining and Automated
Recognition by Chemical Imaging. (A) Typical
H&E stained sample, in which structures are de-
duced from experience by a human. Highlights of
specific regions in the manner of H&E is possible
using FTIR imaging without stains. (B) Absorp-
tion at 1080 cm-1 commonly attributed to nucleic
acids and (C) to proteins of the stroma. The data
obtained is 3 dimensional (D) from which spectra
(E) or images at specific spectral features may be
plotted.

croscopy for comparison. Expert pathologists determined
the tissue classification using these microscopy samples by
staining with H&E. Pathologists’ classification were used
as the ‘gold standard’ for comparison with the results from
the methods mentioned in this paper.

Tissues were analyzed using a Michelson interferometer
attached to a microscope (Perkin-Elmer Spotlight 300) in
transmission mode at a resolution of 4cm−1 The sample
was then raster scanned to obtain images of the entire spec-
imen. Typical specimen size is 600µm × 600µm with each
pixel being 6.25µm× 6.25µm on the sample plane. Spectra
are composed of 1, 641 sample points of the spectral range
4, 000 − 720cm−1. Data acquisition using these techniques
required 40 minutes per cylindrical core of the tissue mi-
croarray to yield a root mean square signal to noise ratio of
500 : 1. A typical array was composed of approximately 2.5
million pixels and required 40 GB of storage space.

The data obtained from FTIR imaging is three-
dimensional. The x− and y−dimensions locate pixels on
the tissue-sample plane. The z-dimension values compose
the IR spectrum for the corresponding pixel. The spectra
can be analyzed to determine what type of tissue (epithe-
lium, stroma, or muscle) the specimen is as well as whether
the tissue is malignant or benign. We have developed this
technology to provide data from tissue in minutes and em-
ploy a high-throughput sampling strategy using Tissue Mi-
croarrays (TMA) to obtain data.[19] Samples from multiple
tissues, from multiple patients and multiple clinical settings
are included in the data set to maximize the sampling of
natural variability and ensure the development of robust
analysis algorithms. These high-throughput imaging and
microarray technologies combine to provide very large data



sets—see Figure 1. A typical single core consists of 300×300
pixels on the x− y plane with 1641 bands on the z-axis. A
tissue microarray consists of several hundred such cores and
analysis of such large datasets (typically, tens of GB) is com-
putationally expensive.

3.2 Data Format
Each pixel’s z-dimension contains a spectrum character-

istic of the chemical composition of that region of the speci-
men. Certain spectral quantities provide measures of chem-
istry. For example, the height of each feature is propor-
tional to its abundance, the peak position is associated with
the vibrational identity and peak shape often reflects the
multitude of environments around the molecule. Therefore,
differences in spectral characteristics can be used in classifi-
cation and these exact spectral features are termed ‘metrics’.
For example, the ratio of absorbance of the spectral peak at
1080cm−1 to the spectral peak at 1545cm−1 is commonly
used to distinguish epithelial from stromal cells. Trained
spectroscopists determine these metrics based upon exam-
ination of spectral patterns. Hence, the reduction of ull
spectra to descriptive metrics forms an intelligent dimen-
sionality reduction strategy. Genetic algorithms form de-
cision rules based upon these metrics to classify pixels by
tissue type. Furthermore, the transparency of the genetic
algorithms allows the scientist to correlate specific rules to
biological features (tissue type and cancer classification) via
metrics based upon spectral characteristics.

4. APPROACH
In this section we review related work on the GBML com-

munity, highlighting previous efforts to deal with large data
sets. We also present the motivation and techniques that
lead to the design of NAX. Special attention is paid to the
description of the hardware and software techniques used,
as well as to the design of a scalable GBML algorithm.

4.1 Related Background
Bernadó, Llorà & Garrell [6] presented a first empir-

ical comparison between genetics-based machine learning
techniques (GBML) and traditional machine learning ap-
proached. The authors reported that GBML techniques
were able to perform as well as traditional techniques. Later
on, Bacardit & Butz [3] repeated the analysis again obtain-
ing similar results. Most of the experiments presented on
both papers were conducted using publicly available data
sets provided by the University of California at Irvine repos-
itory [28]. Most of the data sets are defined over tens of
features and up to few thousands of records. However, a
key property of GBML approaches is its intrinsic massive
parallelism and scalability properties. Cantú-Paz [8] pre-
sented how efficient and accurate genetics algorithms could
be assembled, and Llorà [21] presented how such algorithms
can be efficiently used as machine learning and data mining
techniques.

GBML techniques require evaluating candidate solutions
against the original data set matching the candidate solu-
tions (e.g. rules, decision trees, prototypes) against all the
instances in the data set. Regardless of the GBML flavor
used, Llorà & Sastry [25] showed that as the problem grows,
the matching process governs the execution time. For small
data sets (teens of attributes and few thousands of records)
the matching process takes more than 85% of the overall

execution time marginalizing the contribution of the other
genetic operators. This number easily passes 99% when we
move to data sets with few hundreds of attributes and few
hundred thousands of records. Such results emphasize one
unique facet of GBML approaches: scalability via exploiting
massive parallelism. More than 99% of the time required is
spent on evaluated candidate solutions. Each solution evalu-
ation is independent of each other and, hence, it can be com-
puted in parallel. Moreover, the evaluation process can also
be parallelized further on large data sets by splitting and
distributing the data across the computational resources.
A detailed description of the parallelization alternatives of
GBML techniques can be found elsewhere [21].

Currently available off-the-shelf GBML methods and soft-
ware distributions [5, 20] do not usually target dealing
with very large data sets. Three different works need to
be mentioned here. Flockhart [12] proposed and imple-
mented GA-MINER, one of the earliest effort to create data
mining systems based on GBML systems that scale across
symmetric multi-processors and massively parallel multi-
processors. The work review different encoding and par-
allelization schemes and conducted proper scalability stud-
ies. Llorà [21] explored how fine-grained parallel genetic
algorithms could become efficient models for data mining.
Theoretical analysis of performance and scalability were de-
veloped and validated with proper simulations. Recently,
Llorà & Sastry [25] explored how current hardware can be
efficiently used to speed up the required matching of so-
lutions against the data set. These three approaches are
the basis of the incremental rule learning proposed in the
next section to approach very large data sets—such as the
prostate tissue classification one.

4.2 The Road to Tractability
NAX evolves, one at a time, maximally general and max-

imally accurate rules. Then, the covered instance are re-
moved and another rule is added to the previously stored
one, forming a decision list. This process continues until
no uncovered instances are left. Llorà, Sastry & Goldberg
[26] showed that maximally general and maximally accu-
rate rules [32] could also be evolved using Pittsburgh-style
learning classifier systems. Later, Llorà, Sastry & Goldberg
[27] showed that competent genetic algorithms [15] evolve
such rules quickly, reliably, and accurately. From these early
works, it can be inferred that approaching real-world prob-
lems, such as the prostate tissue classification and cancer
diagnosis, using GBML techniques may produce the desired
byproduct: proper scalability. We discuss next efficient im-
plementation techniques to deal with very large data sets
using NAX [24].

4.3 Exploiting the Hardware
Recently, multimedia and scientific applications have

pushed CPU manufactures to include support for vector
instruction sets again in their processors. Both applica-
tions areas require heavy calculations based on vector arith-
metic. Simple vector operations such as add or product are
repeated over and over. During 80s and 90s supercomput-
ers, such as Cray machines, were able to issue hardware
instructions that took care of basic vector operations. A
more constrained scheme, however, has made its way into
general-purpose processors thanks to the push of multime-
dia and scientific applications. Main chip manufactures—
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Figure 2: This figure illustrates the parallel model implemented. Each processor is running an identical NAX
algorithm. They only differ in the portion of the population being evaluated. The population is treated
as collection of chunks where each processor evaluates its own assigned chunk sharing the fitness of these
individuals with the rest of processors. This approach minimizes communication cost.

IBM, Intel, and AMD—have introduced vector instruction
sets—Altivec, SSE3, and 3DNow+—that allow performing
vector operations over packs of 128 bits by hardware. We
will focus on a subset of instructions that are able to deal
with floating point vectors. This subset of instructions to
implemented by hardware vector operations against groups
of four floating-point numbers. These instructions are the
basis of the fast rule matching mechanism proposed.

Our set of rules seek both to correctly classify the prostate
data set and provide biological insight into the rules. All the
attributes of the domain are real-value and the conditions of
the rules need to be able to express conditions in a <n spaces.
We use a rule encoding similar to the one proposed by Wil-
son [33] and widely used in the GBML community. Rules
express the conjunction of tests across attributes. Each test
can be defined in multiple fashions, but without loss of gen-
erality, we pick a simple interval based one. A simple exam-
ple of and if-then rule, could be expressed as follows:

1.0 ≤ a0 ≤ 2.3 ∧ · · · ∧ 10.0 ≤ an ≤ 23 → c1 (1)

Where the condition is the conjunction of the different at-
tribute tests, as introduced earlier, and the condition is the
predicting class. We also allow a special condition—don’t

care—which always returns true to allow generalized to
rules evolve. The rule below illustrates an example of a
generalized rule.

1.0 ≤ a0 ≤ 2.3 ∧ −3.0 ≤ a3 ≤ 2 −→ c1 (2)

All attributes except a0 and a3 were marked as don’t care.
Matching a rule requires performing the individual tests

before the final and condition can be computed. Vector
instruction sets can help improve the performance of this
process by performing four tests at once. Actually, this pro-
cess can be regarded as four parallel running pipelines. The
process can be improved further by stopping the matching

process when any one test fails. The code implemented as-
sumes that the two vectors containing the upper and lower
bounds are provided and records are stored in a two dimen-
sional matrix. As also shown elsewhere [25], exploiting the
hardware available can speed between 3 and 3.5 times the
matching process[24].

4.4 Massive Parallelism
Since most of the time is spent on the evaluation of candi-

date rules when dealing with large data sets, our next goal
was to find a parallelization model that could take advantage
of this feature. Due to the embarrassing parallelism model
[17] for rule evaluation, we designed a coarse-grain parallel
model for distributing the evaluation load. Cantú-Paz [8]
proposed several schemes, showing the importance of the
trade off between computation time and time spent commu-
nicating. When designing the parallel model, we focused on
minimizing the communication cost. Usually, a feasible so-
lution could be a master/slave one—the computation time is
much larger than the communication one. However, GBML
approaches tend to use rather large populations, forcing us
to send rules to the evaluation slaves and collect the resulting
fitness. This scheme also increments sequential instructions
that cannot be parallelized, reducing the overall speedup of
the parallel implementation as a result of Ambdhals law [1].

To minimize communication cost, each processor runs
identical NAX algorithms—all seeded in the same manner,
and, hence performing the same genetic operations. They
only differ in the portion of the population being evaluated.
Thus, the population is treated as collection of chunks where
each processor evaluates its own assigned chunk, sharing the
fitness of the individuals in its chunk with the rest of proces-
sors. in this manner fitness can be encapsulated and broad-
casted, maximizing the occupation of the underlying pack-
ing frames used by the network infrastructure. Moreover,



(a) Original labeled array (b) Automatically classified array

Figure 3: This figure on the left-hand side presents the original labeled data contained in the P80 array. The
figure on the right-hand side presents the reconstructed image based on the predictions issued by the the
rule set evolved by NAX. Green represent non cancerous tissue spots; red represent malignant tissue spots.

this approach also removes the need for sending the actual
rules back and forth between processors—as a master/slave
approach would require—thus, maintaining the communi-
cation to the bare minimum—namely, the fitness. Figure 2
presents a conceptual scheme of the parallel architecture of
NAX.

To implement the model presented in Figure 2, we used
C and the open message passing interface (openMPI) imple-
mentation [13]. Each processor computes which individuals
are assigned to it. Then it computes the fitness and, finally,
it broadcasts the computed fitness. The rest of the process
is unchanged. Except for the cooperative evaluation, all the
processors generate the same evolutionary trace.

4.5 Lists of Maximally General and
Maximally Accurate Rules

One main characteristic of the so-called Pittsburgh-style
learning classifier systems—a particular type of GBML—is
that the individuals encode a rule set [14, 22, 15]. Thus
evolutionary mechanisms directly recombine one rule set
against another one. For classification tasks of moderate
complexity, the rule sets are not large. For complex prob-
lems, however, the potential number of rules required to
ensure accurate classification may use prohibitively large
amounts of memory. The requirements increase even fur-
ther in the presence of noise [23]. Hence, this family of
GBML techniques works very well on moderate complexity
problems [6, 3], but needs to be modified for complex and
large data sets.

A sequential rule learning approach may alleviate the re-
quirements by evolving only one rule at a time, hence, reduc-

ing the memory requirements [9, 4]. This allows maintaining
relatively small memory footprints that makes feasible pro-
cessing large data sets. However, an incremental approach
to the construction of the rule set requires paying special
attention to the way rules are evolved. For each run of the
genetic algorithm, we would like to obtain a maximally gen-
eral and maximally accurate rule, that is, a rule that covers
the maximum number of examples without making mistakes
[32]. NAX (our proposed incremental rule learner) evolves
maximally general and maximally accurate rules by com-
puting the accuracy (α) and the error (ε) of a rule [26]. In a
Pittsburgh-style classifier, the accuracy may be computed as
the proportion of overall examples correctly classified, and
the error is the proportion of incorrect classifications issued.
Once the accuracy and error of a rule are known, the fitness
can be computed as follows.

f(r) = α(r) · ε(r)γ (3)

where γ is the error penalization coefficient. We have set γ
to 18 to guarantee that the evolutionary process will pro-
duce maximally general and maximally accurate solutions.
Further details may be found elsewhere [24]. The above
fitness measure favors rules with a good classification accu-
racy and a low error, or maximally general and maximally
accurate rules. By increasing γ, we can bias the search to-
wards correct rules. This is an important element because
assembling a rule set based on accurate rules guarantees the
overall performance of the assembled rule set. NAX’s efficient
implementation of the evolutionary process is based on the
techniques described using hardware acceleration—section
4.3—and coarse-grain parallelism—section 4.4. The genetic



algorithm used was a modified version of the simple genetic
algorithm [14] using tournament selection (s = 4), one point
crossover, and mutation based on generating new random
boundary elements.

5. RESULTS
NAX has shown competitiveness in evolving rule sets that

perform as accurately as the ones evolved by other genetics-
based machine learning and non-evolutionary machine learn-
ing techniques. However, NAXs key element is the ability to
deal with large data sets. In this paper, we present prelim-
inary results towards evolving a model capable of correctly
classifying pixels as cancerous or non-cancerous. The origi-
nal array of spots is presented in figure 3(a). Each spot cor-
responds to a different biopsy sample from a patient. The
pixels present in each spot correspond to the epithelial tis-
sue of the biopsy, we supress all other tissue types with
a prior classification filter based on Bayesian Likelihood.[7]
Each pixel of a spot is defined by 93 different metrics ex-
tracted from the processed infrared spectra—as described
in section 3. Finally, each pixel in the array was labeled
with the diagnostic class provided by a human pathologist.
Figure 3(a) presents in green all the non-cancerous pixels
while red identifies cancerous ones.

Our goal with the initial experiments here was to demon-
strate the usefulness of the proposed approach to computer-
aided diagnosis. Our current experimental efforts are plan-
ning mass experimentation on several tissue arrays using the
Tungsten cluster at the National Center for Supercomput-
ing Applications. These initial experiments were conducted
on a dual core Intel Xeon 2.8GHz Linux computer with 1Gb
of RAM. NAX was run using both processors. The training
time to obtain a model describing all the data took less than
ten hours—indicating that very competitive training times
can be achieved by just using more processors. The ob-
tained model was able to correctly classify > 99.99% of the
training pixels correctly. However, these results do not illus-
trate the generalization capabilities of the models evolved
by NAX. Hence, we ran a series of ten-fold stratified cross-
validation runs [34] to measure generalization and test per-
formance of the evolved models. It is important to mention
that tools such as WEKA [34] and other off-the-shelf data
miners were not able to handle the volume of data required
to evolve a model— either due to the large memory foot-
print required or by not being able to provide an accurate
model in a feasible time period. The results of the cross-
validation experiments using NAX correctly classified 87.34%
of validation pixels. Such results are more than encouraging,
because they show a human-competitive computer-aided di-
agnosis system is possible. Another interesting property is
that a few rules classify a large number of pixels—see Fig-
ure 4. Such a result is interesting for the interpretability
of the model, since a small number of rules have a great
expressiveness, and hence may provide valuable biological
insight. Most importantly, they allow us to classify tissue
accurately. Subsequent to this pixel level classification, each
circular spot in figure 3 was assigned as malignant or benign
based on the majority of pixels of he class in the sample. We
were able to accurately classify 68 of 69 malignant spots and
70 of 71 benign spots in this manner. While human accu-
racy is difficult to quantify due to the variation between
persons,a generally accepted anecdotal figure is about 5%
error rates. The preliminary results we demonstrate here
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Figure 4: Performance of the evolved model as a
function of the number of rules used.

could potentially reduce that five-fold to about 1%, provid-
ing a solution to this real-world problem by a combination
of novel spectroscopy and advanced machine learning.

6. CONCLUSION
In this manuscript, we present the application of advanced

genetics-based machine learning algorithms to a real-world
problem of large scope, namely, the diagnosis of prostate
cancer. As opposed to subjective human recognition of dis-
ease in tissue using light microscopy, we employed a chemical
microscopy approach that required extensive computation
but provided a decision without human input. Our devel-
opment of a learning algorithm based on maximally general
and maximally accurate rules was scalable to very large data
sets and parallelized to provide learning and classification
speed advantages. The algorithm was able to classify a ma-
jority of pixels correctly, resulting in overall error rates that
were comparable to human examination, the current gold
standard of care.
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